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A Matrix-Based Approach to Global Locality Optimization *

Mahmut Kandemir  Alok Choudhary J. Ramanujafm  Prith Banerjeé

Abstract

Global locality optimization is a technique for improving the cache grenfance of a sequence of loop
nests through a combination of loop and data layout transformati®use loop transformations are
restricted by data dependences and may not be very successful in optimiziaddotly nested loops
and explicitly parallelized programs. Although pure data transfonatiare not constrained by data
dependences, the impact of a data transformation on an array might be pregtanthat is, it can affect
all the references to that array in all the loop nests. Therefore, in this papargue for an integrated
approach that employs both loop and data transformations. The methayd ¢ing advantages of most
of the previous techniques for enhancing locality and is efficient. In oprageh, the loop nests in a
program are processed one by one and the data layout constraints obtamexhe nest are propagated
for the optimizing the remaining loop nests. We show a simple aret®&fe matrix-based framework
to implement this process. The search space that we consider for possipladnsformations can be
represented by general non-singular linear transformation matrices andtthiagouts that we consider
are those that can be expressed using hyperplanes. Experiments withl fieating-point programs
on an&-processor SGI Origin 2000 distributed-shared-memory machine denatathe efficacy of our
approach.
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1 Introduction

The processing power of high performance computers continues to increasatitally. In the mean time, the rate
of increase of speed of the memory subsystems has not kept pace with tbéimpgovement in processor speeds
[23]. Therefore, modern multiprocessors include several levels of mehierarchy in which the lower levels are
slow and inexpensive (e.g., disks, memory) while the higher I€eels, caches, registers) are fast but expensive. Even
with the use of memory hierarchy, realizing the highest levels of perémice on current machines requires careful
orchestration of programs. Fortunately, optimizing compilers haanlinstrumental in relieving some of the burden
on the users; and they play an increasingly critical role in the face offtid evolution of architectures.

A recent study shows that a group of highly parallelized scientific bencresaénd as much as a quarter to a half
of their execution times waiting for data from memory [55]. It is novdely accepted that in order to eliminate the
memory bottleneck, cache locality should be exploited as much as possitdevay of achieving this is to transform
loop nests to improve locality. There has been a great deal of research in tloé la@atransformations. Several loop
transformations have been incorporated into a single framework asimatrix representation of these transformations
[59]. Among the techniques used are unimodular [7] and non-uninaofR9] iteration space transformations as well
as tiling [58, 56, 37]. These techniques share the following two chexiatts:

(1) they attempt to improve data localitydirectly as a result of modifying the iteration space traversal order; and
(2) atransformation is applied to one loop nest at a time.

However, loop transformations have some important drawbackst, Hirey may not always be legal due to depen-
dence constraints [59]. Second, it might be difficult to find a loopdi@mation that improves the locality afl the
arrays referenced in the nest. Third, loop transformations are not vecgssful in optimizing locality for imperfectly
nested loops; for example, Kodukula and Pingali [34] show that hapittiperfectly nested loops within a loop trans-
formation framework requires a somewhat different approach to thégarotAnd finally, as noted by Cierniak and Li
[15], loop transformations are not very successful in optimizindieitly parallelized programs since these programs
include parallel execution specifications (e.g., annotations) as well asreyizdition constructs; this renders locality
optimization very difficult.

Proper layout of data in memory may also have a significant impact on therperfice of scientific computations
on multiprocessor machines. In fact, as shown by O’Boyle and Knijner{ddi, Leung and Zahorjan [38] and Kan-
demir et al. [27], techniques that decide good data layouts (e.g., row~oragolumn-major storage of large arrays)
can improve the performance of dense array codes significantly. We refer tptimization of data layouts alata
transformationsUnlike loop transformations, data transformations are not comstty data dependences, and are
easily applicable to imperfectly nested loops and explicitly parallelizedraras. However, there are two important
drawbacks associated with data transformations. First, they canmotizptemporal locality. As a result of this, pure
data transformations can generate programs that do not fully utilizeetfigters in the underlying architecture. But,
more importantly, the impact of a data transformatioglabal, i.e., the effect goes beyond a single loop nest bound-
ary. For example, transforming the memory layout of a multi-dimemei array from column-major to row-major
to improve the locality of a reference to the said array in one loop nest carsady affect the locality of the other
references to the same array in other loop nests.

Therefore, it is reasonable to expect thairdfied(integrated) approach that employs both loop and data transfor-
mations should, in principle, perform better than approaches baspdretoop orpuredata transformations. In this
paper, we explore this possibility. Specifically, we seek an answer timlibe/ing question:

“Given a program that consists of a number of loop nests, what are themgie loop transformations
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for the loop nests and the appropriate data transformations for thi-dimensional arrays referenced
such that the overall cache locality will be very good?”

Our goal is to derive a unified framework that satisfies the followaguirements:

e The framework should be fast; that is, it should not resort to estiaisearch to find memory layouts and/or
loop transformations. Some of the previous work in this area 305,31] use techniques that combine some
restricted sets of loop and data transformations; but they use a kiexhaustive search to achieve their goal.
Since no quantification of the compilation times is available, it remaictear whether such techniques are fast
and effective in practice.

¢ The framework should be fairly general. It should be able to use (wkeassary) the general non-singular loop
transformations. Previous work based on pure loop transformasiacts as those of Wolf and Lam [56] and
McKinley et al. [43] use unimodular loop transformations which may@sufficient for optimizing locality
in loop nests that require non-unimodular transformations. Témdéwork should also use general data trans-
formations. Works published in [15], [30] and [4] consider onlyrailed subset of data transformations. For
example, they do not consider diagonal (skewed) data layouts which caes yeoy useful for banded-matrix
applications.

¢ The framework should be able to optimize both temporal and spatiaitipcahis is a reasonable requirement
as we use both loop and data transformations; so, in principle, wddshe able to optimize for both types
of locality. Note that locality enhancing techniques based on pure datddmnanagions (e.g., [44], [38], [27])
cannot optimize temporal locality.

¢ The framework should be able to optimize imperfectly nested loops dsw/ekplicitly parallelized programs.
Since we use data transformations as a part of our unified frameworkhadd be able to optimize those
important cases where most of the techniques based on pure loop traasbosrail.

In this paper we present a unified framework that attempts to satisfyotle get above. McKinley et al. [43] suggests
the following three-step high-level approach for locality optimizatio

(1) Optimize temporal and spatial locality through loop transfornmstisuch as loop permutation, reversal, fusion,
distribution, and skewing;

(2) Optimize cache locality further using tiling [58] which is a comdtion of strip-mining and loop permutations;
(3) Optimize register usage through unroll-and-jam and scalar replacéihieir?].

Our approach can be seen as an attempt to increase the effectiveness of the fiestdstemrthogonal to the other
two. We recommend applying tiling and register level optimizatiodefang our unified approach to achieve the
best results. In fact, as will be discussed later in the paper, our approgshtbelbtain better results from the second
and the third steps. We assume that every array accessed in a prograsirfgisfaked memory layout for the whole
program. As a result, data layout decisions affect the performance charécdesfsthe whole program unlike loop
transformations; in addition, data layouts impact the choice of lmpsformations applied to each loop nest. We can
model the data transformations using vectors and matrices in the sameayaydnsformations have been modeled.
Such an approach allows us to exploit the benefits of a unified linear alg&anaiework.

The rest of the paper is organized as follows. Section 2 presents theatimtifor attacking the global locality
optimization problem and describes our approach informally. Section 3idesahe fundamental concepts used
in our approach. Section 4 presents the details of our approach througftalsexamples. In that section we first
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doi=1, N doi=1, N doi=1, N
do j=1, N do j=1, N do j=1, N
U(i,j) = v(j,1) U(i,jd = --- U(i,j) = v(j,1)
end do end do end do
end do end do end do
doi=2,0N doi=1, N doi=1, N
do j =1, N-1 do j=1, N do j=1, N
W(i,j) = W(i-1,j+1) U(j,i) = --- V(i,j) = U(j,1)
end do end do end do
end do end do end do
(@) (b) ()

Figure 1: Three program fragment&) Loop transformations fail, data transformations wofk) Data transforma-
tions fail, loop transformations workc) Integrated loop and data transformations are necessary.

focus on a general technique for improving locality on both uniproaessod multiprocessors, and then discuss a
number of multiprocessor-specific issues. Section 5 presents expealmesnits obtained on an eight node SGI Origin
2000 distributed-shared-memory multiprocessor. Section 6 reviews ralaiddon locality enhancing techniques and
finally Section 7 summarizes the paper with an outline of ongoing andefutark.

2 Our approach

2.1 Motivation

As noted earlier, there is a vast amount of work in optimizing localitydcsingle loop nest usingeration space
(loop) transformations [58, 56, 39, 43]. Recently some author4438] have proposed techniques to optimize spatial
locality in a loop nest usingata spacdarray layout) transformations. Such a transformation typically rfeslthe
memory layout of a multi-dimensional array. The main problem witls #pproach is that modifying the memory
layout of an array hasglobaleffect meaning that it affects the locality of all the references to that array inelbbp
nests in the program. We show in this paper that such a global impact cact ibef exploited using a proper mix of
data and iteration space transformations.

In order to motivate the discussion, we consider the program fragnséiotvn in Figure 1. The first loop nest
shown in Figure 1(a) accesses two arrays. It can be shown that it is nablpdssoptimize spatial locality (by en-
suring stride one accesses in the inner loop) for both references usiadopp transformations. The reason is that
the innermost loop accesses the two arrays in a different manner. Assaroolgmn-major memory layout for both
the arrays, the locality for array is good whereas that of arrdy is not. A simple loop interchange transformation
[59] would improve the locality for arrayJ, but would degrade the locality & However, without any loop transfor-
mation, using a column-major memory layout for arkgnd a row-major memory layout for arrdy will result in
good locality for both the references. If the default memory layout ismakmajor, this solution will involve a data
transformation for array) (from column-major to row-major). The second loop nest in Figus) Liustrates another
problem with pure loop transformations. Again, assuming a colamajer memory layout, both references to arvaly
exhibit poor locality as the inngrloop skips through the columns. Unfortunately, the obvioustsmh of interchang-
ing two loops is notegal here due to data dependences [59]. One simple solution is again a dafartraation for
arrayW, that is, transforming its memory layout from column-major to rovajor.

Now consider the program fragment shown in Figure 1(b). In thisnfiraigt there are two loop nests accessing the
same array in different fashions. The techniques based on pure datatnsatsbos cannot do much for this program
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fragment. The reason is that no matter what the layout of adrasy the locality in one of the loop nests will be poor
unless the loops are transformed. It is easy to see that without anyrdasformation (assuming a column-major
memory layout) just interchanging the loops in the first nest (gedithat it is legal to do so) will solve the problem.
Figures 1(a) and (b) show the cases where pure data transformationsrandguitransformations, respectively,
are required and sufficient. Figure 1(c) illustrates an example for whaither pure loop nor pure data transformations
work. In that case, one solution is to select row-major layout for abaand column-major layout for array, and
interchange the loops in the second nest. Notice that such a solutioineethe application dfothloop and data
transformations. These three program fragments show us that neivipendo data transformations subsume the other
and sometimes a unified (integrated) approach that uses a mix of loop artchdatarmations might be necessary.

