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A Matrix-Based Approach to Global Locality Optimization �
Mahmut Kandemiry Alok Choudharyz J. Ramanujamx Prith Banerjeez

Abstract

Global locality optimization is a technique for improving the cache performance of a sequence of loop
nests through a combination of loop and data layout transformations.Pure loop transformations are
restricted by data dependences and may not be very successful in optimizing imperfectly nested loops
and explicitly parallelized programs. Although pure data transformations are not constrained by data
dependences, the impact of a data transformation on an array might be program-wide; that is, it can affect
all the references to that array in all the loop nests. Therefore, in this paper we argue for an integrated
approach that employs both loop and data transformations. The method enjoys the advantages of most
of the previous techniques for enhancing locality and is efficient. In our approach, the loop nests in a
program are processed one by one and the data layout constraints obtained from one nest are propagated
for the optimizing the remaining loop nests. We show a simple and effective matrix-based framework
to implement this process. The search space that we consider for possible loop transformations can be
represented by general non-singular linear transformation matrices and the data layouts that we consider
are those that can be expressed using hyperplanes. Experiments with several floating-point programs
on an8-processor SGI Origin 2000 distributed-shared-memory machine demonstrate the efficacy of our
approach.
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1 Introduction

The processing power of high performance computers continues to increase dramatically. In the mean time, the rate

of increase of speed of the memory subsystems has not kept pace with the rateof improvement in processor speeds

[23]. Therefore, modern multiprocessors include several levels of memory hierarchy in which the lower levels are

slow and inexpensive (e.g., disks, memory) while the higher levels(e.g., caches, registers) are fast but expensive. Even

with the use of memory hierarchy, realizing the highest levels of performance on current machines requires careful

orchestration of programs. Fortunately, optimizing compilers have been instrumental in relieving some of the burden

on the users; and they play an increasingly critical role in the face of the rapid evolution of architectures.

A recent study shows that a group of highly parallelized scientific benchmarks spend as much as a quarter to a half

of their execution times waiting for data from memory [55]. It is now widely accepted that in order to eliminate the

memory bottleneck, cache locality should be exploited as much as possible. One way of achieving this is to transform

loop nests to improve locality. There has been a great deal of research in the areaof loop transformations. Several loop

transformations have been incorporated into a single framework using a matrix representation of these transformations

[59]. Among the techniques used are unimodular [7] and non-unimodular [39] iteration space transformations as well

as tiling [58, 56, 37]. These techniques share the following two characteristics:

(1) they attempt to improve data localityindirectlyas a result of modifying the iteration space traversal order; and

(2) a transformation is applied to one loop nest at a time.

However, loop transformations have some important drawbacks. First, they may not always be legal due to depen-

dence constraints [59]. Second, it might be difficult to find a loop transformation that improves the locality ofall the

arrays referenced in the nest. Third, loop transformations are not very successful in optimizing locality for imperfectly

nested loops; for example, Kodukula and Pingali [34] show that handling imperfectly nested loops within a loop trans-

formation framework requires a somewhat different approach to the problem. And finally, as noted by Cierniak and Li

[15], loop transformations are not very successful in optimizing explicitly parallelized programs since these programs

include parallel execution specifications (e.g., annotations) as well as synchronization constructs; this renders locality

optimization very difficult.

Proper layout of data in memory may also have a significant impact on the performance of scientific computations

on multiprocessor machines. In fact, as shown by O’Boyle and Knijnenburg [44], Leung and Zahorjan [38] and Kan-

demir et al. [27], techniques that decide good data layouts (e.g., row-major or column-major storage of large arrays)

can improve the performance of dense array codes significantly. We refer to the optimization of data layouts asdata

transformations.Unlike loop transformations, data transformations are not constrained by data dependences, and are

easily applicable to imperfectly nested loops and explicitly parallelized programs. However, there are two important

drawbacks associated with data transformations. First, they cannot optimize temporal locality. As a result of this, pure

data transformations can generate programs that do not fully utilize theregisters in the underlying architecture. But,

more importantly, the impact of a data transformation isglobal, i.e., the effect goes beyond a single loop nest bound-

ary. For example, transforming the memory layout of a multi-dimensional array from column-major to row-major

to improve the locality of a reference to the said array in one loop nest can adversely affect the locality of the other

references to the same array in other loop nests.

Therefore, it is reasonable to expect that aunified(integrated) approach that employs both loop and data transfor-

mations should, in principle, perform better than approaches based onpure loop orpuredata transformations. In this

paper, we explore this possibility. Specifically, we seek an answer to thefollowing question:

“Given a program that consists of a number of loop nests, what are the appropriate loop transformations
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for the loop nests and the appropriate data transformations for the multi-dimensional arrays referenced

such that the overall cache locality will be very good?”

Our goal is to derive a unified framework that satisfies the following requirements:� The framework should be fast; that is, it should not resort to exhaustive search to find memory layouts and/or

loop transformations. Some of the previous work in this area [15,30, 31] use techniques that combine some

restricted sets of loop and data transformations; but they use a kind of exhaustive search to achieve their goal.

Since no quantification of the compilation times is available, it remains unclear whether such techniques are fast

and effective in practice.� The framework should be fairly general. It should be able to use (whennecessary) the general non-singular loop

transformations. Previous work based on pure loop transformationssuch as those of Wolf and Lam [56] and

McKinley et al. [43] use unimodular loop transformations which may not be sufficient for optimizing locality

in loop nests that require non-unimodular transformations. The framework should also use general data trans-

formations. Works published in [15], [30] and [4] consider only a limited subset of data transformations. For

example, they do not consider diagonal (skewed) data layouts which can prove very useful for banded-matrix

applications.� The framework should be able to optimize both temporal and spatial locality. This is a reasonable requirement

as we use both loop and data transformations; so, in principle, we should be able to optimize for both types

of locality. Note that locality enhancing techniques based on pure data transformations (e.g., [44], [38], [27])

cannot optimize temporal locality.� The framework should be able to optimize imperfectly nested loops as well as explicitly parallelized programs.

Since we use data transformations as a part of our unified framework, weshould be able to optimize those

important cases where most of the techniques based on pure loop transformations fail.

In this paper we present a unified framework that attempts to satisfy the goals set above. McKinley et al. [43] suggests

the following three-step high-level approach for locality optimization:

(1) Optimize temporal and spatial locality through loop transformations such as loop permutation, reversal, fusion,

distribution, and skewing;

(2) Optimize cache locality further using tiling [58] which is a combination of strip-mining and loop permutations;

(3) Optimize register usage through unroll-and-jam and scalar replacement[11, 12].

Our approach can be seen as an attempt to increase the effectiveness of the first step,and is orthogonal to the other

two. We recommend applying tiling and register level optimizations following our unified approach to achieve the

best results. In fact, as will be discussed later in the paper, our approach helps to obtain better results from the second

and the third steps. We assume that every array accessed in a program has asinglefixed memory layout for the whole

program. As a result, data layout decisions affect the performance characteristics of the whole program unlike loop

transformations; in addition, data layouts impact the choice of loop transformations applied to each loop nest. We can

model the data transformations using vectors and matrices in the same way loop transformations have been modeled.

Such an approach allows us to exploit the benefits of a unified linear algebraicframework.

The rest of the paper is organized as follows. Section 2 presents the motivation for attacking the global locality

optimization problem and describes our approach informally. Section 3 describes the fundamental concepts used

in our approach. Section 4 presents the details of our approach through several examples. In that section we first
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        Appears in Journal of Parallel and Distributed Computing, September 1999do i = 1, Ndo j = 1, NU(i,j) = V(j,i)end doend dodo i = 2, Ndo j = 1, N-1W(i,j) = W(i-1,j+1)end doend do
(a)

do i = 1, Ndo j = 1, NU(i,j) = � � �end doend dodo i = 1, Ndo j = 1, NU(j,i) = � � �end doend do
(b)

do i = 1, Ndo j = 1, NU(i,j) = V(j,i)end doend dodo i = 1, Ndo j = 1, NV(i,j) = U(j,i)end doend do
(c)

Figure 1: Three program fragments:(a) Loop transformations fail, data transformations work.(b) Data transforma-
tions fail, loop transformations work.(c) Integrated loop and data transformations are necessary.

focus on a general technique for improving locality on both uniprocessors and multiprocessors, and then discuss a

number of multiprocessor-specific issues. Section 5 presents experimental results obtained on an eight node SGI Origin2000 distributed-shared-memory multiprocessor. Section 6 reviews relatedwork on locality enhancing techniques and

finally Section 7 summarizes the paper with an outline of ongoing and future work.

2 Our approach

2.1 Motivation

As noted earlier, there is a vast amount of work in optimizing locality for a single loop nest usingiteration space

(loop) transformations [58, 56, 39, 43]. Recently some authors [4,44, 38] have proposed techniques to optimize spatial

locality in a loop nest usingdata space(array layout) transformations. Such a transformation typically modifies the

memory layout of a multi-dimensional array. The main problem with this approach is that modifying the memory

layout of an array has aglobaleffect meaning that it affects the locality of all the references to that array in all the loop

nests in the program. We show in this paper that such a global impact can in fact be exploited using a proper mix of

data and iteration space transformations.

In order to motivate the discussion, we consider the program fragments shown in Figure 1. The first loop nest

shown in Figure 1(a) accesses two arrays. It can be shown that it is not possible to optimize spatial locality (by en-

suring stride one accesses in the inner loop) for both references using pure loop transformations. The reason is that

the innermost loop accesses the two arrays in a different manner. Assuminga column-major memory layout for both

the arrays, the locality for arrayV is good whereas that of arrayU is not. A simple loop interchange transformation

[59] would improve the locality for arrayU, but would degrade the locality ofV. However, without any loop transfor-

mation, using a column-major memory layout for arrayV and a row-major memory layout for arrayU will result in

good locality for both the references. If the default memory layout is column-major, this solution will involve a data

transformation for arrayU (from column-major to row-major). The second loop nest in Figure 1(a) illustrates another

problem with pure loop transformations. Again, assuming a column-major memory layout, both references to arrayW

exhibit poor locality as the innerj loop skips through the columns. Unfortunately, the obvious solution of interchang-

ing two loops is notlegal here due to data dependences [59]. One simple solution is again a data transformation for

arrayW; that is, transforming its memory layout from column-major to row-major.

Now consider the program fragment shown in Figure 1(b). In this fragment there are two loop nests accessing the

same array in different fashions. The techniques based on pure data transformations cannot do much for this program

3
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fragment. The reason is that no matter what the layout of arrayU is, the locality in one of the loop nests will be poor

unless the loops are transformed. It is easy to see that without any data transformation (assuming a column-major

memory layout) just interchanging the loops in the first nest (provided that it is legal to do so) will solve the problem.

Figures 1(a) and (b) show the cases where pure data transformations and pure loop transformations, respectively,

are required and sufficient. Figure 1(c) illustrates an example for which neither pure loop nor pure data transformations

work. In that case, one solution is to select row-major layout for arrayU and column-major layout for arrayV, and

interchange the loops in the second nest. Notice that such a solution requires the application ofboth loop and data

transformations. These three program fragments show us that neither loop nor data transformations subsume the other

and sometimes a unified (integrated) approach that uses a mix of loop and datatransformations might be necessary.

2.2 Overview

Our approach to the global locality optimization problem can be defined informally as follows. First, we transform the

program into a canonical form using loop fusion, loop distribution, and code sinking [59]; in this canonical form, a

program contains two types of references, those that occur inside loop nests and those that occur between loop nests.

In our approach, only the references within loop nests can have an effect on memory layout decisions; in determining

layouts, we simply ignore the references between loop nests. Then we construct an interference graph similar to that

used by Anderson and Lam [5, 3]. This is a bipartite graph that contains two sets of vertices; one set corresponding

to the loop nests and the other corresponding to the arrays. There is an undirected edge between an array vertex and a

loop nest vertex if and only if that loop nest accesses that array. Our technique works on a single connected component

of this graph at a time, since there are no common arrays between different connected components.

For a single connected component, we first order the loop nests according to acost criterion, from the most costly

nest to the least costly. We need to be careful in defining the cost of a loop nest. Although it may sound logical

to profile the code and use the uniprocessor execution times as the costsof the loop nests, it is not a good idea.

The reason is that execution times are intricately associated with memory layouts (which will be determined by our

approach). Therefore, what we need is a layout-independent cost criterion. Inthe following section, we discuss a cost

criterion based on theweightsof the references in a program. Notice that the ordering of loop nests according to a

cost criterion isnot a modification or transformation of the structure of the program; but rather a step to determine

the order in which the loop nests will be considered (optimized) by ourlocality optimization algorithm. Then the

algorithm starts with the most costly nest and optimizes it for locality. After this process, suitable memory layouts

for (possibly some of) the arrays referenced in this loop nest are determined. Afterwards, we move to the next most

costly nest. In optimizing this nest, we take into account the memory layouts determined during the optimization of

the most costly nest. After each nest is optimized, (possibly) new memory layouts are determined and all the memory

layouts obtained so far arepropagatedto the remaining nests aslayout constraintsfor optimizing the next nest in the

connected component. During the processing of a single connected component, when a loop nest is to be optimized,

the compiler can encounter three important cases:

Case1: There are no memory layout constraints; that is, none of the arrays havea determined memory layout so far,

and we have complete freedom in choosing loop transformation (except as constrained by data dependences in

the loop nest under consideration). In this case, the compiler’s task is to determine the memory layouts of the

arrays referenced in the loop nest as well as to find an accompanying iteration space transformation. In general,

this is the case for the most costly nest in a connected component.

Case2: The memory layouts of some of the arrays referenced in the loop nest have already been fixed during the

processing of a previous loop nest. Here, the task is to determine the memory layouts of the remaining arrays

4
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and to transform the iteration space accordingly. This is the most commonly encountered case.

Case3: We have restrictions on the iteration space other than those due to datadependences. These restrictions,

calledadditional constraints(as against layout constraints), are in general related to parallelism; typically, these

restrictions can arise due to the need to reduce (or perhaps eliminate) false sharing [25, 54] or the need to exploit

the largest granularity of parallelism [7]. The goal is to determine thememory layouts for the arrays referenced.

Case1 can be seen as a special form of Cases2 or3 and a combination of Cases2 and3 as well as several other special

cases may also arise.

After all the layouts and loop transformations are found, the compilerapplies these transformations and generates

the optimized code. In the next section we give details of the main elementsof our approach.

3 Elements and scope of our approach

3.1 Canonical form

We assume that the only control flow that we have is loop structures. We simply treatif–constructs as if both branches

always execute. In the canonical form, a program consists of just a sequence of (preferably perfectly-nested) loop

nests. We bring a program into this form using a technique similar to that proposed by McKinley et al. [43], which

uses loop fusion and loop distribution. Loop fusion [59] takes adjacent loop nests and combines their bodies into a

single body collapsing their iteration spaces into a single iteration space. It can create perfectly nested loops from

imperfectly nested loops, and can improve cache locality as well as register usage. Loop distribution [59], on the other

hand, creates multiple loop nests from a single loop nest by separating the independent statements in a single loop

into multiple loops. It is typically used to break the inter-statementdependence cycles in loop nests with multiple

statements to enable parallelism.

Our algorithm first normalizes [59] each nest such that the step size of each loop becomes one. It then considers

imperfectly nested loops and transforms them into perfectly nest loops using a combination of loop fusion, loop

distribution and code sinking (when necessary). After a sequence of independent loop nests is obtained, a final pass

applies loop fusion once more combining adjacent loop nests if doing soimproves temporal locality without causing

undue register pressure. The overall approach is similar to that proposed in [43]; a sketch of the algorithmCanonical

is shown in Figure 2. The details of the functionsfuse, distribute, andcode-sink are omitted for lack of space and

not relevant for the purpose of exposition. Notice that, for the sake of clarity, the figure does not show the final loop

fusion pass. Also note that like Wolf et al. [57] we favor fusion over distribution largely because fusion improves

cache reuse and results in less overhead.

As an illustration of the working ofCanonical, we consider the program fragment shown on the left part of

Figure 3. This fragment consists of two imperfectly nested loop nests.Within the loop nests are the names of the

arrays accessed. Our approach transforms these loop nests into a series of perfectly nested loops. In this example, we

assume that this can be accomplished using loop fusion for the first imperfectly nested loop nest and loop distribution

for the second. As a result of these transformations, the initial program is converted to a code that consists of three

perfectly nested loop nests.

3.2 Interference graph

Next the compiler builds an interference graph similar to that used by Anderson and Lam [5] in solving the automatic

data distribution problem for parallel machines. This is a bipartite graph(Vn; Va; E) whereVn is the set of loop nests,
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Canonical (�)INPUT: A set of loop nests� = f�1; �2; � � �gOUTPUT: A set of loop nests�0 = f�01; �02; � � �g
foreach �i 2 �

if (�i is perfectly-nested)continue
else

if (�i has (non-loop) statements sandwiched between loop nests)code-sink(statements)
endif
let f�1; �2; � � � ; �rg be the resulting loop nests in�i after the code-sinking
Canonical(f�1; �2; � � � ; �rg) /* recursive call! */
let f�01; �02; � � � ; �0tg be the resulting loop nests in�i after the recursive call
if (fusion is legal and profitable)fuse(f�01; �02; � � � ; �0tg) endif

else if (distribution is legal)distribute �i overf�01; �02; � � � ; �0tg endif
endif

endforeach

Figure 2: Overview ofCanonical – an algorithm to transform a program to our desired form.Va is the set of arrays, andE is the set of edges between loop vertices and array vertices. There is an edgee 2 E
betweenva 2 Va andvn 2 Vn if and only if vn referencesva. Then we run a connected-component algorithm on this

graph. For the example given in Figure 3, we have two connected components. Each connected component is fed into

our global locality optimization algorithm explained in the rest of this paper; that is, our algorithm works on a single

connected component at a time.

3.3 Hyperplane-based layout representation

Our approach to memory layout representation is based on hyperplane theory from linear algebra and is briefly ex-

plained below. In this framework, hyperplanes are used to represent memorylayouts of multi-dimensional arrays. For

anm-dimensional array, a hyperplane defines a set of array elements(|1; |2; � � � ; |m) that satisfy the relationg1|1 + g2|2 + � � �+ gm|m = c; (1)

wherec is a constant. In this equation,g1; g2; � � � ; gm are rational numbers calledhyperplane coefficientsandc is

a rational number calledhyperplane constant[24, 47]. We refer to�g = (g1; g2; � � � ; gm)T as a hyperplane vector

associated with Equation (1). When there is no ambiguity, all transposition symbols will be omitted. Ahyperplane

family is a set of hyperplanes with the same coefficients but with a different constant (c value).

An important observation is that a hyperplane family can be used to partially define the memory layout of a

multi-dimensional array. Let us concentrate now on a two-dimensionalN � N array stored in column-major form

in memory as is the case in Fortran. We can think of each column of this array as ahyperplane (a line); and all

columns collectively define a hyperplane family. Here, the hyperplane vectoris (0; 1) and the hyperplane equation is|2 = c where1 � c � N . For example,|2 = 5 represents the fifth column of the array. An important fact about the

hyperplanes is that two array elements�J and �J 0 belong to the same hyperplane�g if�g �J = �g �J 0: (2)

Notice that the multiplications in this equation are dot products and that all the transpose symbols are omitted. Re-

turning to our two-dimensional column-major array, since the array elements(1; 5) and(4; 5) satisfy Equation (2) for
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do i = 1, N
do j = 1, N

enddo
do j = 1, N

enddo
enddo

do i = 1, N
do j = 1, N

U,V
enddo
do j = 1, N

U,V
enddo

enddo

V,W

X,Y

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

do i = 1, N
do j = 1, N

U,V
enddo

enddo

do i = 1, N
do j = 1, N

V,W
enddo

enddo

do i = 1, N
do j = 1, N

X,Y
enddo

enddo

U

V

W

X

Y

imperfectly-nested
loop nest

loop

fusion

loop

distrb.

connected-component

connected-component

input to the
global locality algorithm

input to the
global locality algorithmimperfectly-nested

loop nest

Figure 3: Example application of locality optimization algorithm.�g = (0; 1), they belong to the same hyperplane that can be identified withc = 5. On the other hand, for instance,(1; 5)
and(1; 6) do not satisfy Equation (2), therefore, they belong to different hyperplanes. It is important to stress that the

memory layouts defined by hyperplanes are not limited to the conventional layouts such as column-major and row-

major. For example, a hyperplane family defined by(1;�1) also represents a memory layout (for a two-dimensional

array) where, say, the array elements(2; 3) and(4; 5) map on the same hyperplane. It is easy to see that such a memory

layout corresponds to diagonal-layout (or skewed-layout) where the elements in each diagonal are stored contiguously

in memory. Similarly, the hyperplane vectors given by(1; 0) and(1; 1) correspond to two-dimensional row-major and

anti-diagonal memory layouts, respectively. Figure 4 shows a few possible memory layouts for a two-dimensional8� 8 array and the associated hyperplane vectors below them. Each circle in this figure represents an array element.

With such a representation, we say that two array elements havespatial locality(or physical proximity) if they belong

to the same hyperplane [27]. For example,(1; 5) and (4; 5) have spatial locality in column-major layout whereas(2; 3) and(4; 5) have spatial locality in diagonal-layout expressed using(1;�1). Notice that the set of layouts given

in Figure 4 is not exhaustive, as, for instance, the hyperplane vector(3;�4) also represents a possible memory layout.

Our representation as explained so far has two problems. First, although, say, a column-major layout (as defined

in Fortran) totally defines the relative order of columns as well with respect to each other, our representation does not

necessarily specify such a relative order among the hyperplanes. Although,the hyperplane coefficients (c values) can

be used to order the hyperplanes, in programs where array sizes far exceed size of the available cache memory, the

effect of the relative order of hyperplanes is of secondary importance. The second problem is related to our definition

of spatial locality which is coarse-grained and different from those of theprevious work (e.g., [56]). For example, in

column-major memory layout, our spatial locality definition does not encompass two elements that are mapped onto

different columns but in consecutive memory locations. We believe that this is also not a significant issue. In fact, our

technique works as if it is operating on an array space where the boundaries are lifted.