2.2 Overview

Our approach to the global locality optimization problem can be defined#ly as follows. First, we transform the
program into a canonical form using loop fusion, loop distribatiand code sinking [59]; in this canonical form, a
program contains two types of references, those that occur inside logpamesthose that occur between loop nests.
In our approach, only the references within loop nests can have an effect onryrlagraut decisions; in determining
layouts, we simply ignore the references between loop nests. Then weunb@ast interference graph similar to that
used by Anderson and Lam [5, 3]. This is a bipartite graph that contamséts of vertices; one set corresponding
to the loop nests and the other corresponding to the arrays. Thereiglaaated edge between an array vertex and a
loop nest vertex if and only if that loop nest accesses that array. Our teehmagles on a single connected component
of this graph at a time, since there are no common arrays between differemtotedicomponents.

For a single connected component, we first order the loop nests accavdiegdt criterion from the most costly
nest to the least costly. We need to be careful in defining the cost of a kxip Although it may sound logical
to profile the code and use the uniprocessor execution times as theo€dlses loop nests, it is not a good idea.
The reason is that execution times are intricately associated with memonytdafyehich will be determined by our
approach). Therefore, what we need is a layout-independent cost criterithe. flmllowing section, we discuss a cost
criterion based on theveightsof the references in a program. Notice that the ordering of loop nests aegdaa
cost criterion isnot a modification or transformation of the structure of the progrant;rather a step to determine
the order in which the loop nests will be considered (optimized) byl@eality optimization algorithm. Then the
algorithm starts with the most costly nest and optimizes it for logaktfter this process, suitable memory layouts
for (possibly some of) the arrays referenced in this loop nest are detedmAfterwards, we move to the next most
costly nest. In optimizing this nest, we take into account the memopnulaydetermined during the optimization of
the most costly nest. After each nest is optimized, (possibly) new melagouts are determined and all the memory
layouts obtained so far apropagatedo the remaining nests #syout constraintgor optimizing the next nest in the
connected component. During the processing of a single connected compuainemta loop nest is to be optimized,
the compiler can encounter three important cases:

Casel: There are no memory layout constraints; that is, none of the arraysidgsermined memory layout so far,
and we have complete freedom in choosing loop transformation (excephsisained by data dependences in
the loop nest under consideration). In this case, the compiler’s taskdistérmine the memory layouts of the
arrays referenced in the loop nest as well as to find an accompanying iterationrspaferimation. In general,
this is the case for the most costly nest in a connected component.

Case2: The memory layouts of some of the arrays referenced in the loop nest hraaelyabeen fixed during the
processing of a previous loop nest. Here, the task is to determinegh®mn layouts of the remaining arrays
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and to transform the iteration space accordingly. This is the most caiyrencountered case.

Case3: We have restrictions on the iteration space other than those due taeja@adences. These restrictions,
calledadditional constraintgas against layout constraints), are in general related to parallelism; typibake
restrictions can arise due to the need to reduce (or perhaps eliminateatseg25, 54] or the need to exploit
the largest granularity of parallelism [7]. The goal is to determinenkenory layouts for the arrays referenced.

Casel can be seen as a special form of Cases3 and a combination of Casesnd3 as well as several other special
cases may also arise.

After all the layouts and loop transformations are found, the comppetfies these transformations and generates
the optimized code. In the next section we give details of the main elemknis approach.

3 Elements and scope of our approach

3.1 Canonical form

We assume that the only control flow that we have is loop structuressiply treaif—constructs as if both branches
always execute. In the canonical form, a program consists of just a sequiefpreferably perfectly-nested) loop
nests. We bring a program into this form using a technique sinoldinat proposed by McKinley et al. [43], which
uses loop fusion and loop distribution. Loop fusion [59] takeseelt loop nests and combines their bodies into a
single body collapsing their iteration spaces into a single iterafi@ees. It can create perfectly nested loops from
imperfectly nested loops, and can improve cache locality as well as register. Wsaxp distribution [59], on the other
hand, creates multiple loop nests from a single loop nest by separhérigdependent statements in a single loop
into multiple loops. It is typically used to break the inter-statendapendence cycles in loop nests with multiple
statements to enable parallelism.

Our algorithm first normalizes [59] each nest such that the step size of egzhdoomes one. It then considers
imperfectly nested loops and transforms them into perfectly nest lodpg ascombination of loop fusion, loop
distribution and code sinking (when necessary). After a sequence oféndept loop nests is obtained, a final pass
applies loop fusion once more combining adjacent loop nests if doimg@ves temporal locality without causing
undue register pressure. The overall approach is similar to that prdpo$43]; a sketch of the algorith@anonical
is shown in Figure 2. The details of the functiduse, distribute, andcode-sink are omitted for lack of space and
not relevant for the purpose of exposition. Notice that, for thieesof clarity, the figure does not show the final loop
fusion pass. Also note that like Wolf et al. [57] we favor fusioreodistribution largely because fusion improves
cache reuse and results in less overhead.

As an illustration of the working ofCanonical, we consider the program fragment shown on the left part of
Figure 3. This fragment consists of two imperfectly nested loop nasfithin the loop nests are the names of the
arrays accessed. Our approach transforms these loop nests into a seriesatfypsetted loops. In this example, we
assume that this can be accomplished using loop fusion for the firstiegly nested loop nest and loop distribution
for the second. As a result of these transformations, the initiainara is converted to a code that consists of three
perfectly nested loop nests.

3.2 Interference graph

Next the compiler builds an interference graph similar to that used by#sath and Lam [5] in solving the automatic
data distribution problem for parallel machines. This is a bipartigmh(V,,, V,, E) whereV,, is the set of loop nests,



Appears in Journal of Parallel and Distributed Conputing, Septenber 1999

Canonical (A)
INPUT: A set of loop nest& = {d1,d2,---}
QUTPUT: A set of loop nestd’ = {§'1,d's, -}
foreach §; € A
if (4; is perfectly-nestedjontinue

else
if (0; has (non-loop) statements sandwiched between loop roests)sink(statements
endif
let {01,072, -, 0.} be the resulting loop nests # after the code-sinking
Canonical({o1, o2, - - -, o, }) I* recursive call! */
let{o'1,a'2,---,a'+} be the resulting loop nests i after the recursive call
if (fusion is legal and profitableuse({c'1, 0’2, - - -, o'+ }) endif
else if (distribution is legal)distribute §; over{o'1,0’s,- - -, o’} endif
endif
endforeach

Figure 2: Overview ofZanonical — an algorithm to transform a program to our desired form.

V., is the set of arrays, an# is the set of edges between loop vertices and array vertices. There is aa edge
betweerv, € V, andv,, € V,, if and only if v,, references,. Then we run a connected-component algorithm on this
graph. For the example given in Figure 3, we have two connected comigoiath connected component is fed into
our global locality optimization algorithm explained in the rest aéthaper; that is, our algorithm works on a single
connected component at a time.

3.3 Hyperplane-based layout representation

Our approach to memory layout representation is based on hyperplane thaoriirfear algebra and is briefly ex-
plained below. In this framework, hyperplanes are used to represent méagounts of multi-dimensional arrays. For

anm-dimensional array, a hyperplane defines a set of array elerqgnys, - - - , 7., ) that satisfy the relation

G+ G292 + -+ Gmim = ¢, (1)
wherec is a constant. In this equation,, go, - - -, g, are rational numbers callddyperplane coefficien@ndc is
a rational number calletlyperplane constarif4, 47]. We refer tog = (g1, 92,---,9m)" as a hyperplane vector

associated with Equation (1). When there is no ambiguity, all transposiymbols will be omitted. Ayperplane
familyis a set of hyperplanes with the same coefficients but with a differentaingtvalue).

An important observation is that a hyperplane family can be used to pardiefine the memory layout of a
multi-dimensional array. Let us concentrate now on a two-dimensidhal N array stored in column-major form
in memory as is the case in Fortran. We can think of each column of this arrajngseaplane (a line); and all
columns collectively define a hyperplane family. Here, the hyperplane visgtorl) and the hyperplane equation is
72 = cwherel < ¢ < N. For exampley, = 5 represents the fifth column of the array. An important fact about the
hyperplanes is that two array elemedtand.J’ belong to the same hyperplanéf

gJ = glJ. 2

Notice that the multiplications in this equation are dot products aatldll the transpose symbols are omitted. Re-
turning to our two-dimensional column-major array, since the array efesil, 5) and(4, 5) satisfy Equation (2) for
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imperfectly-nested input to the
loop nest global locality algorithm

connected-component \

doi=1,N
doj=1,N
Uv

enddo
enddo

doi=1,N
doj=1,N
A4
enddo
enddo

ds i=1, 1\5\]
—_— doj=1,
XY
enddo
enddo

/ connected-component /

input to the
imperfectly-nested global locality algorithm
loop nest

Figure 3: Example application of locality optimization algorithm.

g = (0,1), they belong to the same hyperplane that can be identifiedcwitls. On the other hand, for instand@, 5)
and(1, 6) do not satisfy Equation (2), therefore, they belong to different hylpees. It is important to stress that the
memory layouts defined by hyperplanes are not limited to the conventaymlis such as column-major and row-
major. For example, a hyperplane family defined(lby—1) also represents a memory layout (for a two-dimensional
array) where, say, the array elemefits3) and(4, 5) map on the same hyperplane. Itis easy to see that such a memory
layout corresponds to diagonal-layout (or skewed-layout) where émaegits in each diagonal are stored contiguously
in memory. Similarly, the hyperplane vectors given(lty0) and(1, 1) correspond to two-dimensional row-major and
anti-diagonal memory layouts, respectively. Figure 4 shows a fewilpesaemory layouts for a two-dimensional
8 x 8 array and the associated hyperplane vectors below them. Each circle in thisrBgoesents an array element.
With such a representation, we say that two array elementsdpat&l locality(or physical proximity) if they belong
to the same hyperplane [27]. For examp(é,5) and (4, 5) have spatial locality in column-major layout whereas
(2,3) and(4, 5) have spatial locality in diagonal-layout expressed uging-1). Notice that the set of layouts given
in Figure 4 is not exhaustive, as, for instance, the hyperplane viggtert) also represents a possible memory layout.