For two-dimensional arrays, a single hyperplane family is sufficient to partially define the memory layout. In

higher dimensions, however, we may need to use more hyperplane families. Let us concentrate on a three-dimensional

arrayU whose layout is column-major. Such a layout can be represented using two hyperplanes:�g = (0; 0; 1) and
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anti-diagonal

(1,1)

column-major row-major diagonal

(0,1) (1,0) (1,-1)

Figure 4: Example memory layouts for two-dimensional arrays and theirhyperplane vectors.�h = (0; 1; 0). We can write these two hyperplanes collectively as alayout constraint matrixor simply alayout matrix

[27] CU = � �g�h � = � 0 0 10 1 0 � :
Now, two data elements�J and �J 0 have spatial locality (i.e., map onto the same hyperplane) if both the following are

true: �g �J = �g �J 0 (3)�h �J = �h �J 0 (4)

The elements that exhibit spatial locality should be stored in consecutive memory locations. Notice that this represen-

tation of column-major layout of a three-dimensional array matches naturally with the column-major layout concept

of Fortran; because, in Fortran, in order for two array elements�J and �J 0 to map on the same column all array indices

except possibly the first one (column index) should be equal. We note that the Equations (3) and (4), together, enforce

the mentioned (equality) conditions. This idea of representing memorylayouts using layout matrices can be easily

generalized to higher dimensions; the details are beyond the scope of this paper and can be found elsewhere [27].

3.4 Optimizing a loop nest using pure loop or pure data transformations

Nest-level optimizations (or local optimizations) transform a loop nest to increase cache locality. Essentially, the

objective is to obtain either temporal locality or stride-one access of the arrays which is very important for parallel

architectures with some form of cache hierarchy. To understand the effect of a loop transformation let us represent

a loop nest of depthn that consists of loopsi1; i2; � � � ; in as a polyhedron defined by the loop limits. We use ann-dimensional vector�I = ({1; {2; � � � ; {n) called theiteration vectorto denote the execution of the body of this loop

nest withi1 = {1; i2 = {2; � � � ; in = {n.

We assume that the array subscript expressions and loop bounds areaffine functionsof enclosing loop indices

and loop-index-independent variables. We can model each array reference using anaccess matrixL and anoffset

(constant) vector�o [56, 39]. As an example, a referenceU(i + 1; j) to a two-dimensional arrayU in a loop nest of

depth two withi as the outer loop index is represented byL�I + �o, whereL = � 1 00 1 � and�o = � 10 � :
In general, if the loop nest is of depthn and the array in question ism-dimensional, the access matrix is of sizem�n

8
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do i = 3, Ndo j = 3, NU(i,j)=(V(i-2,j)+V(i,j)+V(i,j-2))/3end doend do
(a)

do i = 1, Ndo j = 1, NU(i+j,j)=V(i,j)end doend dodo i = 1, Ndo j = 1, N� � �=U(j,i)+U(i,j)end doend do
(b)

do u = 1, Ndo v = 1, NU(u+v,v)=V(u,v)end doend dodo u = -N+1, N-1do v = max(1-u,1), min(N-u,N)� � �=U(v,u+v)+U(u+v,v)end doend do
(c)

Figure 5:(a) An example loop nest.(b) Original fragment.(c) Optimized version of (b).

and the offset vector ism-dimensional.

The class of iteration space transformations we are interested in can be represented using non-singular square

transformation matrices[59]. For a loop nest of depthn, the iteration space transformation matrixT is of sizen� n.

Such a transformation maps each iteration vector�I of the original loop nest to an iteration�I 0 = T �I of the transformed

loop nest. Therefore, after the transformation, the new subscript function isLT�1 �I 0 + �o meaning that the new access

matrix isLT�1. The problem investigated in works such as [56] and [39] is to select a suitableT such that the locality

of the reference is improved and all the data dependences in the original nest are preserved.

Consider the code shown in Figure 5(a). Assuming column-major memory layouts for arraysU andV , the accesses

to both the arrays are poor from the locality point of view. The problem is that successive iterations of the inner loopj
touch different columns. The chances are very low that a line brought intocache in one of these iterations will stay in

the cache when any of its elements is reused. An iteration space transformationtechnique such as the one proposed by

Li [39] optimizes this nest by interchanging the loops, which is legalhere. This loop transformation can be represented

by a unimodular matrix T = � 0 11 0 � :
We note that the same nest can also be improved using data transformations instead. Our approach uses the hyperplane-

based layout representation explained earlier.

Let �I = (i; j) and �Inext = (i; j + 1) be two consecutive iterations. We focus on arrayU , and a similar analysis

applies to arrayV . Two data elements accessed by�I and �Inext areL�I + �o andL�Inext + �o, respectively. Using

Equation (2), in order to have a spatial locality in the innermost loop, the constraint�g(L�I + �o) = �g(L�Inext + �o)
should be satisfied, where�g represents an optimal (desired) layout. Taking into account�I and �Inext, solving this

last equality gives us�g �̀ = 0 where �̀ is the last column ofL. That is, if we choose a hyperplane vector�g such that�g 2 Kerf�̀g, we will have spatial locality in the innermost loop. Since, in our example,L is the identity matrix,

we have�̀ = (0; 1)T . Choosing�g from the null space of�̀ gives us�g = (1; 0), which, as mentioned earlier (see

Figure 4), corresponds to a row-major memory layout. The details of selecting a suitable vector from theKer set

are not important for the purposes of this paper and are fully explainedin [27]. To sum up, in order to have a good

spatial locality in the innermost loop, we have to change (transform)the memory layout ofU (and that ofV ) from

column-major to row-major.

Of course,determiningthe layout for a given array is just one part of the story; the other part is implementingthis

layout in a given compiler that uses a singlecanonical layout(i.e., default, base layout) for all the arrays (e.g., column-

major in Fortran). Since the optimal memory layouts will be implemented in a compiler that uses a fixed default layout

for all arrays, suitable data transformations should be applied for the references to the arrays whose optimal layouts are

9
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different from the default layout. Fortunately, this process is rather mechanical. AssumingCdef is the layout matrix

representing the default layout (e.g., column-major in Fortran), in our framework, an optimal memory layout (denoted

by the matrixCopt) for an array can be implemented in three steps:

(1) FromCdefM = Copt, a suitabledata transformation matrixM of sizem �m for anm-dimensional array is

derived;

(2) The subscript expression of each reference to the array is transformed usingM as a linear transformation matrix:L�I + �o 7!ML�I +M �o;
(3) The array bounds are also transformed accordingly. For example, if a two-dimensional array is of sizeN �M

and is column-major, when the layout is converted to row-major it will be of sizeM �N .

This implementation framework is from [27] and the second and the third steps are similar to the techniques proposed

by Leung and Zahorjan [38] and O’Boyle and Knijnenburg [44]. The firststep, however, allows us to use any type

of layout as the base layout and transform the references in question such that the program will get executed under

the base layout (represented byLdef ) and will achieve good locality. We will not explicitly focus on thesesteps in

this paper, largely because they are straightforward. We refer the interested reader to [27] and [44] for an in-depth

discussion of issues related to code generation after a data transformation.

3.5 Ordering loop nests

We order the loop nests for processing by our locality optimization algorithm according to acost criterion. Our cost

criterion is based on the concept of theweightof a reference, defined as the number of times the reference is accessed

at run-time. The unknown loop bounds and array sizes, and conditionallyexecuted constructs make it very hard

sometimes to calculate the exact weight of a given reference; currently we use profile information to get the average

values of loop bounds and array sizes as well as to estimate conditional probabilities if they happen to be unknown at

compile time.

Suppose that there ares loop nests in the program andr different arrays. LetR�� be theth reference to array�
(1 � � � r) in loop nest� where1 � � � s. Further assume that the loops are normalized andt(l) returns the trip

count (the number of iterations) of a loopl in a given nest. Then we can define the weight (cost) of a referenceR��
as CR(R��) = Yl enclosesR�� t(l):
Note that it is possible that not all of the loops in the nest enclose the reference in question. The weight (cost) of a

loop nest�, on the other hand, is CN(�) = XR�� appears in�CR(R��):
Notice that the functionCN can be used to order the nests; that is, a loop nest� will be processed (optimized) before a

loop nest�0 if and only ifCN(�) > CN(�0). A good thing about this function is that it isindependentof the memory

layouts and roughly indicates the importance of a given loop nest with respect to the others. If needed, conditional

probabilities can also be taken into account. Assuming that a referenceR�� will be accessed with a probability ofp�� where0 � p�� � 1, we can define the weight of a referenceR�� asCR(R��) = p�� Yl enclosesR�� t(l):
10
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3.6 Scope of our work, extensions, and limitations

Our work focuses on deriving appropriate combinations of loop and datatransformations for optimizing locality. The

scope of our work is dense regular (affine access) matrix codes whose access patterns can be detected at compile-time.

However, Leung and Zahorjan [38] show that data transformations can also be used to handle arestrictedset of non-

affine array access patterns. We stress that the set of irregular access patterns optimized by the mentioned technical

report can also be handled by our approach. But, in this paper, we exclusively focus on affine array accesses.

It should also be noted that data transformations can be used for eliminating conflict misses and improving cache

line (or page) alignment as well. Padding [6, 48], a special kind of data transformation for eliminating conflict misses,

is orthogonal to our approach and, when necessary, can be used after the layoutshave been transformed.

The shift-type of data transformations [44] are also not considered in this paper; however, our approach can easily

be extended to include the shift-type of transformations as follows. We can think of a data transformation as a pair(M; ��) whereM is anm�m data transformation matrix as before and�� is anm-dimensional shift vector. Then the

problem is to determineM as well as��. A simple way of doing this is first determiningM and then taking the cache

line (or page) size into account to find an appropriate value for��.

Although not considered here, data transformations can also be applied to one-dimensional arrays as well provided

that they can bede-linearizedfirst [16]. We are currently working on acache consciousde-linearization scheme based

on Maslov’s algorithm [41].

We should also mention that our approach does not use any symbolic analysis; rather, it relies on profiling (when

necessary) to obtain estimations about array sizes, loop bounds, conditional probabilities and so forth. We acknowl-

edge, however, that locality optimizations (like parallelism optimizations) can benefit a lot from information provided

by symbolic analysis techniques [10, 9, 22]. For example, using symbolic analysis, the compiler might be able to

judge better whether applying tiling will be beneficial. In particular, ifthe compiler can detect that the entire data used

by a loop nest does not cause cache overflow, then tiling is unnecessary.

Finally, there are four other important issues that need to be addressed. First, although data transformations are

not constrained by data dependences, their applicability is restricted by theparameter passing rules and the sequence

association rules of the language in question. In some cases, it might benecessary to apply run-time checks to

determine if it is safe to apply a candidate data transformation. We do not investigate this issue in this paper and

assume that the data transformations we apply are always legal. Of course,this may not always be true; in those cases

techniques proposed by Chandra et al. [13] can be used.

The second important issue is the propagation of layout transformations across procedure boundaries. Currently,

the scope of our work is limited to one procedure at a time and the experimental results presented later on are obtained

on inlined [2] codes. We are working on a framework for propagating array layouts across procedures for the restricted

case where there is no array re-shaping (and using de-linearization when necessary). The approach is similar in

spirit to the solution proposed by Anderson [3] for data distribution problem and is based on a bottom-up and a top-

down traversal of the call graph [2] of the program being analyzed. In those cases where arrays are re-shaped across

procedures, we may need to apply explicit data transformations at run-time. Recently, O’Boyle and Knijnenburg [45]

have proposed new techniques to propagate data transformations in thepresence of re-shaping between procedure

boundaries. When necessary, our framework can be modified to include the techniques proposed in [45]; we postpone

a complete treatment of cache locality optimization in an inter-procedural setting to a future work.

Thirdly, our loop and data transformations donot cover the entire space of possible transformations. Our loop

transformations can be represented by square non-singular loop transformation matrices [39], i.e., they arelinear. For

the best results, they need to be combined with the non-linear loop transformations such as tiling, loop fusion and

distribution [59]. In this paper we briefly investigate the interaction with tiling; however we do not study the best
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ways of combining linear and non-linear loop transformations. Our datatransformations, on the other hand, can be

represented using hyperplanes. Therefore, they should cover all data transformations that can be represented by non-

singular data transformation matrices [44]. Note that we do not handleblocked layouts [3]; the question of whether

blocked layouts can be represented—at least in a constrained form—by hyperplanes merits study.

And finally, our solution procedure explained in the next section handles loop nests one by one, and fixes some

memory layouts in each loop nest and propagates these layouts to the remaining nests. While the experiments indicate

that our approach is quite successful, an alternative approach that takes a moreglobal viewis also possible. In such

an approach, the arrays and the nests are represented using an interference graph asexplained in Section 3.2. In

the interference graph, each edge is replaced by a bidirectional arcs, and moving from one vertex (array vertex or

nest vertex) to another is interpreted as using the solution of the former in solving the latter. Then, the problem of

optimizing locality for the maximum number of references can be rephrased as finding a maximum-branching solution

that satisfies as many edges possible. A similar approach has been used by Dion et al. [18] for solving the optimal

alignment problem for distributed-memory message-passing machines.

4 Unified loop and data transformations for improving locality

We have shown in the previous section that in order to optimize spatial locality of a loop nest both loop and data

transformations may be used. In the following, we show how to integrate these two optimization techniques in a unified

framework. Let us focus on a two-dimensional arrayU referenced in a loop nest of depth two using an access matrixL. The results to be presented easily extend to higher dimensional arrays andloop nests as well (see Section 4.5). We

define�I 0 = (i; j) and�I 0next = (i; j +1) as two consecutive iteration vectorsafter the transformation. Assume that we

use a2� 2 non-singular loop transformation matrixT and letQ = T�1 be the inverse of the transformation matrix.

Further assume that�g represents the desired memory layout. After the transformation, in order to have spatial locality

in the innermost loop (see Equation (2)),�g(LQ�I 0 + �o) = �g(LQ�I 0next + �o)
should be satisfied. Solving this equation, we obtain�gL�q = 0; (5)

where�q is the last column ofQ. Therefore, the problem is to find a�g and a�q for a givenL such that the Equation (5)

will be satisfied.

Notice that this equation isnon-linearand it is not trivial to solve. However, if either�g or �q is known, then it is

easy to determine the other by solving an homogeneous system. In this paper, to start the solution process, we first fix

either�g or �q for the first nest. For the remaining nests, since the layouts involved would be fixed during solution of the

previous nest(s), we can determine the loop transformation matrix without much difficulty.

Note also that Equation (5) is with regard to a single loop nest and a single reference. In order to optimize locality

globally (i.e., procedure-wide), we should set up and solve simultaneously the equations similar to Equation (5) for

every reference in every loop nest. Of course, given a large number of loop nests and references, this system of

equations may have only atrivial solution (i.e., zero vectors for�q or �g), in which case we need to ignore some

equations. In our current approach, we use profile information to decidethe equations to be ignored.

Notice also that Equation (5) can be easily modified to handle temporal locality as well. In order to have temporal

locality in the innermost loop, Equation (5) should be satisfied no matter what the layout of the array in question is. In
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mathematical terms, we should have L�q = 0: (6)

The interpretation of this last equality is that the last column of the inverse of the loop transformation matrix should

belong to the null set ofall the rowsof the access matrix.

We illustrate the process using an example first. Consider the program fragment given in Figure 5(b). The access

matrices for this program are as follows:

For the first nest: LU = � 1 10 1 � ;LV = � 1 00 1 � :
For the second nest: LU1 = � 0 11 0 � ;LU2 = � 1 00 1 � :
We would like to find suitable loop transformation matrices for boththe loop nests, and to determine accompanying

memory layouts for arraysU andV . Let T andS denote the transformation matrices for the first and second nest,

respectively; and letQ = T�1 andR = S�1. Also let�q = � q12q22 � and�r = � r12r22 �
be the last columns ofQ andR, respectively. Finally, let�g = (�g ; �g) and�h = (�h; �h) represent the optimal layouts

of U andV , respectively. Using Equation (5), we obtain the following for thefirst loop nest:

For arrayU : (�g ; �g)� 1 10 1 �� q12q22 � = 0:
For arrayV : (�h; �h)� 1 00 1 �� q12q22 � = 0:
Similarly, for the references to arrayU in the second nest, we have(�g ; �g)� 0 11 0 �� r12r22 � = 0 and(�g ; �g)� 1 00 1 �� r12r22 � = 0:
We can write these equations collectively as0B@ q12 + q22 q22 0 00 0 q12 q22r22 r12 0 0r12 r22 0 0 1CA0B@ �g�g�h�h 1CA = �0: (7)

It should be noted that a solution to such a system forq12, q22, r12, r22, �g, �g , �h, and�h will give us suitable loop

transformation matrices (actually only the last columns of the inverses)as well as optimized memory layouts (i.e.,

their representative hyperplane vectors). However, we have some additional constraints as well; specifically, for each

unknown vector such as�q, �r, �g and�h at most one of the entries may be zero. With these additional constraints solving

the non-linear system given by Equation (7) is very difficult. What we need is a heuristic that works fast in practice

and generates acceptable near-optimal solutions. In the following we showhow to solve such a system by fixing some
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unknowns at specific values. We note that (7) can be divided into two sub-matrix equations, each for a single nest:

For the first nest:

� q12 + q22 q22 0 00 0 q12 q22 �0B@ �g�g�h�h 1CA = �0; (8)

For the second nest:

� r22 r12 0 0r12 r22 0 0 �0B@ �g�g�h�h 1CA = 0: (9)

Notice that there is acouplingbetween (8) and (9) due to the layout (hyperplane) vectors. Let us first focus on (8), and

assume that this loop nest is more costly than the second one and no iteration space transformation will be applied;

that is,Q is the identity matrix meaning thatq12 = 0 andq22 = 1. Later in the paper, we will discuss this decision in

detail. We can now think of (8) in a block form as shown below:� q12 + q22 q22 0 00 0 q12 q22 �0B@ �g�g�h�h 1CA = �0 (10)

This last equation can be written symbolically as follows (whereSI andSII corresponds to non-zero sub-matrices in

(10)): � SI 00 SII �� �g�h � = �0
Essentially, now we need to solve two equations:SI�g = 0 andSII�h = 0. Since we have assumed thatQ is the identity

matrix, fromSI�g = 0 we have�g + �g = 0, which gives(�g ; �g) = (1;�1). On the other hand, fromSII�h = 0 we

obtain�h = 0 which leads to(�h; �h) = (1; 0). Therefore, for the best locality in the first loop nest, arrayU should

have diagonal memory layout whereas arrayV should be row-major (see Figure 4).

Next wepropagatethese layout constraints to the second loop nest, and solve Equation (9) for r12 andr22. From� r22 r12 0 0r12 r22 0 0 �0B@ 1�110 1CA = 0;
we haver12 = r22 = 1. A suitable loop transformation matrix satisfying this isR = � 1 10 1 �) S = R�1 = � 1 �10 1 � :
Using this loop transformation matrix and the optimal memory layouts, the transformed program is shown in Fig-

ure 5(c). Notice that both the loop nests exhibit good locality provided that arrayU is diagonally stored in memory

and arrayV is row-major. It should be emphasized that there is an additional transformation step that modifies this

program for a language with fixed canonical (default) memory layout (see Section 3.4); but since that step is almost

mechanical, we omit it here. The technique of how to fill out a partially completed transformation matrix (by taking

into account data dependences) is similar to those used by Li [39] and by Bikand Wijshoff [8] among others.

We stress that the second loop nest in Figure 5(b) cannot be optimized using (linear) pure loop (e.g., [39]) or pure
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(linear) data (e.g., [44]) transformations alone; because, there is spatialreuse in two orthogonal directions. This simple

example shows that an integrated approach might be useful for some programs.

The reuse analysis theory introduced by Wolf and Lam [56] shows us how to determine whether a given reference

can be optimized for temporal locality in the innermost loop. Our currentapproach also takes this analysis into

account; and, for the references with potential temporal reuse, the system of equations are modified accordingly.

4.1 Locality coefficient

To evaluate the amount of locality before and after the optimization process, we use a simple metric referred to as the

locality coefficient. We define the locality coefficient of a loop nest as the number ofstaticarray references (not the

dynamic count of the number of accesses to array elements) in the program that exhibit locality (spatial or temporal) in

theinnermostloop. The locality coefficient of a series of loop nests is defined to be the sum of the locality coefficients

of the individual nests. The locality coefficients of two different versions of the same program can be used as a guide to

decide which version is (statically) better from the locality point of view. In the case of a tie, we favor the program with

more temporal locality. Of course, this evaluation criterion for locality is very rough and assumes that all references

have the same weight and the bounds of all innermost loops as well as thesizes of all arrays are of the same order. This

model can be improved upon by taking into account a detailed profile information as well as the bounds of the arrays

and the loops after the transformation; but, the exactness of the evaluation model is not very relevant for the purpose

of this paper and the rest of the approach is independent of the particular locality evaluation criterion chosen. As an

example, the locality coefficient of the program shown in Figure 5(b) (assuming column-major memory layouts) is1
whereas that of the optimized code in Figure 5(c) is4 under optimal layouts.

If desired, our model can also accommodate sophisticated techniques that estimate the number of misses in a

given program. For example, instead of locality coefficients, we can use cache miss estimations obtained using the

techniques proposed by Ferrante et al. [19] or Sarkar et al. [49].

4.2 Formulation for the general case

In the general case, when we handle a given loop nest during the global optimization process, some of the array layouts

might be known, while the layouts of some arrays are yet to be determined. In such a case, we end up with a system

of equations of the following type, that we call atarget system:S �� = �0: (11)

The systems given in Equations (8) and (9) are two example target systems. HereS is a matrix that contains only the

lastcolumn entries of the inverse of the loop transformation matrix, and�� is a vector obtained from concatenating the

hyperplane vectors (representing memory layouts).1 Our approach first brings this system into following form using

elementary row interchange operations [36]:� SI ZIZII SII �� ��k��u � = �0; (12)

whereSI andSII are non-zero sub-matrices andZI andZII are zero sub-matrices. It is easy to see that this is always

possible. The vector��k contains entries of hyperplane vectors (that correspond to memory layouts) that have been1In three- or higher-dimensional cases the rows of the layoutmatrices are put as sub-columns one after another.
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        Appears in Journal of Parallel and Distributed Computing, September 1999do i = 1, Ndo j = 1, Ndo k = 1, NW(i,j)=U(i,k)end doend dodo j = 1, Ndo k = 1, NV(k,j)=1.0end doend doend dodo i = 1, Ndo j = 1, Ndo k = 1, NX(i+k,k)=W(j+k,k)+V(i+j,i+k)end doend doend do
(a)

do u = 1, Ndo v = 1, Ndo w = 1, NW(u,v)=U(u,w)V(w,v)=1.0end doend doend dodo u = 1, Ndo v = 1, Ndo w = 1, NX(u+v,v)=W(v+w,v)+V(u+w,u+v)end doend doend do
(b)

Figure 6:(a) Original program.(b) Optimized program.

determined so far (presumably during handling the loop nests of highercosts). The other vector,��u, consists of entries

of the hyperplane vectors that are to be determined.