Our representation as explained so far has two problems. First, althsagha column-major layout (as defined
in Fortran) totally defines the relative order of columns as well witheesfo each other, our representation does not
necessarily specify such a relative order among the hyperplanes. Althiveghyperplane coefficients yalues) can
be used to order the hyperplanes, in programs where array sizes far exceeflitbzaailable cache memory, the
effect of the relative order of hyperplanes is of secondary importance. Thadgpoablem is related to our definition
of spatial locality which is coarse-grained and different from those optiegious work (e.g., [56]). For example, in
column-major memory layout, our spatial locality definition does not engass two elements that are mapped onto
different columns but in consecutive memory locations. We believe liigist also not a significant issue. In fact, our
technique works as if it is operating on an array space where the boundaridieai

For two-dimensional arrays, a single hyperplane family is sufficierpartially define the memory layout. In
higher dimensions, however, we may need to use more hyperplane faméiass concentrate on a three-dimensional
arrayU whose layout is column-major. Such a layout can be represented using/pegphanesy = (0,0,1) and
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. @\%\%.? ?@
B e
B e e
B e e
B e
B e e
B e e
=) %\ %;.2
column-major row-major diagonal anti-diagonal
0,1) 1,0) 1,-1) 1,1)

Figure 4: Example memory layouts for two-dimensional arrays and lttypierplane vectors.

h = (0,1,0). We can write these two hyperplanes collectively &syaut constraint matrixor simply alayout matrix

[27]
o-(D)-(311)

Now, two data elementg and.J' have spatial locality (i.e., map onto the same hyperplane) if both tleviag are

SQl

true:

<~

®3)
(4)

Qi
N~
I

>0
Al
I
> W
S

The elements that exhibit spatial locality should be stored in conseautmory locations. Notice that this represen-
tation of column-major layout of a three-dimensional array matches natwvah the column-major layout concept
of Fortran; because, in Fortran, in order for two array elemérasd.J’ to map on the same column all array indices
except possibly the first one (column index) should be equal. Wethat the Equations (3) and (4), together, enforce
the mentioned (equality) conditions. This idea of representing metagouts using layout matrices can be easily
generalized to higher dimensions; the details are beyond the scope pailer and can be found elsewhere [27].

3.4 Optimizing a loop nest using pure loop or pure data transformations

Nest-level optimizations (or local optimizations) transform a lo@strto increase cache locality. Essentially, the
objective is to obtain either temporal locality or stride-one access of tiagsawhich is very important for parallel
architectures with some form of cache hierarchy. To understand the effecboparnsformation let us represent

a loop nest of depth that consists of loops, i, - - -,i, as a polyhedron defined by the loop limits. We use an
n-dimensional vectol = (1,1,, - -,1,,) called theiteration vectorto denote the execution of the body of this loop
nest W|ch1 = Zl,ig =19, " ,in = ip.

We assume that the array subscript expressions and loop boundfiaesfunctionsf enclosing loop indices
and loop-index-independent variables. We can model each array reference usiogeas matrixZ and anoffset
(constany vectoro [56, 39]. As an example, a referenté: + 1, j) to a two-dimensional arral/ in a loop nest of
depth two withi as the outer loop index is representeddly+ o, where

- (3 ) (1)

In general, if the loop nest is of depthand the array in questionis-dimensional, the access matrix is of sizex n
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doi=1, N dou=1, N
do j=1, N dov=1,N
U(i+j,j)=v(i,j) U(u+v,v)=V(u,v)
doi=23,N end do end do
do j =3, N end do end do
U(i,j)=(V(i-2,j)+V(i,j)+V(i,j-2))/3
end do doi=1, N do u = -N+1, N-1
end do do j =1, N do v = max(1-u,1), min(N-u,N)
€) --=U(j,1)+U(1, ) c=U(v,utv)+U(u+v,v)
end do end do
end do end do

(b) (©

Figure 5:(a) An example loop nes(b) Original fragment(c) Optimized version of (b).

and the offset vector is:-dimensional.

The class of iteration space transformations we are interested in can beergptessing non-singular square
transformation matricef59]. For a loop nest of depth, the iteration space transformation matfixs of sizen x n.
Such a transformation maps each iteration veftofrthe original loop nest to an iteratidh = T'1 of the transformed
loop nest. Therefore, after the transformation, the new subscriptitumis £7'~'I' + 6 meaning that the new access
matrix is LT ~*. The problem investigated in works such as [56] and [39] is to selectabdeld” such that the locality
of the reference is improved and all the data dependences in the original@estserved.

Consider the code shown in Figure 5(a). Assuming column-major mglanouts for array$/ andV/, the accesses
to both the arrays are poor from the locality point of view. The peabis that successive iterations of the inner lgop
touch different columns. The chances are very low that a line broughtadoe in one of these iterations will stay in
the cache when any of its elements is reused. An iteration space transforteatioique such as the one proposed by
Li[39] optimizes this nest by interchanging the loops, which is |&égaé. This loop transformation can be represented

by a unimodular matrix
_ (01
T_(l 0).

We note that the same nest can also be improved using data transfosmasiead. Our approach uses the hyperplane-
based layout representation explained earlier.

Letl = (i,4) andl,..: = (i, + 1) be two consecutive iterations. We focus on artayand a similar analysis
applies to arrayy’. Two data elements accessed bwand I,,.,; are £I + 6 and L1,,..; + 0, respectively. Using
Equation (2), in order to have a spatial locality in the innermospjdbe constraing(LI + 6) = §(LIext + 0)
should be satisfied, whegerepresents an optimal (desired) layout. Taking into accduand I,,.,¢, Solving this
last equality gives ugl = 0 where/ is the last column of. That is, if we choose a hyperplane vecjosuch that
g € Ker{f}, we will have spatial locality in the innermost loop. Since, in ouample, £ is the identity matrix,
we have/ = (0,1)”. Choosingg from the null space of gives usg = (1,0), which, as mentioned earlier (see
Figure 4), corresponds to a row-major memory layout. The detailglettng a suitable vector from thi€er set
are not important for the purposes of this paper and are fully explamf¥]. To sum up, in order to have a good
spatial locality in the innermost loop, we have to change (transftlsmemory layout of/ (and that ofV’) from
column-major to row-major.

Of coursedeterminingthe layout for a given array is just one part of the story; the otharipanplementinghis
layout in a given compiler that uses a singénonical layoufi.e., default, base layout) for all the arrays (e.g., column-
major in Fortran). Since the optimal memory layouts will be impleradiin a compiler that uses a fixed default layout
for all arrays, suitable data transformations should be applied émetterences to the arrays whose optimal layouts are
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different from the default layout. Fortunately, this process is rathectmanical. Assumingy.; is the layout matrix
representing the default layout (e.g., column-major in Fortran), iframework, an optimal memory layout (denoted
by the matrixC,,:) for an array can be implemented in three steps:

(1) FromCyer M = C,pt, a suitabledata transformation matrixi/ of sizem x m for anm-dimensional array is
derived;

(2) The subscript expression of each reference to the array is transfosingdi as a linear transformation matrix:
LI+ 06+ MLI + Mo,

(3) The array bounds are also transformed accordingly. For exampleyd-dimensional array is of siz& x M
and is column-major, when the layout is converted to row-major it vélbbsizeM x N.

This implementation framework is from [27] and the second and thd théaps are similar to the techniques proposed
by Leung and Zahorjan [38] and O’Boyle and Knijnenburg [44]. The 8tep, however, allows us to use any type
of layout as the base layout and transform the references in question sticheprogram will get executed under
the base layout (represented by, ;) and will achieve good locality. We will not explicitly focus on thesteps in
this paper, largely because they are straightforward. We refer the irgdressader to [27] and [44] for an in-depth
discussion of issues related to code generation after a data transformation

3.5 Ordering loop nests

We order the loop nests for processing by our locality optimizationrtlyn according to &ost criterion Our cost
criterion is based on the concept of tiveightof a reference, defined as the number of times the reference is accessed
at run-time. The unknown loop bounds and array sizes, and conditiomediguted constructs make it very hard
sometimes to calculate the exact weight of a given reference; currently weafge imformation to get the average
values of loop bounds and array sizes as well as to estimate conditional lit@sabthey happen to be unknown at
compile time.
Suppose that there asdoop nests in the program andlifferent arrays. LeR, 3., be they” reference to array
(1 < B < r)inloop nesiv wherel < a < s. Further assume that the loops are normalizedtéhdeturns the trip
count (the number of iterations) of a lodjn a given nest. Then we can define the weight (cost) of a referBpge
as
CR(Ragy) =[]  tO).
1 enclosesR, g+
Note that it is possible that not all of the loops in the nest enclosedference in question. The weight (cost) of a
loop nesty, on the other hand, is
CN(a) = > CR(Rog ).
R. 3~ appears inx
Notice that the functio@ IV can be used to order the nests; that is, a loopmestl be processed (optimized) before a
loop nesty’ ifand only if CN () > CN(«'). A good thing about this function is that itiisdependendf the memory
layouts and roughly indicates the importance of a given loop nest w#pert to the others. If needed, conditional
probabilities can also be taken into account. Assuming that a refefepeewill be accessed with a probability of
pasy Whered < p,g, < 1, we can define the weight of a referenggs,, as

OR(Rasy) =popy [ t0):

I enclosesR., 3

10
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3.6 Scope of our work, extensions, and limitations

Our work focuses on deriving appropriate combinations of loop andtdataformations for optimizing locality. The
scope of our work is dense regular (affine access) matrix codes whose acoessgah be detected at compile-time.
However, Leung and Zahorjan [38] show that data transformations canealsseldl to handle @strictedset of non-
affine array access patterns. We stress that the set of irregular access patierizedfy the mentioned technical
report can also be handled by our approach. But, in this paper, we excjugieak on affine array accesses.

It should also be noted that data transformations can be used for elimgicanflict misses and improving cache
line (or page) alignment as well. Padding [6, 48], a special kind of datstormation for eliminating conflict misses,
is orthogonal to our approach and, when necessary, can be used after the tayeuteen transformed.

The shift-type of data transformations [44] are also not considerdds paper; however, our approach can easily
be extended to include the shift-type of transformations as fallowe can think of a data transformation as a pair
(M, n) whereM is anm x m data transformation matrix as before apts anm-dimensional shift vector. Then the
problem is to determin@/ as well agj. A simple way of doing this is first determininy and then taking the cache
line (or page) size into account to find an appropriate valueg for

Although not considered here, data transformations can also be appliee-ttimensional arrays as well provided
that they can bde-linearizedirst [16]. We are currently working on@ache conscioude-linearization scheme based
on Maslov’s algorithm [41].

We should also mention that our approach does not use any symbolicianadytser, it relies on profiling (when
necessary) to obtain estimations about array sizes, loop bounds, coabjtiobabilities and so forth. We acknowl-
edge, however, that locality optimizations (like parallelism optim@a) can benefit a lot from information provided
by symbolic analysis techniques [10, 9, 22]. For example, using siianalysis, the compiler might be able to
judge better whether applying tiling will be beneficial. In particulath# compiler can detect that the entire data used
by a loop nest does not cause cache overflow, then tiling is unnecessary.

Finally, there are four other important issues that need to be addresisstl.akfhough data transformations are
not constrained by data dependences, their applicability is restricted ipathmeter passing rules and the sequence
association rules of the language in question. In some cases, it migigdessary to apply run-time checks to
determine if it is safe to apply a candidate data transformation. We tdowestigate this issue in this paper and
assume that the data transformations we apply are always legal. Of ahigsseay not always be true; in those cases
techniques proposed by Chandra et al. [13] can be used.

The second important issue is the propagation of layout transfaynsaticross procedure boundaries. Currently,
the scope of our work is limited to one procedure at a time and the iexpetal results presented later on are obtained
on inlined [2] codes. We are working on a framework for propagatinaydeyouts across procedures for the restricted
case where there is no array re-shaping (and using de-linearization when ngced3ssr approach is similar in
spirit to the solution proposed by Anderson [3] for data disttidin problem and is based on a bottom-up and a top-
down traversal of the call graph [2] of the program being analyzed. Iretbases where arrays are re-shaped across
procedures, we may need to apply explicit data transformations at ren-Recently, O'Boyle and Knijnenburg [45]
have proposed new techniques to propagate data transformationspretence of re-shaping between procedure
boundaries. When necessary, our framework can be modified to include tineehproposed in [45]; we postpone
a complete treatment of cache locality optimization in an inter-proceduraigétta future work.