After this point, our solution procedure consists of three steps:

(1) FromSI ��k = �0, the entries ofSI are found;

(2) From the entries ofSI , the entries ofSII are determined; and

(3) FromSII ��u = �0, the entries of��u are derived.

We note that these three steps informally correspond to determining a loop transformation taking into account memory

layouts obtained so far, and to determining memory layouts of (possibly a subset of) the remaining arrays whose

layouts have not been determined so far. In the following, we discuss these three steps in greater detail.

Step (1) corresponds to solving a homogeneous system of equations. Wefirst transform this system into��Tk SIT =�0, and then solve it forSI . Of course, given a large number of references, this system may not have a non-trivial

solution at all. In that case, we ignore some equations, and attempt to solve it again. The equations to be ignored

should correspond to references that are least frequently accessed. The weights of the references obtained using

profile information might be useful in determining the access frequencyof references.

In Step (2), the elements ofSII are determined from the elements ofSI found in the previous step. Although this

step looks trivial, it is possible that an element that appears inSII may not appear inSI . In that case, we choose a

value for this element arbitrarily avoiding to pick up a zero value if all the other entries are zero (otherwise, this makes

the last column of the inverse of the loop transformation matrix zero which, of course, is unacceptable).

Step (3) is very similar to Step (1), the only difference is that without taking the transposition, we start to solve the

homogeneous system right away.

Consider the program fragment in Figure 6(a). At the highest level, this program fragment consists of two loop

nests, the first of which (assumed more costly) is imperfectly nested. The compiler first applies loop fusion [59] to

16



        Appears in Journal of Parallel and Distributed Computing, September 1999do i = 1, N1do j = 1, N1do k = 1, N1U(i+j+k,k)=(V(j,k)*W(i,j))/2.0end doend doend dodo i = 1, N2do j = 1, N2do k = 1, N2U(i,j)=(V(k,j+k)+V(k,k))/2.0W(i,j)=0.0end doend doend dodo i = 1, N3do j = 1, N3do k = 1, N3X(i+j,j+k)=(W(i,j)+W(k,i+j)+U(j,k))/3.0end doend doend do
(a)

do u = 1, N1do v = 1, N1do w = 1, N1U(u+v+w,w)=(V(v,w)*W(u,v))/2.0end doend doend dodo u = -N2+1, N2-1do v = 1, N2do w = max(1-u,1), min(N2-u,N2)U(u+w,w)=(V(v,v+w)+V(v,v))/2.0W(u+w,w)=0.0end doend doend dodo u = -N3+1, N3-1do v = max(-N3+1,u-N3+1), min(N3-1,u+N3-1)do w = max(-u+1,-v+1,1), min(N3,N3-u,N3-v)X(u+2w,u+v+2w)=(W(w,v+w)+W(v+w,u+2w)+U(u+w,v+w))/3.0end doend doend do
(b)

Figure 7:(a) Original program.(b) Optimized program.

convert this to a perfect nest. Let, as before,Q andR be the inverses of the loop transformation matrices for the first

and second loop nest, respectively. Assume that�g = (�g ; �g), �h = (�h; �h), �k = (�k; �k), and�l = (�l; �l), represent

the memory layouts for arraysU , V , W andX , respectively. Thus, we have the following homogeneous system:0BBBB@ q13 q33 0 0 0 0 0 00 0 q33 q23 0 0 0 00 0 0 0 q13 q23 0 00 0 r13 + r23 r13 + r33 0 0 0 00 0 0 0 r23 + r33 r33 0 00 0 0 0 0 0 r13 + r33 r33 1CCCCA
0BBBBBBBB@ �g�g�h�h�k�k�l�l

1CCCCCCCCA = �0:
We first divide this system into two parts. For the first nest, we obtain the following target system: q13 q33 0 0 0 0 0 00 0 q33 q23 0 0 0 00 0 0 0 q13 q23 0 0 !0BBBBBBBB@ �g�g�h�h�k�k�l�l

1CCCCCCCCA = �0:
SettingQ to the identity matrix, we derive��k = (1; 0; 0; 1) and ��u = (�k; �k; �l; �l). For the second loop nest, we
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have  0 0 r13 + r23 r13 + r33 0 0 0 00 0 0 0 r23 + r33 r33 0 00 0 0 0 0 0 r13 + r33 r33 !0BBBBBBBB@ 1001�k�k�l�l
1CCCCCCCCA = �0;

which gives usr13 + r33 = 0, which in turn results inr13 = r33 = 0 andr23 = 1 as an example solution. This result

implies that(�k; �k) = (0; 1). With the hyperplane vectors found, we decide that arrayU should be row-major and

arraysV andW should be column-major. The memory layout for arrayX , however, remains unspecified, meaning that

it can be set to any layout. The reason for this flexibility is obvious from the transformed program given in Figure 6(b).

Notice that the innermost loop indexw in the second loop nest does not appear in the subscript functions of arrayX .

This means that arrayX has temporal locality in this loop nest, and spatial locality is of secondaryimportance. Our

method can be extended to detect that it might be preferable to choose diagonallayout for this array in order to exploit

the spatial locality in the second innermost loop (thev-loop). Such an approach might be useful, especially if the trip

count (the number of iterations) of the innermost loop is a very smallvalue. We will later discuss this issue in more

detail.

We finally give a slightly more complicated example to illustrate some of the problems that may occur. Consider

the program fragment in Figure 7(a) that contains three loop nests and four arrays exhibiting several access patterns.

Assume thatN1 � N2� N3. Assume further thatQ, R andP correspond to the inverses of the loop transformation

matrices for the first (the most costly), second and third (the least costly) nest, respectively; and�g = (�g ; �g), �h =(�h; �h), �k = (�k; �k), and�l = (�l; �l), represent the memory layouts for arraysU , V , W andX in that order. The

homogeneous system for this program is0BBBBBBBBBBBBB@
q13 + q23 + q33 q33 0 0 0 0 0 00 0 q23 q33 0 0 0 00 0 0 0 q13 q23 0 0r13 r23 0 0 0 0 0 00 0 r33 r23 + r33 0 0 0 00 0 r33 r33 0 0 0 00 0 0 0 r13 r23 0 00 0 0 0 0 0 p13 + p23 p23 + p330 0 0 0 p13 p33 0 00 0 0 0 p33 p13 + p23 0 0p23 p33 0 0 0 0 0 0

1CCCCCCCCCCCCCA
0BBBBBBBB@ �g�g�h�h�k�k�l�l

1CCCCCCCCA = �0:
As before, we first divide this system for each nest obtaining three targetsystems. For the first nest, assuming that no

loop transformation will be performed, we obtain�g = 1, �g = �1, �h = 1, and�h = 0. Notice that, although the

arrayW is referenced, no layout has been determined for it, because it has temporal locality in the innermost loop

under the given loop order.
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For the second loop nest, on the other hand, we have0B@ r13 r23 0 0 0 0 0 00 0 r33 r23 + r33 0 0 0 00 0 r33 r33 0 0 0 00 0 0 0 r13 r23 0 0 1CA0BBBBBBBB@ 1�110�k�k�l�l
1CCCCCCCCA = �0:

This system is already in the desired form. Solving it givesr13 = r23 = 1, andr33 = 0; and�k = 1, and�k = �1.

Lastly, for the third loop nest,0B@ 0 0 0 0 0 0 p13 + p23 p23 + p330 0 0 0 p13 p33 0 00 0 0 0 p33 p13 + p23 0 0p23 p33 0 0 0 0 0 0 1CA0BBBBBBBB@ 1�1101�1�l�l
1CCCCCCCCA = �0:

This system isnot in the desired form; therefore, we apply row operations [36] and obtain0B@ p23 p33 0 0 0 0 0 00 0 0 0 p13 p33 0 00 0 0 0 p33 p13 + p23 0 00 0 0 0 0 0 p13 + p23 p23 + p33 1CA
0BBBBBBBB@ 1�1101�1�l�l

1CCCCCCCCA = �0:
In solving this system, we end up with three equationsfp23 � p33 = 0; p13 � p33 = 0; andp33 � p13 � p23 = 0g:
Unfortunately, the last equation has aconflictwith the other two; therefore we ignore it. This gives us the solutionp13 = p23 = p33 = 1, which in turn results in�l = 1 and�l = �1. This means that arraysU , W andX should

have diagonal memory layout whereas the arrayV should should be row-major. The inverses of the transformation

matrices used for the second and the third nests areR =  1 0 10 0 10 1 0 ! ; andP =  0 0 11 0 10 1 1 ! ; respectively.

The transformed program is given in Figure 7(b). Notice that with the optimized memory layouts, the spatial locality

is very good except for the referenceW (v + w; u + 2w) in the third loop nest. This is due to the equation that we

ignored while optimizing this nest.

4.3 The most costly nest revisited

So far, we have assumed that the most costly loop nest will be optimizedusing data transformations alone. In this sub-

section, we first argue for this decision. Then we show how our approach canbe made more powerful by considering
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different alternatives for the most costly nest.

Given a loop nest, determining both loop and data transformations together is not trivial, as the problem requires

finding integer solutions to non-linear systems of equations (see Section 4). If the search spaces for data and/or loop

transformations are restricted, then an exhaustive search (although still costly) might be attempted [15]; but there

is no experimental evidence that such an approach is fast in practice. We, instead,insist on the most general loop

and data transformations. Having decided that we will not optimize themost costly nest with a combined (loop

plus data) approach, the choice is between either pure loop or pure data transformations. In general, we prefer data

transformations; because even if we choose loop transformations, we have to assume some fixed layouts for the

arrays referenced. Moreover, for a single loop nest, data space transformations can be more successful than loop

transformations since the latter is constrained by data dependences [27].

However, for some programs it might be the case that the best optimizedprogram2 is the one in which the most

costly nest is optimized using iteration space transformations alone. The reason is rather subtle. As mentioned previ-

ously, pure loop transformations can optimize temporal locality while pure data transformations cannot. If the most

costly loop nest contains a number of references for which temporal reuse can beexploited in the innermost loop, then

a pure loop based approach may result in a better code than a pure data based approach.

To solve this problem, our current approach is as follows. For the most costly nest, we consider two alternatives:

pure loopandpure datatransformations. Then we proceed for each version as explained in the previous sections, and

finally come up with two different optimized program. Finally, we calculate and compare the locality coefficients (see

Section 4.1) of these two programs, and select the one with the larger coefficient. Notice that once the most costly nest

is optimized, our approach will have some layout constraints for the remaining nests, and will be able to proceed to

optimize each of the remaining nests using our integrated approach that employs both loop and data transformations

as explained, taking the layout constraints into account. Figure 8 shows our approach. It is assumed that the nests are

ordered (from top to bottom) according to non-increasing values of theirweights (costs). Of course, it is possible to

generalize this approach and consider different (pre-determined, three or more) layout combinations for the first (most

costly) nest. However, our experience and experiments show that in practice it seems sufficient to consider only two

alternatives for this nest.

To see an example for which such an approach might be useful, consider the program shown in Figure 9(a). After

applying a global locality approach, either of the programs shown in Figures 9(b) and (c) can be obtained depending on

how the most costly (assuming first) nest is optimized. If only data transformations are used for the most costly nest,

the compiler decides row-major layout for arrayW ; then in the second nest, it interchanges two loops, obtaining the

code shown in Figure 9(b). The locality coefficient of this code is8, all of which originates from spatial locality. On

the other hand, if we optimize the first nest using loop transformations alone (assuming fixed column-major layouts),

we apply a loop interchange. The second loop nest is left as it is (see Figure 9(c)). As before, the locality coefficient

is 8, but this time the contribution from temporal locality is4. Everything else being equal, we prefer the program in

Figure 9(c) over the one in Figure 9(b) as it exploits more temporalreuse in the innermost loop.

It should be noted that given the fact that the global locality optimization problem is NP-complete [31], and that

in most programs the bulk of the execution time is spent in a couple of loop nests, we believe our approach is suitable

for optimizing locality for multiple loop nests.2Note that given the fact that the problem is NP-complete and we use a fast heuristic, our approach is not guaranteed to produce the best
transformations. We believe, however, that our approach ingeneral results in near-optimal solutions while retainingcompile time efficiency.
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Figure 8: Extended approach that considers two alternatives for the most costly nest.

4.4 Interaction between locality and parallelism optimizations

It is also important to study the interactions between locality optimization techniques presented in this paper and the

parallelism decisions that will be made by the compiler. This issue has two important sub-problems. First, the interplay

between cache locality andprocessor locality(i.e., ensuring that an access by a processor can be satisfied from local

memory) needs to be examined. It should be noted that our approach is oriented toward obtaining spatial and temporal

locality in the innermost loop. The impact of this is that when a block is brought into cache, it will be reused as much

as possible before being discarded into memory. This, in turn, results in savings in cache miss rates. However, it

should be noted that this behavior will also be observed in larger data granularity on NUMA (non-uniform memory

access) machines. For example, (assuming that our optimizations have been applied) when a processor brings a data

page into its local memory, due to stride one accesses, it will reuse it as much as possible; that is, our approach will

lead to a better processor locality in addition to better cache locality. The netresult of this is significant reductions in

TLB misses and page faults.

From the preceding discussion, it is possible to conclude that programs that exhibit good cache locality do not need

(aggressive) explicit data placement techniques on shared memory NUMA architectures. This argument is especially

true for architectures that support some kind of page migration policy (e.g., the SGI Origin2000). Because, in these

architectures, when a processor uses a data page frequently, the page is eitherreplicated onto that processor’s memory

or migrated into it. In either case, most of the remaining accesses will be local. Our experimental results on the Origin2000 also confirm this argument.3
Now an interesting question is that whether the programs that exhibit good processor locality need cache opti-

mization techniques. After all, there are a number of powerful automatic data distribution techniques published in the

literature (see for example [40, 5, 14, 21, 33, 47, 52] and the referencestherein), and for example, the SGI Origin gives

the programmer fine-grain control over data distribution, that can be optimized using any of the techniques mentioned.

Our answer to this question, however, isno; that is, just ensuring good processor locality does not imply good cache

locality. It is easy to see that a processor may access only local data, but if the access stride is large then the cache

locality will be poor. Our conclusion is that independent of the extentof processor locality, the compiler should try

to optimize for better cache performance. Put another way, having good processor locality (as a result of careful data

distribution) does not obviate the need for cache locality enhancing optimizations.3It is interesting to observe that the commercial compiler writers for the NUMA architectures also share our position. For example, the SGI
MIPSpro Fortran77 Programmer’s Guide [51] states that “Cache behavior continues to be the largest single factor affecting performance, and
programs with good cache behavior usually have little need for explicit data placement.”
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        Appears in Journal of Parallel and Distributed Computing, September 1999do i = 1, Ndo j = 1, NU(j)= � � �V(j)= � � �W(i,j)= � � �end doend dodo j = 2, Ndo i = 2, NW(i,j)=W(i,j-1)+W(i-1,j)+U(j)+V(j)end doend do
(a)

do u = 1, Ndo v = 1, NU(v)= � � �V(v)= � � �W(u,v)= � � �end doend dodo u = 2, Ndo v = 2, NW(u,v)=W(u,v-1)+W(u-1,v)+U(v)+V(v)end doend do
(b)

do u = 1, Ndo v = 1, NU(u)= � � �V(u)= � � �W(v,u)= � � �end doend dodo u = 2, Ndo v = 2, NW(v,u)=W(v,u-1)+W(v-1,u)+U(u)+V(u)end doend do
(c)

Figure 9:(a) Original program(b-c) Optimized programs.

The second important problem is understanding the interaction between locality optimizations and loop-level par-

allelism decisions. It is well known that obtaining large granularity parallelism (e.g., parallelizing only the outermost

loops) is beneficial for shared memory parallel architectures as it reduces synchronization and coherence activity

[5, 53]. Our technique described so far also helps compiler to obtain largegranularity parallelism as follows. We

note that our approach attempts to optimize locality in the innermost loops using a proper mix of loop and data trans-

formations. This approach generates—as a byproduct—outer loops that carryno reuse (hence no data dependence)

and that are perfect candidates for parallelization. This is very desirable as otherwise parallelizing a loop that carries

reuse is one of the main causes for inter-processor data sharing [39]. Intuitively, the more aggressive the compiler is

in bringing the loops carrying reuse into innermost positions, the less the degree of true and false sharing. In fact, in

our experiments we adopt this strategy; that is, given a loop nest we first apply locality optimization techniques, and

after the new loop nest is obtained, we try to parallelize the outermost loops only. This strategy succeeds in general,

due to the fact that after the locality transformations the outermost loops do not carry data dependences; therefore,

parallelizing them does not cause excessive inter-processor communication.

4.5 Extension to higher dimensional arrays

We now briefly discuss how the optimization process handles the arrays ofthree or higher dimensionality. We start

with the following result.

Result 1 Let C be the layout matrix for a reference (to anm dimensional array) whose access matrix isL and let�qn be the last column of the inverse of then � n loop transformation matrix. In order to have spatial locality inthe

innermost loop, the condition CL �qn = �0
should be satisfied. Here,C is (m � 1)�m, L ism� n, and �qn is n-dimensional; consequently, the right hand side

is an(m� 1) dimensional zero-vector.

Proof 1 Let �I and �Inext be two ‘consecutive’ iteration vectors ‘after’ the transformation; that is, �Inext � �I =(0; � � � ; 0; 1)T : Also letT = Q�1 = [ �q1; �q2; � � � ; �qn]�1. Then the array elements accessed by�I and �Inext areLQ�I
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Table 1: Programs used in our experiments. TheSIZE column gives (in terms of double precision elements) the
maximum dimension size of any array in the respective program whereas theITER column shows how many times the
outermost timing loop has been iterated for each code.PROGRAM SOURCE SIZE ITER NUMBER OF ARRAYSmxm Spec92/Nasa7 980 20 three 2-Dadi Livermore 2; 048 2 three 1-D, three 3-Dvpenta Spec92/Nasa7 920 20 seven 2-D, two 3-Dbtrix Spec92/Nasa7 150 25 twenty-five 1-D, four 4-Dsyr2k BLAS 2; 048 1 three 2-Dhtribk Eispack 1; 200 1 five 2-Dgfunp Hompack 2; 048 20 one 1-D, five 2-Dtrans NWChem 4; 000 10 two 2-D
Table 2: Different versions of the codes used in our experiments. For the LOP version we used the technique given
by Li or let the native compiler to derive an order whereas for theDAT version we used an approach that uses only
data transformations to optimize spatial locality (without directly exploiting temporal locality). TheINT version is the
version that is obtained by applying our integrated technique explainedin this paper.VERSION BRIEF DESCRIPTIONCLM original code: fixed column-major memory layout for all arraysROW original code: fixed row-major memory layouts for all arraysLOP loop-optimized version: no memory layout transformationDAT layout-optimized version: no loop transformationINT our approach : integrated loop & data layout transformations

andLQ�Inext, respectively. In order to have spatial locality in the innermost loop, the conditionCLQ�I = CLQ�Inext
should hold. Solving this last equation, we getCLQ(�Inext � �I) = �0) CLQ(0; � � � ; 0; 1)�1 = �0) CL �qn = �0: 2

Notice that, depending on the loop trip counts, it might be desirableto exploit the locality in the second innermost

loop as well. This corresponds to determining the second rightmost column ofQ in addition to its rightmost column.

It is easy to show that in this case the conditionCL[�qn�1; �qn] = [0] should be satisfied. Here the right hand side zero

matrix is of size(m� 1)� 2. This result can easily be generalized to the outer loops as well.

We should stress that there is a subtle problem in determining both�qn�1 and �qn together. It is known from linear

algebra [36] that if we determine only�qn and if the greatest common divisor (orgcd) of its entries is one (which is

usually the case), then it is always possible to complete this�qn to a unimodular matrixQ (and, of course,T will

also be unimodular). If we can achive the same objective (which might be obtaining a target amount of reuse in the

innermost loop) with a unimodular matrix instead of a non-unimodular matrix, that is good; because, in general, code

generation after unimodular transformations is easier and the resultant code is more efficient than the non-unimodular

case [39]. However, if we determine both�qn�1 and �qn, the resultantQ matrix (after completion) may or may not be

unimodular. This tradeoff between aggressive optimization in multiple loop levels, and the ease and efficiency of code

generation is an interesting one; but, given current optimizing compiler technology it seems difficult to resolve it fully

at compile-time. Notice that another way of exploiting locality in outer loops is to apply tiling. We will briefly discuss

the interaction between tiling and our optimization technique in the next section.
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Table 3: Performance summary of theCLM (original) version oneightprocessors. TheCYCLES column gives the total
processor cycles spent in executing the code. TheLOADS andSTORES columns present the number of memory load
and store operations.PC, SC, andTLB refer to primary cache, secondary cache, and TLB misses, respectively. TheTIME column gives the total execution times inseconds. All other entries are inmillions.PROGRAM CYCLES LOADS STORES PC SC TLB TIMEmxm 39; 397 4; 953 712 192 39:6 0:34 44:39adi 16; 041 572 184 144 73:6 42:9 63:87vpenta 18; 266 6; 240 244 244 14:2 69:0 24:31btrix 13; 672 4; 818 41:4 12:8 2:45 8:86 22:11syr2k 55; 131 8; 246 310 865 244 211 69:13htribk 2; 257 639 140 175 1:94 20:9 16:76gfunp 7; 330 800 162 267 26:3 0:15 19:28trans 16; 867 2; 188 663 207 17:4 171 17:20
5 Experimental results

In this section we present performance results to demonstrate the impact of our global locality optimization approach.