Thirdly, our loop and data transformations dot cover the entire space of possible transformations. Our loop
transformations can be represented by square non-singular loop traasifin matrices [39], i.e., they ali@aear. For
the best results, they need to be combined with the non-linear loogfdramations such as tiling, loop fusion and
distribution [59]. In this paper we briefly investigate the interativith tiling; however we do not study the best

11
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ways of combining linear and non-linear loop transformations. Our glatesformations, on the other hand, can be
represented using hyperplanes. Therefore, they should cover all datatraagbns that can be represented by non-
singular data transformation matrices [44]. Note that we do not haidtked layouts [3]; the question of whether
blocked layouts can be represented—at least in a constrained form—by hygsrpiarits study.

And finally, our solution procedure explained in the next section lemidop nests one by one, and fixes some
memory layouts in each loop nest and propagates these layouts to the rgmaisii. While the experiments indicate
that our approach is quite successful, an alternative approach that takes glomaleviewis also possible. In such
an approach, the arrays and the nests are represented using an interference gragdirasd in Section 3.2. In
the interference graph, each edge is replaced by a bidirectional arcs, and mmwingrfe vertex (array vertex or
nest vertex) to another is interpreted as using the solution of timeefioin solving the latter. Then, the problem of
optimizing locality for the maximum number of references can be rephrasediasfiammaximum-branching solution
that satisfies as many edges possible. A similar approach has been used by Digh8tfai solving the optimal
alignment problem for distributed-memory message-passing machines.

4 Unified loop and data transformations for improving locality

We have shown in the previous section that in order to optimizeafdatiality of a loop nest both loop and data
transformations may be used. In the following, we show how t@atie these two optimization techniques in a unified
framework. Let us focus on a two-dimensional artayeferenced in a loop nest of depth two using an access matrix
L. The results to be presented easily extend to higher dimensional arralgoantests as well (see Section 4.5). We
definel’ = (i,j) andi.,,, = (i,j + 1) as two consecutive iteration vectafter the transformation. Assume that we
use a2 x 2 non-singular loop transformation matrixand letQ) = 7! be the inverse of the transformation matrix.
Further assume thgtrepresents the desired memory layout. After the transformation, er ¢ochave spatial locality

in the innermost loop (see Equation (2)),

9(LQI" +0) = g(LQT,, .,y +0)
should be satisfied. Solving this equation, we obtain
glqg = 0, ®)

whereg is the last column of). Therefore, the problem is to findgeand ag for a given, such that the Equation (5)
will be satisfied.

Notice that this equation ison-linearand it is not trivial to solve. However, if eithgror ¢ is known, then it is
easy to determine the other by solving an homogeneous system. In tkis fgegtart the solution process, we first fix
eitherg or g for the first nest. For the remaining nests, since the layouts iedaliould be fixed during solution of the
previous nest(s), we can determine the loop transformation matitrouti much difficulty.

Note also that Equation (5) is with regard to a single loop nest anmttegeference. In order to optimize locality
globally (i.e., procedure-wide), we should set up and solve simultestgthe equations similar to Equation (5) for
every reference in every loop nest. Of course, given a large number of lests and references, this system of
equations may have only taivial solution (i.e., zero vectors faf or g), in which case we need to ignore some
equations. In our current approach, we use profile information to déeédequations to be ignored.

Notice also that Equation (5) can be easily modified to handle temporaltioaalivell. In order to have temporal
locality in the innermost loop, Equation (5) should be satisfied atienwhat the layout of the array in questionis. In

12
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mathematical terms, we should have
Lg = 0. (6)

The interpretation of this last equality is that the last column of tiverise of the loop transformation matrix should
belong to the null set ddll the rowsof the access matrix.

We illustrate the process using an example first. Consider thegroffagment given in Figure 5(b). The access
matrices for this program are as follows:

For the first nest:
1 1 1 0
L:U:<0 1>;£V:<0 1)-

0 1 1 0
‘CU]_(l 0>:£U2_<0 1)

We would like to find suitable loop transformation matrices for bibid loop nests, and to determine accompanying
memory layouts for array§’ andV. Let T andS denote the transformation matrices for the first and second nest,
respectively; and lef) = 7' andR = S!. Also let

qg= < q12 > andr = < 12 >
q22 722

be the last columns @ andR, respectively. Finally, lej = (a,, 3,) andh = (a4, B1) represent the optimal layouts
of U andV, respectively. Using Equation (5), we obtain the following for fingt loop nest:

For arrayU':
11 :
(%}:ﬂg)(o 1)(32)20

e (o 1) (5) =

Similarly, for the references to arrdy in the second nest, we have

m (1 0) () =omnsen (o 1) (1 )=0

We can write these equations collectively as

For the second nest:

For arrayV':

gi2 +q22 g2 O 0 %g
0 0 q2 g2 9 _ A
T99 12 0 0 ap - 0 (7)
T12 re2 0 0 Bn

It should be noted that a solution to such a systeng{ergss, ri2, ra2, gy, By, an, andgy, will give us suitable loop
transformation matrices (actually only the last columns of the inveees)ell as optimized memory layouts (i.e.,
their representative hyperplane vectors). However, we have someasddiitonstraints as well; specifically, for each
unknown vector such ag 7, g andh at most one of the entries may be zero. With these additional constraivitsgs
the non-linear system given by Equation (7) is very difficult. What wedis a heuristic that works fast in practice
and generates acceptable near-optimal solutions. In the following welshw\wo solve such a system by fixing some

13
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unknowns at specific values. We note that (7) can be divided into tworgibix equations, each for a single nest:

Qg
For the first nest: G2t ¢n @2 0 0 By = 0, (8)
0 0 gi12 422 ap
Bn
Qg
For the second nest: r2 112 00 By = 0. 9)
12 To29 0 0 ap
Bn

Notice that there is aouplingbetween (8) and (9) due to the layout (hyperplane) vectors. Let us firs tot(B), and
assume that this loop nest is more costly than the second one and noritsgce transformation will be applied;
that is,() is the identity matrix meaning that, = 0 andgs; = 1. Later in the paper, we will discuss this decision in
detail. We can now think of (8) in a block form as shown below:

Qg

G2t g 00 N[ G | _

( 0 0 g2 l]22> Qp =0 (10)
Bn

This last equation can be written symbolically as follows (Wh&rendS;; corresponds to non-zero sub-matrices in

(10)):
(% 8)(3) -

Essentially, now we need to solve two equatiafigj = 0 andS;;h = 0. Since we have assumed tigats the identity
matrix, fromS;g = 0 we haven, + (3, = 0, which gives(a,, 3,) = (1, —1). On the other hand, frorf;;h = 0 we
obtaing, = 0 which leads tday, 51) = (1,0). Therefore, for the best locality in the first loop nest, aitaghould
have diagonal memory layout whereas arvaghould be row-major (see Figure 4).

Next wepropagatethese layout constraints to the second loop nest, and solve Equdtion {9, andry,. From

1
T99 12 0 0 -1 _ 0
T12 929 0 0 1 -
0

we haver;» = ro9 = 1. A suitable loop transformation matrix satisfying this is

(11 o (1 1
ne(3)asen= (3 1),

Using this loop transformation matrix and the optimal memory lagptlte transformed program is shown in Fig-
ure 5(c). Notice that both the loop nests exhibit good locality joled that array is diagonally stored in memory
and arrayV is row-major. It should be emphasized that there is an additional tnanafion step that modifies this

ppliST

program for a language with fixed canonical (default) memory layout (seec8e2#); but since that step is almost
mechanical, we omit it here. The technique of how to fill out a partially deted transformation matrix (by taking
into account data dependences) is similar to those used by Li [39] and anBikijshoff [8] among others.

We stress that the second loop nest in Figure 5(b) cannot be optimimeg(lisear) pure loop (e.g., [39]) or pure

14
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(linear) data (e.g., [44]) transformations alone; because, there is gpaisal in two orthogonal directions. This simple
example shows that an integrated approach might be useful for sonrampsg

The reuse analysis theory introduced by Wolf and Lam [56] shows us tndetermine whether a given reference
can be optimized for temporal locality in the innermost loop. Our cureggroach also takes this analysis into
account; and, for the references with potential temporal reuse, the systematioeg are modified accordingly.

4.1 Locality coefficient

To evaluate the amount of locality before and after the optimization pspeesuse a simple metric referred to as the
locality coefficient We define the locality coefficient of a loop nest as the numbstatfc array references (not the
dynamic count of the number of accesses to array elements) in the prograxtiitétlecality (spatial or temporal) in
theinnermostoop. The locality coefficient of a series of loop nests is defined to beutimeos the locality coefficients
of the individual nests. The locality coefficients of two different vens of the same program can be used as a guide to
decide which version is (statically) better from the locality point @wi In the case of a tie, we favor the program with
more temporal locality. Of course, this evaluation criterion for logaktvery rough and assumes that all references
have the same weight and the bounds of all innermost loops as well sig¢seof all arrays are of the same order. This
model can be improved upon by taking into account a detailed profile irsfiiomas well as the bounds of the arrays
and the loops after the transformation; but, the exactness of theatiemlunodel is not very relevant for the purpose
of this paper and the rest of the approach is independent of the particcddityyaevaluation criterion chosen. As an
example, the locality coefficient of the program shown in Figure 5(tgu@éng column-major memory layouts)ls
whereas that of the optimized code in Figure 5(c) immder optimal layouts.

If desired, our model can also accommodate sophisticated techniques thatedtienatimber of misses in a
given program. For example, instead of locality coefficients, we can use casbeestimations obtained using the
techniques proposed by Ferrante et al. [19] or Sarkar et al. [49].

4.2 Formulation for the general case

In the general case, when we handle a given loop nest during the globalzgiton process, some of the array layouts
might be known, while the layouts of some arrays are yet to be detetnin such a case, we end up with a system
of equations of the following type, that we caltaxrget system

S¢ = 0. (11)

The systems given in Equations (8) and (9) are two example target systaes is a matrix that contains only the
last column entries of the inverse of the loop transformation matrix,&isch vector obtained from concatenating the
hyperplane vectors (representing memory layout€ur approach first brings this system into following form using
elementary row interchange operations [36]:

Sr Z & _ A
( Zir S ) ( &u =0 (12)
whereS; andSy; are non-zero sub-matrices af@ andZ;; are zero sub-matrices. It is easy to see that this is always
possible. The vectaf; contains entries of hyperplane vectors (that correspond to memory laybatshave been

LIn three- or higher-dimensional cases the rows of the layuattices are put as sub-columns one after another.
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doi=1, N
do j=1, N
do k=1, N
dou=1, N
. . = . k i
w;lc,i_]) U(i,k) dov=1, N
ezg doo dow=1, N
. W(u,v)=U(u,w)
doj=1,0N V(w,v)=1.0
do k =1, N end :io ’
V(k,3)=1.0 end do
end do dd
end do en °
end do dou=1, N
doi=1,N dov=1,N
do i=1. N dow=1, N
doJk _ 1’ N Xc(lu:-iv,v)=W(v+w,v)+V(u+w,u+v)
X (i+k,k) =W (j+k,k)+V (i+],i+k) ezg doo
e;ldddo end do
end do
end do (®)
(@)

Figure 6:(a) Original program(b) Optimized program.

determined so far (presumably during handling the loop nests of hagists). The other vectd,,, consists of entries
of the hyperplane vectors that are to be determined.
After this point, our solution procedure consists of three steps:

(1) FromS;&, = 0, the entries of5; are found,;
(2) From the entries af;, the entries of5;; are determined; and
(3) FromS;;&, = 0, the entries of,, are derived.