Our experimental platform is an eight node SGI Origin2000 at the Center for Parallel and Distributed Computing

at Northwestern University. This machine uses195MHz R10000 processors, each with a32KB L1 data cache and

a 4MB L2 unified cache. The processors can fetch and decode four instructions per cycle and can run them on five

pipelined functional units. Both caches are two-way associative and non-blocking. Up to four outstanding misses

from the combined two levels of cache are supported. The R10000 processor dynamically schedules instructions

whose operands are available in order to hide the latency of cache misses. For the L1 cache hits, the latency is2
cycles; and for L1 misses that hit in the L2 cache, the latency is8 to 10 cycles. The non-local accesses take at most20
cycles.

We experiment with eight programs from benchmarks and libraries whose important characteristics are listed in

Table 1. TheSIZE size column gives the maximum dimension size of any array used in the program. In order to

fully investigate the impact of the locality optimizations the dimension sizes are increased from their default values.

However, some hard-coded dimension sizes (e.g., with a fixed value of4 or 5) are not modified as modifying them

would require a complete understanding of what the applications perform. TheITER column, on the other hand,

shows how many times the outermost timing loop is iterated for each code. Note that in order to see the impact of the

additional power provided by integration of loop and data transformations on well-optimized codes we also include

two programs from two libraries, Eispack and Hompack.

For each program in our experimental suite, we perform experiments with five differentversionsbriefly summa-

rized in Table 2. The first two versions,CLM andROW are the original programs; only the layouts of the arrays are

different. In theCLM version, all the arrays have column-major memory layout (as in Fortran)while in theROW version,

all the arrays have row-major memory layout (as in C). For theLOP version we use the better of the results from the

technique given by Li [39] and thenativeoptimizing compiler. For theDAT version, we apply a technique proposed in

[27] that is based onpuredata transformations. In effect, for the programs in our experimental suite, other pure data

transformation techniques proposed in the literature such as O’Boyle and Knijnenburg [44] and Leung and Zahorjan

[38] result in the same output codes as ours. Finally, theINT version is the one that is obtained by applying our

integrated technique explained in this paper.

We first hand-coded the C versions of the programs in our experimental suite. Then the programs were transformed

automatically for each specific version using a compiler front-end built ontop of the Omega library [32]. Then, the
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output C codes are compiled using the native C compiler using the-O2 option. We have noted that applying our

integrated approach increased the overall compilation time by at most16% (not including the time spent in profiling

as in these codes a simple static analysis was sufficient to order the the loop nests according to their costs). For each

nest in the programs, we parallelized only the outermost loop that does not carry any data dependence. Note that this

is a locality-based parallelization strategy; that is, we first optimize for locality and then parallelize the outermost loop

in the resultant nest. We modified this strategy only for theLOP version in the cases where the native compiler derives

a better code balancing locality and parallelism. We report results showingthe numbers of cycles, loads, stores as

well as the primary cache, secondary cache, and the TLB misses. Unless stated otherwise, all the reported numbers

arecumulative; that is, summed over all the processors involved. Table 3 presents the performance summary for the

original version (CLM) of each code oneightprocessors. TheTIME column gives the total execution time in seconds.

The figures given in this table (except those under theTIME column) are in millions and form a base for comparison

of the figures to be presented shortly.

We first show in Figure 10 the static improvements achieved by our approach. This figure shows for each version of

each code the ratio of the locality coefficient (see Section 4.1) to the total number of references. This ratio is between1 and0, depending on whether the code exhibits good locality in theinnermostloop or not. We note that in all cases

(exceptbtrix) theINT version optimizes all references in the programs for either spatial or temporal locality in the

innermost loop. Inbtrix, conflicting access patterns to the same array prevent our technique from exploiting locality

fully for all the nests. We note that theDAT version is also quite successful. These static results, however, are not very

conclusive as it may be important to distinguish between spatial and temporal locality and to distinguish between sizes

of the arrays with locality. Nevertheless, the results show that our approach optimizes the references successfully for

better locality.

Next we present results oneight processors of the Origin. Except for megaflop rates (which are obtained using

timing routines in the program) all the other numbers to be presented are obtained usinghardware performance

counterson the machine. Figure 11 shows the overall processor cycles for each program. The results shown in this

figure and the results to be presented in the following are allnormalizedaccording to theworst–performing version

(whatever version it might be) for each program. It is easy to see from Figure 11 that theINT version is quite successful,

and in all cases achieves the best results. Figures 12 and 13, on the other hand, give the normalized number of load and

store operations. The results reveal that as compared to the original (CLM) version in all cases our approach reduces the

number of loads, and only in one program it increases the original numberof stores. These results are good, because,

locality optimizations in some cases can increase the number of load/store operations as most of them are oriented

for optimizing spatial locality rather than temporal locality. For instance, the best performing loop order known for

the classicali; j; k matrix-multiply nest increases the original number of stores substantially (see [39]). As explained

earlier, our approach is able to take temporal locality into account as well.

Figures 14, 15 and 16 present results about the memory behavior of the different versions. In short, the improve-

ment with our locality enhancing technique originates fromall levels of memory hierarchy; that is, our approach

improves cache as well as processor locality. From Figure 14 we see that in programs likevpenta, syr2k, andbtrix, we achieve impressive reductions in primary cache misses. As compared to theDAT version, our approach

increases the primary cache misses only inadi (in this code the benefit comes from the reduction in the secondary

cache misses). We should also note that although theDAT version is successful, theINT version outperforms it with

a large margin in codes likevpenta, btrix, andgfunp. As far as the secondary cache misses are concerned, our

approach achieves the best result in four out of eight programs.

The impact of our approach on TLB misses is very significant. As can be seen from Figure 16, for the first four

codes in our experimental suite, our approach eliminates almost all TLB misses, confirming our argument on processor

locality in Section 4.4. Notice, however, that this picture of the TLB misses can be misleading; as the TLB misses are
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Figure 10: Summary of the static performance of different versions. This figure shows (for each version of each code)
the ratio of the locality coefficient to the total number of references. This ratio is between1 and0, depending on
whether the code exhibits good locality in the innermost loop or not. We note that in all cases (exceptbtrix) theINT
version optimizes all references in the programs for locality in the innermost loop.
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Figure 11: Processor cycles. The results shown are normalized according tothe worst–performing version for each
program. Note that theINT version is quite successful, and in all cases achieves the best results.

not in general as numerous as the cache misses (see Table 3) and on the Origin that we use the non-local misses can

take at most twice time as the local misses. Moreover, R10000 is a very complex processor and a lot of misses can get

overlapped with the ongoing computation activity within the processor. Therefore, it is important to have a look at the

overall performance depicted in Figure 17.

In Figure 17 we present the absolute megaflop rates of our programs forthe different versions on two processors.

As compared with the original code (CLM), the performance of theLOP version degrades in two cases, and results in

the same performance as the original in two others. TheDAT version is more successful and degrades the performance

in only one code, and results in the original code in another. It is important to see that neitherLOP norDAT dominates

the other, and our approach (INT) achieves the best results for all programs. In three of the codes (vpenta,syr2k, andtrans), theDAT version obtains the same performance as ours; and only in theadi code,LOP andINT generates the

same output code. These results are promising and we believe that our approach is more successful than the current

linear transformation techniques for optimizing locality.

We now study scalability using two example programs:btrix andtrans. The reason that we use these two

programs is that they demonstrate two distinct representative behaviors that we have observed during the experiments.
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Figure 12: Memory loads. The results shown are normalized according to the worst–performing version for each
program. As compared to the original (CLM) version, our approach (INT) reduces the number of loads in all programs.
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Figure 13: Memory stores. The results shown are normalized according tothe worst–performing version for each
program. As compared to the original (CLM) version, our approach (INT) increases the number of stores in only one
program.

mxm adi vpenta btrix syr2k htribk gfunp trans
0.0

0.2

0.4

0.6

0.8

1.0

pr
im

ar
y 

ca
ch

e 
m

is
se

s

CLM

ROW

LOP

DAT

INT

Figure 14: Primary cache misses. The results shown are normalized accordingto the worst–performing version for
each program. As compared to theDAT version, our approach increases the primary cache misses only inadi. Note
that although theDAT version is successful, theINT version outperforms it with a large margin in codes likevpenta,btrix, andgfunp.
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Figure 15: Secondary cache misses. The results shown are normalized according to the worst–performing version for
each program. Our approach achieves the best result in four out of eight programs.
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Figure 16: TLB misses. The results shown are normalized according to the worst–performing version for each pro-
gram. The impact of our approach on TLB misses is very significant. For thefirst four codes in our experimental suite,
our approach eliminates almost all TLB misses, confirming our argument on processor locality in Section 4.4.

In other words, the scalability of any one of the remaining codes is similar to that of one of these two programs.

Figure 18(a) shows the performance ofbtrix on different number of processors. The y-axis shows (in millions) the

cyclesper processor. The problem size is150 as before, but we run only a single iteration. It can be observed from the

figure that the performance of the original code (CLM) is not stable. The performance ofROW andDAT is very good on a

single node; but when the number of nodes is increased, their performance degrades drastically due to false sharing. In

fact, this underlines an important limitation of pure data transformations: while they optimize locality on single node

very well, since they can not take false sharing (or other parallelism-related factors) into account they may perform

very poorly on multiple node case. The performance of theLOP version is good but starts to degrade beyond six nodes.

Finally, we see thatINT performs well and outperforms the rest of the versions for all processor sizes. We expect this

behavior to be prevalent in larger number of nodes as well. Figure 18(b), on the other hand, shows the performance of

thetrans code with2048� 2048 double precision arrays. This illustrates the second kind of behaviorthat we have

observed in our experiments: the original program scales relatively well.In that case, all versions scale well and the

optimized code (INT) outperforms the original version with almost a fixed margin for each processor size. It should

also be mentioned that previous combined (loop+data) transformation techniques use a limited set of loop as well as

data transformations (e.g., [31] and [15]), and cannot optimize the programs that require diagonal memory layouts as
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Figure 17: MFLOPS rates. Note that neitherLOP nor DAT subsumes the other, and our integrated approach (INT)
achieves the best results for all programs.

in syr2k andgfunp. For the remaining programs in our experimental suite, we can expect the approaches proposed

in [15] and [31] to generate similar results. However, since how these approaches handle global locality optimization

problem is not described fully, a complete comparison is not possible.

Finally, we discuss briefly the interaction between our locality optimization technique and tiling, which is a com-

bination of strip-mining and loop permutation [58, 56, 43]. In its most general form tiling replaces ann-deep loop

nest with a new loop nest of depth2n. The outermostn loops enumerate individual tiles whereas the innermostn
loops execute the iterations of a given tile. It is well-known that tiling can improve cache locality for a given loop nest

significantly by exploiting the reuse in outer loops [43]. There are,however, several problems with tiling. First, like

other loop based transformation techniques, tiling is constrained by data dependences; that is, it is not always legal to

tile a given loop nest. Second, it is not very easy to select a good tile size.Previous studies have shown that the perfor-

mance of tiling isvery sensitiveto the tile size and a wrong tile size in fact can degrade the performance [56, 17, 37].