We note that these three steps informally correspond to determingupdransformation taking into account memory
layouts obtained so far, and to determining memory layouts of (pgsailsubset of) the remaining arrays whose
layouts have not been determined so far. In the following, we disbesetthree steps in greater detail.

Step (1) corresponds to solving a homogeneous system of equatiofissifansform this system imgfsﬁ =
0, and then solve it folS;. Of course, given a large number of references, this system may not havetewviel
solution at all. In that case, we ignore some equations, and attemptviisalgain. The equations to be ignored
should correspond to references that are least frequently accessed. The weitletsederences obtained using
profile information might be useful in determining the access frequehmsferences.

In Step (2), the elements 6 ; are determined from the elements$ffound in the previous step. Although this
step looks trivial, it is possible that an element that appeaf irmay not appear itb;. In that case, we choose a
value for this element arbitrarily avoiding to pick up a zero value iftadl bther entries are zero (otherwise, this makes
the last column of the inverse of the loop transformation matrix zdrchy of course, is unacceptable).

Step (3) is very similar to Step (1), the only difference is that witttaking the transposition, we start to solve the
homogeneous system right away.

Consider the program fragment in Figure 6(a). At the highest lefied,drogram fragment consists of two loop
nests, the first of which (assumed more costly) is imperfectly nested.cdtpiler first applies loop fusion [59] to
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doi=1, Nl d3“=11N;]1
.o ov-=1,
dZoJk_—li N;u dow =1, N
L U(utvtw,w) =V (v,w) *W(u,v)) /2.0
i+3+k,k)=(V(j,k)*W(i,j))/2.
ezc(lldi LK) =(V(j,k)*W(i,j))/2.0 end do
dd end do
e;l d ° end do
en [o]
. do u = -N2+1, N2-1
d: 1.__11 Nl?]g do v = 1, N2
ZoJk _ i N2 do w = max(1-u,1), min(N2-u,N2)
UG, )=V (K, 34041 (k,K)) /2.0 Ulutw,w)=(V (v, v+w)+V (v, v)) /2.0
w(i’J')=0 0 . | . W(utw,w)=0.0
end (’ii ’ end do
end do end do
dd end do
en [o]
do u = -N3+1, N3-1
doi=1, N ’
Z 1. _ 1 ;3 do v = max(-N3+1,u-N3+1), min(N3-1,u+N3-1)
ZoJk _ i N3 do w = max(-u+1,-v+1,1), min(N3,N3-u,N3-v)
X(i+3, 3400 =W (3, )+ Ck, 1+9)+U (5 ,K)) /3.0 X (2w, wry2w) =( Gr, vaw) 44 (rvor, wh2w)
end do +U(u+w,v+w)) /3.0
end do end do
end do end do
(a) end do
(b)

Figure 7:(a) Original program(b) Optimized program.

convert this to a perfect nest. Let, as befdpeand R be the inverses of the loop transformation matrices for the first
and second loop nest, respectively. Assumeghat(a,, 3,), h = (an, B1r), k = (ax, Bi), andl = (ay, B;), represent
the memory layouts for arrayi$, V', W and X, respectively. Thus, we have the following homogeneous system:

¢C13  q33 0 0 0
0 0O q33 q23 0
0 0 0 0 q13
0 0 7ri3+4+re3 713+ 733 0
0 0 0 23 + 733
0 0 0 0 0

Qg
0 0 0 ﬁg
0 0 0 ap,
o3 0 0 Bn I
0 0 0 Qay - :
33 0 0 B
0 7r3+r33 733 oY)

B

We first divide this system into two parts. For the first nest, wiinkthe following target system:

Setting( to the identity matrix, we derivé, = (1,0,0,1)

17

Qg

By
qis ¢i3 0 0 0 0 00 %h )
0 0 g3 g3 0 0 0 0 a’j = 0.
0 0 0 0 q3 g3 00 52

Qg

B

andé, = (ag, Be, o, ;). For the second loop nest, we
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have

1

0
0.0 m3+rs mstrss: 0 0. 0 0 (1] _
00 0 0 :7"23+7"33 33 0 0 T = 0,
0 0 0 0o 0 0 r3z+rs 733 "“

Br

o

B

which gives us 3 + r33 = 0, which in turn results in';3 = r33 = 0 andry3 = 1 as an example solution. This result
implies that(ay, 8,) = (0,1). With the hyperplane vectors found, we decide that affashould be row-major and
arraysl” andW should be column-major. The memory layout for arfayhowever, remains unspecified, meaning that
it can be set to any layout. The reason for this flexibility is obvisasfthe transformed program given in Figure 6(b).
Notice that the innermost loop indexin the second loop nest does not appear in the subscript functions ofXarray
This means that arra}{ has temporal locality in this loop nest, and spatial locality is of secondgwgrtance. Our
method can be extended to detect that it might be preferable to choose dikyonafor this array in order to exploit
the spatial locality in the second innermost loop (thleop). Such an approach might be useful, especially if the trip
count (the number of iterations) of the innermost loop is a very suadlle. We will later discuss this issue in more
detail.

We finally give a slightly more complicated example to illustrate safithe problems that may occur. Consider
the program fragment in Figure 7(a) that contains three loop nests andri@ys exhibiting several access patterns.
Assume thati1 > N2 > N3. Assume further thap), R and P correspond to the inverses of the loop transformation
matrices for the first (the most costly), second and third (the leasy}ostst, respectively; and = (ay, 3,), h =
(an, Bn), k = (ax, Br), andl = (ay, 3;), represent the memory layouts for arrdysV, W and X in that order. The
homogeneous system for this program is

@13+ q23+qgsz qzz 0 0 0 0 0 0

0 0 gos 433 0 0 0 0 o
0 0 0 0 q13 423 0 0 69
T13 raz 0 0 0 0 0 0 9
0 0 733 reg+r3z O 0 0 0 %”’
0 0 ry T33 0 0 0 0 h = 0.
0 0 0 0 T Tas 0 0 %’f
0 0 0 0 0 0 P13 + P23 D23 + P33 ak
0 0 0 0 P13 P33 0 0 ﬂl
0 0 0 0 P33 P13 + P23 0 0 !

D23 p3z O 0 0 0 0 0

As before, we first divide this system for each nest obtaining three taygegms. For the first nest, assuming that no
loop transformation will be performed, we obtaig = 1, 3, = —1, a, = 1, andg, = 0. Notice that, although the
array W is referenced, no layout has been determined for it, because it has temporay lioctii innermost loop
under the given loop order.
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For the second loop nest, on the other hand, we have

1
-1
ri3 123 O 0 00 00 1
0 0 ra3 r23 + T33 0 0 0 O 0 - 0
0 0 r33 r33 ! 0 0 0 0 "d_k" B ’
O O B | 0~ rri3 reg 00 Bk
o7}
B
This system is already in the desired form. Solving it givgs= r.3 = 1, andrsz = 0; anday = 1, andg;, = —1.
Lastly, for the third loop nest,
1
-1
0O 0 00 O 0 D13 + P23 P23+ Das 1
0 0 0 0 m3 D33 0 0 0 — 5
0 0 0 0 p33 pi3+p2s 0 0 1 - v
p3 p33 0 0 O 0 0 0 1
o7
Bi
This system isiotin the desired form; therefore, we apply row operations [36] and obtain
1
-1
P23 P33 0 O 0 0 | 0 0 1
0 0 0 0 P13 P33 E 0 0 0 _ 0
L0 0 0 0 pss patpes: 0 O 1 -
0 0 00 0 0 ' P13 + P23 P23 + Pas -1
o7}
Bi
In solving this system, we end up with three equations
{p23 — P33 = 0; P13 — p3z = 0; andpss — p13 — p23 = 0}.

Unfortunately, the last equation haganflictwith the other two; therefore we ignore it. This gives us the sofut
P13 = p23 = psz = 1, which in turn results imy;, = 1 andg; = —1. This means that array$, W and X should
have diagonal memory layout whereas the afraghould should be row-major. The inverses of the transformation
matrices used for the second and the third nests are

1 0 1 0 01
R=10 0 1 ]),andP=1| 1 0 1 |, respectively.
010 0 1 1

The transformed program is given in Figure 7(b). Notice that withdptimized memory layouts, the spatial locality
is very good except for the referent€ (v + w, u + 2w) in the third loop nest. This is due to the equation that we
ignored while optimizing this nest.

4.3 The most costly nest revisited

So far, we have assumed that the most costly loop nest will be optimgird data transformations alone. In this sub-
section, we first argue for this decision. Then we show how our approadbecarade more powerful by considering
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different alternatives for the most costly nest.

Given a loop nest, determining both loop and data transformatiomshegis not trivial, as the problem requires
finding integer solutions to non-linear systems of equations (se@8eit If the search spaces for data and/or loop
transformations are restricted, then an exhaustive search (althougtostly) might be attempted [15]; but there
is no experimental evidence that such an approach is fast in practice. We, irisgéstdon the most general loop
and data transformations. Having decided that we will not optimizemhbst costly nest with a combined (loop
plus data) approach, the choice is between either pure loop or pure dafarmzatfons. In general, we prefer data
transformations; because even if we choose loop transformationsaveeth assume some fixed layouts for the
arrays referenced. Moreover, for a single loop nest, data space transformatin be more successful than loop
transformations since the latter is constrained by data dependences [27].

However, for some programs it might be the case that the best optimpipgdant is the one in which the most
costly nest is optimized using iteration space transformations alorerelson is rather subtle. As mentioned previ-
ously, pure loop transformations can optimize temporal locality evpilre data transformations cannot. If the most
costly loop nest contains a number of references for which temporal reuse eaplbited in the innermost loop, then
a pure loop based approach may result in a better code than a pure data basadrappr

To solve this problem, our current approach is as follows. For thet ousdly nest, we consider two alternatives:
pure loopandpure datatransformations. Then we proceed for each version as explained in theysesdctions, and
finally come up with two different optimized program. Finally, we calcellanhd compare the locality coefficients (see
Section 4.1) of these two programs, and select the one with the largec@ffiNotice that once the most costly nest
is optimized, our approach will have some layout constraints forehgaiing nests, and will be able to proceed to
optimize each of the remaining nests using our integrated approach thatysnplth loop and data transformations
as explained, taking the layout constraints into account. Figure 8sbomapproach. It is assumed that the nests are
ordered (from top to bottom) according to non-increasing values of tingights (costs). Of course, it is possible to
generalize this approach and consider different (pre-determined, three @y lanagyut combinations for the first (most
costly) nest. However, our experience and experiments show that ingarétcsieems sufficient to consider only two
alternatives for this nest.