In that regard, we believe that our approach is a suitable step prior to tiling. This is because, as observed by Li [39],

improving spatial locality before tiling improves the inter-tile locality thereby reducing the sensitivity of tiling to the

tile size. Therefore, our optimization strategy helps tiling to achievebetter performance by making its performance

almost independent from the tile size. In this respect, we go one step further from Li, though. Because, since we use

data transformations as well, our linear locality optimization approach ismore aggressive than Li’s. Consider now

Figure 19 that shows the performances of twotiled programs on a single node of the Origin with different tile size

selections. The codes considered are the classicali; j; k matrix-multiply routine andtrans. For the matrix-multiply

code we use1; 024� 1; 024 double precision arrays. Note that tile size =1; 024 corresponds tono tiling. It is easy

to see from Figure 19(a) that the performance of the naive tiling (i.e., without first applying locality optimizations)

is very sensitive to the tile size. While the performance is good until tile size = 128, beyond that size it degrades

drastically. This observation is consistent with Li’s findings [39]as well as Lam et al.’s [37] suggestion of using small

tile sizes when precise performance analysis is not available. When we first optimize spatial and temporal locality and

then tile the loops, however, the picture totally changes. All the tile sizes between16 and512 behave almost similar

and equally good. Of course, the tile sizes between512 and1; 024 are not reasonable given the fact that the arrays are1; 024� 1; 024. The moral of the story is that optimizing locality before tiling almost obviates the need for analysis to

select a suitable tile size. We also stress that the analysis for tile size selection can be quite costly. For example, Wolf

et al. [57] derive a cost formula as a function of the unknown tile sizes. And then they attempt to select a tile size that

minimizes this function. Figure 19(b) shows the performance of thetiled versions of the original (CLM) and optimized
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(INT) versions of thetrans code. The arrays sizes are4; 096� 4; 096 double precision elements. Although for this

example tiling does not seem very beneficial in general, it is important to note two points. First, for theCLM version,

as in the matrix-multiply code, beyond a certain tile size (32) the performance starts to degrade (not so drastically,

though) whereas the tiledINT version’s performance is quite stable. Secondly, in contrast to the matrix-multiply nest,

no tiled version ofCLM achieves the same performance as theuntiledINT (i.e., tiles size =4; 096) code. We believe that

these two example underline the importance of locality optimizationsbefore tiling. Lastly, by increasing the number

of loops, tiling increases the run-time overhead of nest execution. Ourapproach is useful in that respect too as we try

to place all the spatial locality in the innermost loops and obviate the need for tiling the outermost loops that do not

carry any type of reuse (in the examples mentioned above, however, we tiledall the loops). That is, our approach helps

a compiler to apply tiling more judiciously. A complete treatment of the interplay between locality enhancing (linear)

techniques and tiling is considered as possible future work.

6 Related work

Several researchers have focused on the problem of exploiting memory hierarchy by restructuring programs. A ma-

jority of these restructuring techniques is based on iteration space transformations.

McKellar and Coffman [42] performed one of the first studies on program transformations for locality. They

showed that by using sub-matrix operations it is possible to obtainimpressive speedups over the original matrix codes.

Later Abu-Sufah et al. [1] focused on automating page locality improving techniques within a compilation framework,

and discussed a transformation technique calledvertical distribution, which is very similar to tiling.

In his dissertation, Porterfield [46] uses loop transformation techniques such as skewing and tiling. His main

objective is to model fully-associative caches with a least recently used (LRU) policy. Like Gannon et al. [20], he

focuses on estimating the cache miss rates for a given loop nest. These approaches, however, do not propose how to

reach the best transformed version, and imply that a number of candidate solutions should be evaluated. The works of

Ferrante et al. [19] and Sarkar et al. [49] can also be considered to belong to this category.

Wolf and Lam [56] describereuse vectorsand explain how they can be used for optimizing cache locality. Their

approach involves first optimizing nest-locality using uni-modular loop transformations and then applying tiling to the

loops that carry some type of reuse. Their method uses a sort of exhaustive search and in some cases can only work with

the approximate reuse vectors. Li [39] also considers reuse vectors but determines an appropriate loop transformation

matrix in one go rather than resorting to an exhaustive search. He shows that optimizing spatial locality before tiling

lessensthe sensitivity in performance of the tiling to the tile size. NeitherLi [39] nor Wolf and Lam [56] consider

memory layout transformations; and since a loop transformation to improve locality of a reference can sometimes

adversely affect the locality of another reference in the nest, both approaches mayend up with unsatisfactory solutions

for a given loop nest.

The cost of the methods mentioned is partly eliminated by a simple heuristic used by McKinley et al. [43]. Arguing

that the general non-singular loop transformations may not be necessary for many codes, they propose a method that

employs a simple cost formulation and considers loop permutation, loop reversal, loop fusion, and loop distribution

(fission). In addition to having the disadvantages of an approach that isbased on loop transformations alone, since

they do not consider general non-singular loop transformations theymay not be able to optimize some loop nests for

which loop permutation does not work (e.g., thesyr2k code from Blas).

Considering the fact that linear loop transformations may be insufficient for some loop nests, some researchers

have focused on loop tiling [58, 37] which in most cases can be accomplishedvia a combination of strip-mining and

loop interchanging. There are however a number of problems with tiling as explained in the previous section. It
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has been observed by Li [39] that in most cases applying locality enhancing linear loop transformations before tiling

improves its performance, in some cases significantly. Our own experiments reported in the previous section also

confirm Li’s findings and underline the importance of optimizing spatial locality before tiling.

Recently some researchers have considered data layout transformations that are simply restructuring of multi-

dimensional arrays in memory as an alternative to the loop transformations. Jeremiassen and Eggers [25] use data

transformations for eliminating the effect of false sharing, whereas Ju and Dietz [26] use them for reducing the coher-

ence activity on shared memory multiprocessor systems.

More recent work on data transformations is on optimizing cache locality.Leung and Zahorjan [38] present a

technique that is based on non-singular data transformation matrices. They show that data transformations may be

successful where loop transformations fail either because of conflicting requirements between different references to

different arrays or simply because data dependences prevent the desired loop transformation. They also handle the

problem of minimizing the extra memory requirements induced by a givendata transformation. In this paper, we have

not attempted to attack the problem of minimizing the extra space;4 however, if necessary, we can use their techniques.

In comparison, our approach uses both loop an data transformations and ismore powerful than the one proposed in

[38].

O’Boyle and Knijnenburg [44] also argue for data transformations. Apart from using it for optimizing spatial

locality, they consider the use of data transformations for data alignment and page replication problems on parallel

machines. Their main concern, however, is to handle code generation after a datalayout transformation.

Kandemir et al. [27] also propose a layout optimization technique. They use layout matrices to represent the

memory layouts of multi-dimensional arrays. In this paper, we show that how this explicit representation of layouts

helps to combine loop and data transformations in a unified framework.

Anderson et al. [4] propose a transformation technique that makes the data elements accessed by the same processor

contiguous in the shared address space. Their method is mainly for shared-memory parallel architectures. They use

only permutations (of array dimensions) and strip-mining for possible data transformations. Our work is more general

as we consider a much larger search space for possible layout transformations. As far as the multiprocessors are

concerned, both approaches can be useful for reducing false sharing.

There are two major problems with those techniques based onpuredata transformations. First, data transforma-

tions cannot optimize for temporal locality which in turn may lead to poorregister usage. Second, the impact of a

layout transformation is global meaning that it affects all the references (some perhaps adversely) to that array in all

the nests (assuming that no dynamic transformation is considered). Given large number of nests, it might be very dif-

ficult to come up with a data layout that satisfies as many nests as possible. Leung and Zahorjan [38] and Kandemir et

al. [27] handle this multiple-nest problem by enclosing all the loop nests with an imaginary outermost loop that iterates

only once. Unfortunately, this technique may not be very successful when there are conflicting references to thesame

array. Since our approach uses iteration space transformations as well, we can handle temporal locality too. Moreover,

we show how to eliminate the potential negative impact of data transformations by using loop transformations.

Yet another approach is to apply a combination of loop and data transformations for enhancing locality as we

have done in this paper. Cierniak and Li [15] use this approach. Since they mainly focus on a single loop nest and the

general problem exhibits non-linearity, they restrict search spaces for possible loop and data transformations, and resort

to exhaustive search in this restricted search space. The data transformations they consider are dimension permutations

only (e.g., converting from column-major to row-major); therefore, they cannot optimize banded matrix applications

fully for which diagonal layouts are the most suitable. The loop transformation matrices that they consider, on the

other hand, are the ones that contain only ones and zeroes.4Because, the extra memory space required by our approach wasnever more than8% of the total size of the arrays in the program.
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Figure 18: Scalability of(a) btrix with a single iteration of timing loops and a problem size of150, and(b) trans
with 10 iterations of the timing loop and a problem size of2; 048.

In [30] and [31], the authors presented another approach to combine loop and data transformations. That approach

does not restrict possible loop transformations; but, like Cierniak and Li [15], uses only dimension permutations as

possible data transformations; therefore, the approach presented in [30] (for sequential machines) and [31] (for parallel

machines) cannot optimize the nests whose arrays require diagonal memory layouts for the best cache locality.

An important drawback of the works in [15], [30] and [31] is that they useexhaustive searchto find the solutions;

and they cannot handle skewed (diagonal) memory layouts that are very useful for banded matrix applications. The

approach presented in this paper has no restriction on layout transformations, and finds the solution without doing

exhaustive search. The search spaces that we consider for loop and data transformations are very general: For loop

transformations we use general non-singular linear transformation matrices, and for memory layouts we can choose

any optimal layout that can be expressed by hyperplanes. Lastly, rather than limiting scope to a single loop nest we

focus on a sequence of loop nests and propagate memory layouts across loop nests.

Finally, we note that the global memory layout determination problem bears similarities to the automatic data

distribution problem [5, 47, 21, 52] for distributed-memory machines. Unlike data distribution which is applicable

only for parallel machines, memory layouts affect the performance of uniprocessor and multiprocessor machines. In

addition, good global memory layouts influence decisions on data distribution.

7 Conclusions

In this paper we have described a unified global approach for optimizing locality given a series of loop nests. During the

optimization process, when considering a loop nest, our approach first applies a loop transformation to it to satisfy the

layout requirements for the references to those arrays whose layouts havealready been determined. It then determines

suitable memory layouts for the remaining arrays referenced in the nest. For the first nest to be optimized, however, we

use both loop and data transformations. Although the general problemappears to be difficult, we have shown in this

paper that the whole process for a single nest can be formulated in a mathematical framework which is based on explicit

memory layout representations. We have also shown that our approach is more successful than existing locality-

enhancing (linear transformation) techniques whether they are pure loop-based, pure data-based, or a combination of

the two.

A detailed study of the interaction between our solution and tiling is inprogress. Along these lines, we plan to work
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Figure 19: Impact of tile size on the performance.(a) matrix-multiply with 1; 024� 1; 024 double precision arrays,
and(b) trans with 4; 096� 4; 096 double precision arrays.

on several related problems such as evaluating extensively the relative performances of tiled code versus the resultant

code from our approach, and comparing our approach to a relatively new form of tiling, namely data-centric tiling

[35]. In addition, we plan to investigate the effectiveness ofblockeddata layouts—in which the elements accessed by

a tile are stored contiguously in memory—in improving the cache performance further. Work is also in progress on

extending our techniques to optimize locality across program modules.

We believe that the experimental results reported in this paper are promising and an integrated approach that

applies both loop and data transformations in concert will help optimizing compilers in exploiting the deep memory

hierarchies found in current parallel architectures to the fullest extent possible.
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