To see an example for which such an approach might be useful, consideogramrshown in Figure 9(a). After
applying a global locality approach, either of the programs shown iarEgy9(b) and (c) can be obtained depending on
how the most costly (assuming first) nest is optimized. If only datasformations are used for the most costly nest,
the compiler decides row-major layout for arrély; then in the second nest, it interchanges two loops, obtaining the
code shown in Figure 9(b). The locality coefficient of this cod®,iall of which originates from spatial locality. On
the other hand, if we optimize the first nest using loop transfownatalone (assuming fixed column-major layouts),
we apply a loop interchange. The second loop nest is left as it is (seeeE{n)). As before, the locality coefficient
is 8, but this time the contribution from temporal locality4s Everything else being equal, we prefer the program in
Figure 9(c) over the one in Figure 9(b) as it exploits more tempexade in the innermost loop.

It should be noted that given the fact that the global locality optinongpiroblem is NP-complete [31], and that
in most programs the bulk of the execution time is spent in a coupt®op nests, we believe our approach is suitable
for optimizing locality for multiple loop nests.

2Note that given the fact that the problem is NP-complete apduse a fast heuristic, our approach is not guaranteed taipeothe best
transformations. We believe, however, that our approageireral results in near-optimal solutions while retaintognpile time efficiency.
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start

pure loop / \ pure data

transformation [ 1st nest] 1st nest] transformation

v v
loop + data loop + data
trar}:sformation [ 2nd nest [ 2nd nest] translgormation
| | | |
| I | !
| ! ! |
loop + data ! ! loop + data
transformation [ last nest] [ last nest] transformation

compare locality
coefficients

Figure 8: Extended approach that considers two alternatives for the nstist gest.

4.4 Interaction between locality and parallelism optimizations

It is also important to study the interactions between locality optingnaechniques presented in this paper and the
parallelism decisions that will be made by the compiler. This issued@stportant sub-problems. First, the interplay
between cache locality armfocessor locality(i.e., ensuring that an access by a processor can be satisfied from local
memory) needs to be examined. It should be noted that our approach i®drieward obtaining spatial and temporal
locality in the innermost loop. The impact of this is that when a bledikrbught into cache, it will be reused as much
as possible before being discarded into memory. This, in turn, gesultavings in cache miss rates. However, it
should be noted that this behavior will also be observed in larger datautrity on NUMA (non-uniform memory
access) machines. For example, (assuming that our optimizations have bbed)apmpen a processor brings a data
page into its local memory, due to stride one accesses, it will reuse itiels as possible; that is, our approach will
lead to a better processor locality in addition to better cache locality. Thest of this is significant reductions in
TLB misses and page faults.

From the preceding discussion, it is possible to conclude that gnegithat exhibit good cache locality do not need
(aggressive) explicit data placement techniques on shared memory NUMA angtdtecthis argument is especially
true for architectures that support some kind of page migrationyp@ig)., the SGI Origir2000). Because, in these
architectures, when a processor uses a data page frequently, the page iepliteted onto that processor's memory
or migrated into it. In either case, most of the remaining accesses will be [@aakxperimental results on the Origin
2000 also confirm this argumerit.

Now an interesting question is that whether the programs that extibil grocessor locality need cache opti-
mization techniques. After all, there are a number of powerful automaticdistribution techniques published in the
literature (see for example [40, 5, 14, 21, 33, 47, 52] and the referéimeesn), and for example, the SGI Origin gives
the programmer fine-grain control over data distribution, that can beniged using any of the techniques mentioned.
Our answer to this question, howevernig that is, just ensuring good processor locality does not imply goodecach
locality. It is easy to see that a processor may access only local data, but if the siriesis large then the cache
locality will be poor. Our conclusion is that independent of the extémirocessor locality, the compiler should try
to optimize for better cache performance. Put another way, having good protmsdity (as a result of careful data
distribution) does not obviate the need for cache locality enhancinmzatiions.

3|t is interesting to observe that the commercial compileitass for the NUMA architectures also share our positionr &ample, the SGI
MIPSpro Fortran77 Programmer’s Guide [51] states that “Cache behavior coasirto be the largest single factor affecting performanod, a
programs with good cache behavior usually have little nee@xplicit data placement.”
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doi=1, N dou-=1, N dou=1, N
do j =1, N do v =1, dov=1,N
u@j= --- U(v)= --- U(w)= ---
v(= - V(v)= --- V(u)= -
Ww(i,j= - W(a,v)= --- W(v,u)= ---

end do end do end do
end do end do end do
do j =2, N dou-=2,N dou=2,N
doi=2, N do v =2, N do v =2, N
W(i,j)=W(i,j-1)+wW(i-1,3) W(u,v)=W(u,v-1)+W(u-1,v) W(v,u)=W(v,u-1)+W(v-1,u)
+U(§)+V(3) +U(v) +V(v) +U (u) +V (u)
end do end do end do
end do end do end do

@ (b) (c)

Figure 9:(a) Original program(b-c) Optimized programs.

The second important problem is understanding the interaction betweaityjtaptimizations and loop-level par-
allelism decisions. It is well known that obtaining large granularayghelism (e.g., parallelizing only the outermost
loops) is beneficial for shared memory parallel architectures as it reduces syizetian and coherence activity
[5, 53]. Our technique described so far also helps compiler to obtain taageularity parallelism as follows. We
note that our approach attempts to optimize locality in the innermogslasing a proper mix of loop and data trans-
formations. This approach generates—as a byproduct—outer loops thanoareyse (hence no data dependence)
and that are perfect candidates for parallelization. This is very desirableesvigth parallelizing a loop that carries
reuse is one of the main causes for inter-processor data sharing [84tivily, the more aggressive the compiler is
in bringing the loops carrying reuse into innermost positiohs,less the degree of true and false sharing. In fact, in
our experiments we adopt this strategy; that is, given a loop nestst&fiply locality optimization techniques, and
after the new loop nest is obtained, we try to parallelize the outermopslonly. This strategy succeeds in general,
due to the fact that after the locality transformations the outermogtsl@lo not carry data dependences; therefore,
parallelizing them does not cause excessive inter-processor communication.

4.5 Extension to higher dimensional arrays

We now briefly discuss how the optimization process handles the arraiseef or higher dimensionality. We start
with the following result.

Result 1 Let C be the layout matrix for a reference (to am dimensional array) whose access matrixdsand let
G» be the last column of the inverse of thex n loop transformation matrix. In order to have spatial localitytime
innermost loop, the condition

CLg, =0

should be satisfied. Heré,is (m — 1) x m, £ ism x n, andg, is n-dimensional; consequently, the right hand side
is an(m — 1) dimensional zero-vector.

Proof1 Let I and I,,.,; be two ‘consecutive’ iteration vectors ‘after’ the transformationathis, I,,..; — I
0,---,0,1)". Also letT = Q' = [@1,¢2, -, qn]~'. Then the array elements accessed/tynd I,,..; are LQI
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Table 1. Programs used in our experiments. Bi2E column gives (in terms of double precision elements) the
maximum dimension size of any array in the respective program whereastEReolumn shows how many times the
outermost timing loop has been iterated for each code.

[ PrOGRAM || SOURCE || SIZE || ITER || NUMBER OF ARRAYS [
mxm Spec92/Nasa7 980 20 three 2-D
adi Livermore 2,048 2 three 1-D, three 3-D
vpenta Spec92/Nasa7 920 20 seven 2-D, two 3-D
btrix Spec92/Nasa7 150 25 twenty-five 1-D, four 4-D
syr2k BLAS 2,048 1 three 2-D
htribk Eispack 1,200 1 five 2-D
gfunp Hompack 2,048 20 one 1-D, five 2-D
trans NWChem 4,000 10 two 2-D

Table 2: Different versions of the codes used in our experiments. Edrdih version we used the technique given
by Li or let the native compiler to derive an order whereas forihg version we used an approach that uses only
data transformations to optimize spatial locality (without direcKpleiting temporal locality). Th&NT version is the
version that is obtained by applying our integrated technique explainéd paper.

[[ VERSION || BRIEF DESCRIPTION [
CLM original code: fixed column-major memory layout for all yrsa
ROW original code: fixed row-major memory layouts for all arrayg
LOP loop-optimized version: no memory layout transformation
DAT layout-optimized version: no loop transformation
INT our approach : integrated loop & data layout transformatio

and LQ1,...:, respectively. In order to have spatial locality in the innermost [abp conditiorCLQI = CLQ 0t
should hold. Solving this last equation, we §&Q(I,,c.: — I) = 0 = CLQ(0,---,0,1)"' =0=CLg, =0. O

Notice that, depending on the loop trip counts, it might be desirtabdaploit the locality in the second innermost
loop as well. This corresponds to determining the second rightmastnrobf @ in addition to its rightmost column.

It is easy to show that in this case the conditib®{g,,—1, ¢,] = [0] should be satisfied. Here the right hand side zero
matrix is of size(rn — 1) x 2. This result can easily be generalized to the outer loops as well.

We should stress that there is a subtle problem in determininggaothandg,, together. It is known from linear
algebra [36] that if we determine only, and if the greatest common divisor (gcd) of its entries is one (which is
usually the case), then it is always possible to completeghito a unimodular matrixQ (and, of course7" will
also be unimodular). If we can achive the same objective (which mighbtaning a target amount of reuse in the
innermost loop) with a unimodular matrix instead of a non-unimadumatrix, that is good; because, in general, code
generation after unimodular transformations is easier and the resultaniscoare efficient than the non-unimodular
case [39]. However, if we determine bath ; andgq,, the resultant) matrix (after completion) may or may not be
unimodular. This tradeoff between aggressive optimization in meltgup levels, and the ease and efficiency of code
generation is an interesting one; but, given current optimizing compitdimology it seems difficult to resolve it fully
at compile-time. Notice that another way of exploiting locality in outexds is to apply tiling. We will briefly discuss
the interaction between tiling and our optimization technique in thé sestion.
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Table 3: Performance summary of tbeM (original) version oreightprocessors. TheYCLES column gives the total
processor cycles spent in executing the code. IS andSTORES columns present the number of memory load
and store operation®C, SC, andTLB refer to primary cache, secondary cache, and TLB misses, respectively. The
TIME column gives the total execution timessacondsAll other entries are imillions.

[[ PROGRAM [[ CYCLES [ LOADS || STORES [| PC [[ SC [[ TLB [[ TIME ||
mxm 39,397 || 4,953 712 [ 192 ] 39.6 ]| 0.34 || 44.39
adi 16, 041 572 184 || 144 || 73.6 || 42.9 || 63.87

vpenta || 18,266 || 6,240 244 || 244 || 142 [[ 69.0 || 24.31
btrix 13,672 || 4,818 41.4 [ 12.8 [[ 2.45 || 8.86 || 22.11
syr2k || 55,131 || 8,246 310 || 865 || 244 || 211 || 69.13
htribk 2,257 639 140 || 175 [[ 1.94 || 20.9 || 16.76
gfunp 7,330 800 162 || 267 [[ 26.3 || 0.15 [ 19.28
trans 16,867 || 2,188 663 [ 207 || 17.4 || 171 ][ 17.20

5 Experimental results

In this section we present performance results to demonstrate the infagtglobal locality optimization approach.
Our experimental platform is an eight node SGI Origiin0 at the Center for Parallel and Distributed Computing
at Northwestern University. This machine ud@$MHz R10000 processors, each with3KB L1 data cache and
a4MB L2 unified cache. The processors can fetch and decode four instructionsgbelagl can run them on five
pipelined functional units. Both caches are two-way associative and okiyg. Up to four outstanding misses
from the combined two levels of cache are supported. Th@OB) processor dynamically schedules instructions
whose operands are available in order to hide the latency of cache missetheR 1 cache hits, the latency 2s
cycles; and for L1 misses that hit in the L2 cache, the laten8yasl0 cycles. The non-local accesses take at 0st
cycles.

We experiment with eight programs from benchmarks and libraries whmogertant characteristics are listed in
Table 1. TheSIZE size column gives the maximum dimension size of any array used in theapnogn order to
fully investigate the impact of the locality optimizations the dinmienssizes are increased from their default values.
However, some hard-coded dimension sizes (e.g., with a fixed valé®i05) are not modified as modifying them
would require a complete understanding of what the applications perfdthe ITER column, on the other hand,
shows how many times the outermost timing loop is iterated for each camte.thit in order to see the impact of the
additional power provided by integration of loop and data transfaonaton well-optimized codes we also include
two programs from two libraries, Eispack and Hompack.

For each program in our experimental suite, we perform experiments wéldiiferentversionsbriefly summa-
rized in Table 2. The first two versionSLM andROW are the original programs; only the layouts of the arrays are
different. In theCLM version, all the arrays have column-major memory layout (as in Fonvhit¢ in theROW version,
all the arrays have row-major memory layout (as in C). Foritbe version we use the better of the results from the
technique given by Li [39] and theativeoptimizing compiler. For th®AT version, we apply a technique proposed in
[27] that is based opuredata transformations. In effect, for the programs in our experimeaits, other pure data
transformation techniques proposed in the literature such as O’'Bogll&aijnenburg [44] and Leung and Zahorjan
[38] result in the same output codes as ours. Finally, e version is the one that is obtained by applying our
integrated technique explained in this paper.

We first hand-coded the C versions of the programs in our experimeritial $hen the programs were transformed
automatically for each specific version using a compiler front-end buitbprof the Omega library [32]. Then, the
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output C codes are compiled using the native C compiler using theoption. We have noted that applying our
integrated approach increased the overall compilation time by at l6@&{not including the time spent in profiling
as in these codes a simple static analysis was sufficient to order thethadsts according to their costs). For each
nest in the programs, we parallelized only the outermost loop that daesry any data dependence. Note that this
is a locality-based parallelization strategy; that is, we first optinozéadfcality and then parallelize the outermost loop
in the resultant nest. We modified this strategy only forlthe version in the cases where the native compiler derives
a better code balancing locality and parallelism. We report results shatmingumbers of cycles, loads, stores as
well as the primary cache, secondary cache, and the TLB misses. Unless statedsetradhthe reported numbers
arecumulative that is, summed over all the processors involved. Table 3 presentgtfogmance summary for the
original version CLM) of each code orightprocessors. Th&IME column gives the total execution time in seconds.
The figures given in this table (except those underTthi¢ column) are in millions and form a base for comparison
of the figures to be presented shortly.

We first show in Figure 10 the static improvements achieved by ouoaghr This figure shows for each version of
each code the ratio of the locality coefficient (see Section 4.1) to the tatdbeof references. This ratio is between
1 and0, depending on whether the code exhibits good locality inrihermostioop or not. We note that in all cases
(exceptbtrix) the INT version optimizes all references in the programs for either spatial or texhipoality in the
innermost loop. Ibtrix, conflicting access patterns to the same array prevent our technique fréwitiagpocality
fully for all the nests. We note that tlhAT version is also quite successful. These static results, however, areryo
conclusive as it may be important to distinguish between spatial and tahipeality and to distinguish between sizes
of the arrays with locality. Nevertheless, the results show that ouoapjp optimizes the references successfully for
better locality.

Next we present results aright processors of the Origin. Except for megaflop rates (which are obtaineg us
timing routines in the program) all the other numbers to be presentedlztained usindgiardware performance
counterson the machine. Figure 11 shows the overall processor cycles for eaclaproghe results shown in this
figure and the results to be presented in the following are@iializedaccording to thevorst—performing version
(whatever version it might be) for each program. Itis easy to see fromr&ifuthat tha@NT version is quite successful,
and in all cases achieves the best results. Figures 12 and 13, on the othgivatite normalized number of load and
store operations. The results reveal that as compared to the origiiMdMersion in all cases our approach reduces the
number of loads, and only in one program it increases the original nuafilséores. These results are good, because,
locality optimizations in some cases can increase the number of load/gerations as most of them are oriented
for optimizing spatial locality rather than temporal locality. For instnthe best performing loop order known for
the classical, j, k matrix-multiply nest increases the original number of stores subatiynisee [39]). As explained
earlier, our approach is able to take temporal locality into account as well.

Figures 14, 15 and 16 present results about the memory behavior afférent versions. In short, the improve-
ment with our locality enhancing technique originates fralhlevels of memory hierarchy; that is, our approach
improves cache as well as processor locality. From Figure 14 we see thaigraprs likevpenta, syr2k, and
btrix, we achieve impressive reductions in primary cache misses. As compafeeltdTt version, our approach
increases the primary cache misses onlgdn (in this code the benefit comes from the reduction in the secondary
cache misses). We should also note that althougbAfeversion is successful, theNT version outperforms it with
a large margin in codes likepenta, btrix, andgfunp. As far as the secondary cache misses are concerned, our
approach achieves the best result in four out of eight programs.

The impact of our approach on TLB misses is very significant. As can be saarFHgure 16, for the first four
codes in our experimental suite, our approach eliminates almost all TLRsjissnfirming our argument on processor
locality in Section 4.4. Notice, however, that this picture of the TLBs&s can be misleading; as the TLB misses are
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Figure 10: Summary of the static performance of different versiohg fl[gure shows (for each version of each code)
the ratio of the locality coefficient to the total number of references. Tdtis is between and0, depending on
whether the code exhibits good locality in the innermost loop or Wet note that in all cases (exceptrix) the INT
version optimizes all references in the programs for locality in the innsthoop.
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Figure 11: Processor cycles. The results shown are normalized accordhmgwmrst—performing version for each
program. Note that th&NT version is quite successful, and in all cases achieves the best results.

not in general as numerous as the cache misses (see Table 3) and on theh@tigia tise the non-local misses can
take at most twice time as the local misses. Moreov&d0RB0 is a very complex processor and a lot of misses can get
overlapped with the ongoing computation activity within the procesduwerefore, it is important to have a look at the
overall performance depicted in Figure 17.

In Figure 17 we present the absolute megaflop rates of our prograrttefdifferent versions on two processors.
As compared with the original codeL}), the performance of thedP version degrades in two cases, and results in
the same performance as the original in two others. DfTeversion is more successful and degrades the performance
in only one code, and results in the original code in another. It is itapbto see that neith&0P norDAT dominates
the other, and our approachiT) achieves the best results for all programs. In three of the cagleata, syr2k, and
trans), theDAT version obtains the same performance as ours; and only iadtheode,LOP andINT generates the
same output code. These results are promising and we believe that esoaeps more successful than the current
linear transformation techniques for optimizing locality.

We now study scalability using two example programsrix andtrans. The reason that we use these two
programs is that they demonstrate two distinct representative beb#ivad we have observed during the experiments.
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Figure 12: Memory loads. The results shown are normalized accordirgetavorst—performing version for each
program. As compared to the originalL(1) version, our approaclifiT) reduces the number of loads in all programs.
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Figure 13: Memory stores. The results shown are normalized accorditig tworst—performing version for each
program. As compared to the origin&lL{1) version, our approachyT) increases the number of stores in only one

program.
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Figure 14: Primary cache misses. The results shown are normalized accrdirgworst—performing version for
each program. As compared to th&T version, our approach increases the primary cache misses oaf inNote
that although th@AT version is successful, tHeNT version outperforms it with a large margin in codes likgenta,
btrix, andgfunp.
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Figure 16: TLB misses. The results shown are normalized according tewahst—performing version for each pro-
gram. The impact of our approach on TLB misses is very significant. Fdirgatéour codes in our experimental suite,
our approach eliminates almost all TLB misses, confirming our argumeniomegsor locality in Section 4.4.

In other words, the scalability of any one of the remaining codes idairto that of one of these two programs.
Figure 18(a) shows the performancebafrix on different number of processors. The y-axis shows (in milliohs) t
cyclesper processarThe problem size i$50 as before, but we run only a single iteration. It can be observed from the
figure that the performance of the original codex) is not stable. The performanceRdwW andDAT is very good on a
single node; but when the number of nodes is increased, their performegrealds drastically due to false sharing. In
fact, this underlines an important limitation of pure data transfoionat while they optimize locality on single node
very well, since they can not take false sharing (or other parallelismecdefactors) into account they may perform
very poorly on multiple node case. The performance ofiffieversion is good but starts to degrade beyond six nodes.
Finally, we see thatNT performs well and outperforms the rest of the versions for all processes. We expect this
behavior to be prevalent in larger number of nodes as well. Figure 1@&¢tihe other hand, shows the performance of
thetrans code with2048 x 2048 double precision arrays. This illustrates the second kind of behthébmwe have
observed in our experiments: the original program scales relatively Wethat case, all versions scale well and the
optimized code INT) outperforms the original version with almost a fixed margin for eadtgssor size. It should
also be mentioned that previous combined (loop+data) transformatiom¢ees use a limited set of loop as well as
data transformations (e.g., [31] and [15]), and cannot optimize thgrams that require diagonal memory layouts as
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Figure 17: MFLOPS rates. Note that neithé@P nor DAT subsumes the other, and our integrated approagh) (
achieves the best results for all programs.

in syr2k andgfunp. For the remaining programs in our experimental suite, we can expect pheamhes proposed
in [15] and [31] to generate similar results. However, since how thegmaphes handle global locality optimization
problem is not described fully, a complete comparison is not possible.

Finally, we discuss briefly the interaction between our locality optinoratechnique and tiling, which is a com-
bination of strip-mining and loop permutation [58, 56, 43]. Is mhost general form tiling replaces andeep loop
nest with a new loop nest of dep#n. The outermost loops enumerate individual tiles whereas the innermost
loops execute the iterations of a given tile. It is well-known thatgilcan improve cache locality for a given loop nest
significantly by exploiting the reuse in outer loops [43]. There hmyever, several problems with tiling. First, like
other loop based transformation techniques, tiling is constrained bydégendences; that is, it is not always legal to
tile a given loop nest. Second, it is not very easy to select a good tileRigeious studies have shown that the perfor-
mance of tiling isvery sensitiveo the tile size and a wrong tile size in fact can degrade the performaGcé7537].

In that regard, we believe that our approach is a suitable step pridingp tThis is because, as observed by Li [39],
improving spatial locality before tiling improves the inter-titechlity thereby reducing the sensitivity of tiling to the
tile size. Therefore, our optimization strategy helps tiling to achlestter performance by making its performance
almost independent from the tile size. In this respect, we go one stégefdirom Li, though. Because, since we use
data transformations as well, our linear locality optimization approachdee aggressive than Li's. Consider now
Figure 19 that shows the performances of tied programs on a single node of the Origin with different tile size
selections. The codes considered are the classigat matrix-multiply routine anctrans. For the matrix-multiply
code we usd, 024 x 1,024 double precision arrays. Note that tile sizd #24 corresponds tmo tiling. It is easy

to see from Figure 19(a) that the performance of the naive tiling (kghout first applying locality optimizations)
is very sensitive to the tile size. While the performance is good tilgisize =128, beyond that size it degrades
drastically. This observation is consistent with Li’s findings [@8]well as Lam et al.’s [37] suggestion of using small
tile sizes when precise performance analysis is not available. When weptirsize spatial and temporal locality and
then tile the loops, however, the picture totally changes. All teesizes betweeh6 and512 behave almost similar
and equally good. Of course, the tile sizes betwgkEhand1, 024 are not reasonable given the fact that the arrays are
1,024 x 1,024. The moral of the story is that optimizing locality before tiling @sh obviates the need for analysis to
select a suitable tile size. We also stress that the analysis for tileedemtion can be quite costly. For example, Wolf
et al. [57] derive a cost formula as a function of the unknown tile si2esl then they attempt to select a tile size that
minimizes this function. Figure 19(b) shows the performance ofitbe versions of the originaldL.M) and optimized
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(INT) versions of thecrans code. The arrays sizes ate096 x 4,096 double precision elements. Although for this
example tiling does not seem very beneficial in general, it is importanttetam points. First, for th€LM version,

as in the matrix-multiply code, beyond a certain tile si22)(the performance starts to degrade (not so drastically,
though) whereas the tiletNT version’s performance is quite stable. Secondly, in contrast to thexamatnitiply nest,
notiled version ofCLM achieves the same performance asuthi#edINT (i.e., tiles size =1, 096) code. We believe that
these two example underline the importance of locality optimizati@fiere tiling. Lastly, by increasing the number
of loops, tiling increases the run-time overhead of nest executiona@anoach is useful in that respect too as we try
to place all the spatial locality in the innermost loops and obviate dwel ffior tiling the outermost loops that do not
carry any type of reuse (in the examples mentioned above, however, waltiled loops). That is, our approach helps
a compiler to apply tiling more judiciously. A complete treatment &f itterplay between locality enhancing (linear)
techniques and tiling is considered as possible future work.

6 Related work

Several researchers have focused on the problem of exploiting memaoaydhigby restructuring programs. A ma-
jority of these restructuring techniques is based on iteration spacdédraraions.

McKellar and Coffman [42] performed one of the first studies on programsformations for locality. They
showed that by using sub-matrix operations it is possible to obtginessive speedups over the original matrix codes.
Later Abu-Sufah et al. [1] focused on automating page locality improwolgriiques within a compilation framework,
and discussed a transformation technique caltatical distribution which is very similar to tiling.

In his dissertation, Porterfield [46] uses loop transformation tecl@scsuch as skewing and tiling. His main
objective is to model fully-associative caches with a least recently used)(pBli¢y. Like Gannon et al. [20], he
focuses on estimating the cache miss rates for a given loop nest. Thesadygs,chowever, do not propose how to
reach the best transformed version, and imply that a number of candidatiessishould be evaluated. The works of
Ferrante et al. [19] and Sarkar et al. [49] can also be considered to belong tatagory.

Wolf and Lam [56] describesuse vectorand explain how they can be used for optimizing cache locality. Their
approach involves first optimizing nest-locality using uni-moduap transformations and then applying tiling to the
loops that carry some type of reuse. Their method uses a sort of extesaestrch and in some cases can only work with
the approximate reuse vectors. Li [39] also considers reuse vectorsteuirdnes an appropriate loop transformation
matrix in one go rather than resorting to an exhaustive search. He shatgtimizing spatial locality before tiling
lessenghe sensitivity in performance of the tiling to the tile size. Neithef39] nor Wolf and Lam [56] consider
memory layout transformations; and since a loop transformation pwawe locality of a reference can sometimes
adversely affect the locality of another reference in the nest, both approachesncthay with unsatisfactory solutions
for a given loop nest.

The cost of the methods mentioned is partly eliminated by a simplegtiewrsed by McKinley et al. [43]. Arguing
that the general non-singular loop transformations may not be necessamafy codes, they propose a method that
employs a simple cost formulation and considers loop permutatiop,feversal, loop fusion, and loop distribution
(fission). In addition to having the disadvantages of an approach thased on loop transformations alone, since
they do not consider general non-singular loop transformationsrttagynot be able to optimize some loop nests for
which loop permutation does not work (e.g., ther2k code from Blas).

Considering the fact that linear loop transformations may be insuffié@rsome loop nests, some researchers
have focused on loop tiling [58, 37] which in most cases can be accomphlisnadcombination of strip-mining and
loop interchanging. There are however a number of problems witlgtéis explained in the previous section. It
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has been observed by Li [39] that in most cases applying locality enhancéag loop transformations before tiling
improves its performance, in some cases significantly. Our own expesmeported in the previous section also
confirm Li's findings and underline the importance of optimizing sddbcality before tiling.

Recently some researchers have considered data layout transformation® thismly restructuring of multi-
dimensional arrays in memory as an alternative to the loop transfornsatiteremiassen and Eggers [25] use data
transformations for eliminating the effect of false sharing, whereas dib&tz [26] use them for reducing the coher-
ence activity on shared memory multiprocessor systems.

More recent work on data transformations is on optimizing cache locdliyng and Zahorjan [38] present a
technique that is based on non-singular data transformation matricey. shiow that data transformations may be
successful where loop transformations fail either because of conflictingresgents between different references to
different arrays or simply because data dependences prevent the desiredhfsiprination. They also handle the
problem of minimizing the extra memory requirements induced by a gia¢a transformation. In this paper, we have
not attempted to attack the problem of minimizing the extra spdumyever, if necessary, we can use their techniques.
In comparison, our approach uses both loop an data transformations medegpowerful than the one proposed in
[38].

O’Boyle and Knijnenburg [44] also argue for data transformationparf\from using it for optimizing spatial
locality, they consider the use of data transformations for datarakg and page replication problems on parallel
machines. Their main concern, however, is to handle code generation aftedaydaizaransformation.

Kandemir et al. [27] also propose a layout optimization technique. Tkeylayout matrices to represent the
memory layouts of multi-dimensional arrays. In this paper, we shawhbw this explicit representation of layouts
helps to combine loop and data transformations in a unified framework.

Anderson et al. [4] propose a transformation technique that makes #heldatents accessed by the same processor
contiguous in the shared address space. Their method is mainly for sharadryparallel architectures. They use
only permutations (of array dimensions) and strip-mining for gmeglata transformations. Our work is more general
as we consider a much larger search space for possible layout transforsnatierfar as the multiprocessors are
concerned, both approaches can be useful for reducing false sharing.

There are two major problems with those techniques basquimdata transformations. First, data transforma-
tions cannot optimize for temporal locality which in turn may lead to pagister usage. Second, the impact of a
layout transformation is global meaning that it affects all the referencesgg@rhaps adversely) to that array in all
the nests (assuming that no dynamic transformation is consideredn Grge number of nests, it might be very dif-
ficult to come up with a data layout that satisfies as many nests as possibleg and Zahorjan [38] and Kandemir et
al. [27] handle this multiple-nest problem by enclosing all the loegteiwith an imaginary outermost loop that iterates
only once. Unfortunately, this technique may not be very successful wieea are conflicting references to theme
array. Since our approach uses iteration space transformations as well, wanchetemporal locality too. Moreover,
we show how to eliminate the potential negative impact of data tramsftiwns by using loop transformations.

Yet another approach is to apply a combination of loop and data transfomedtr enhancing locality as we
have done in this paper. Cierniak and Li [15] use this approach. Siegentiinly focus on a single loop nest and the
general problem exhibits non-linearity, they restrict search spacessgsitpje loop and data transformations, and resort
to exhaustive search in this restricted search space. The data transfosttaipoonsider are dimension permutations
only (e.g., converting from column-major to row-major); thereforeyt cannot optimize banded matrix applications
fully for which diagonal layouts are the most suitable. The loop fiansation matrices that they consider, on the
other hand, are the ones that contain only ones and zeroes.

4Because, the extra memory space required by our approachevas more thas% of the total size of the arrays in the program.
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Figure 18: Scalability ofa) btrix with a single iteration of timing loops and a problem sizel 88, and(b) trans
with 10 iterations of the timing loop and a problem size20648.

In [30] and [31], the authors presented another approach to combine Idajatatransformations. That approach
does not restrict possible loop transformations; but, like Cédrraind Li [15], uses only dimension permutations as
possible data transformations; therefore, the approach presented (fof3®&quential machines) and [31] (for parallel
machines) cannot optimize the nests whose arrays require diagonal mexyauys for the best cache locality.

An important drawback of the works in [15], [30] and [31] is thatytheseexhaustive searcto find the solutions;
and they cannot handle skewed (diagonal) memory layouts that are very fesdfanded matrix applications. The
approach presented in this paper has no restriction on layout transfonsiagied finds the solution without doing
exhaustive search. The search spaces that we consider for loop and datartratisfcs are very general: For loop
transformations we use general non-singular linear transformationcestand for memory layouts we can choose
any optimal layout that can be expressed by hyperplanes. Lastly, ratheirthimg scope to a single loop nest we
focus on a sequence of loop nests and propagate memory layouts acrossdtsop n

Finally, we note that the global memory layout determination problesrd similarities to the automatic data
distribution problem [5, 47, 21, 52] for distributed-memory miagls. Unlike data distribution which is applicable
only for parallel machines, memory layouts affect the performance of urggsmr and multiprocessor machines. In
addition, good global memory layouts influence decisions on databdistm.

7 Conclusions

In this paper we have described a unified global approach for optimiziadjtpgiven a series of loop nests. During the
optimization process, when considering a loop nest, our approach filgappoop transformation to it to satisfy the
layout requirements for the references to those arrays whose layoutslreagy been determined. It then determines
suitable memory layouts for the remaining arrays referenced in the neghdHirst nest to be optimized, however, we
use both loop and data transformations. Although the general prapeears to be difficult, we have shown in this
paper that the whole process for a single nest can be formulated in a matiafratework which is based on explicit
memory layout representations. We have also shown that our approachréssoazessful than existing locality-
enhancing (linear transformation) techniques whether they are purebtasgd, pure data-based, or a combination of
the two.

A detailed study of the interaction between our solution and tiling gagress. Along these lines, we plan to work
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Figure 19: Impact of tile size on the performan¢a) matrix-multiply with 1,024 x 1,024 double precision arrays,
and(b) trans with 4,096 x 4,096 double precision arrays.

on several related problems such as evaluating extensively the relatieerpanices of tiled code versus the resultant
code from our approach, and comparing our approach to a relatively new fiotitimg, namely data-centric tiling
[35]. In addition, we plan to investigate the effectivenesblotkeddata layouts—in which the elements accessed by
a tile are stored contiguously in memory—in improving the cache pexdnce further. Work is also in progress on
extending our techniques to optimize locality across program modules.

We believe that the experimental results reported in this paper are girgrand an integrated approach that
applies both loop and data transformations in concert will help optigizompilers in exploiting the deep memory
hierarchies found in current parallel architectures to the fullest extesitges
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