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Abstract

The HSQC NMR spectrum of 15N-cisplatin in cell growth media shows resonances corresponding to the monocarbonato complex,
cis-[Pt(NH3)2(CO3)Cl]�, 4, and the dicarbonato complex, cis-[Pt(NH3)2(CO3)2]�2, 5, in addition to cisplatin itself, cis-[Pt(NH3)2Cl2], 1.
The presence of Jurkat cells reduces the amount of detectable carbonato species by (2.8 ± 0.7) fmol per cell and has little effect on species
1. Jurkat cells made resistant to cisplatin reduce the amount of detectable carbonato species by (7.9 ± 5.6) fmol per cell and also reduce
the amount of 1 by (3.4 ± 0.9) fmol per cell. The amount of detectable carbonato species is also reduced by addition of the drug to med-
ium that has previously been in contact with normal Jurkat cells (cells removed); the reduction is greater when drug is added to medium
previously in contact with resistant Jurkat cells (cells removed). This shows that the platinum species are modified by a cell-produced
substance that is released to the medium. Since the modified species have been shown not to enter or bind to cells, and since resistant
cells modify more than non-resistant cells, the modification constitutes a new extracellular mechanism for cisplatin resistance which mer-
its further attention.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

cis-Diamminedichloroplatinum(II), cisplatin (1; Fig. 1),
has been used for decades for the treatment of neck, testic-
ular, and other types of cancer [1–3]. A serious shortcom-
ing with this and other drugs for treating cancer is that
the tumor ultimately becomes resistant to the agent, forcing
the discontinuance of chemotherapy. In the case of cis-
platin, resistance mechanisms involving interception of
the drug by cellular thiols, repair of platinated genomic
DNA, rapid efflux/reduced uptake, and other processes
are believed to be responsible for the resistance developed
in cisplatin therapy [4–10]. A common feature of all known

resistance mechanisms is that they are associated with the
cell itself and not the medium outside the cell.

Earlier we used a sensitive technique, heteronuclear sin-
gle quantum coherence NMR (HSQC NMR) and 15N-
labeled cisplatin to study the effects of Jurkat cells on the
speciation of platinum in the culture medium outside the
cell [11,12]. We found that the platinum species, cis-
[Pt(NH3)2(CO3)Cl]�, 4, Fig. 1, which forms in culture med-
ium from the monoaquo/hydroxo species 2/3, is modified
by Jurkat cells in a manner which depends on the number
of cells present in the medium. In subsequent studies [13]
we showed that each Jurkat cell can modify 2.8 fmol of 4

within �0.6 h and that the modified platinum does not
bind to the cell. Because there is only a slow decrease
(�1.1 ± 0.4 lM h�1) in the amount of unmodified 4

remaining in the medium after 1 h, the cells subse-
quently lose their ability to modify 4. We suggested that
these results are consistent with a hitherto undocumented
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extracellular detoxification mechanism in which the cells
rapidly modify a portion of 4 in the culture medium.
Subsequent work by us [14] with the anticancer drug carbo-
platin, [Pt(NH3)2(CBDCA-O,O0)], where CBDCA is cyclo-
butane-1,1-dicarboxylate, showed that Jurkat cells can
affect the rate of disappearance of the HSQC NMR peak
for carboplatin in a manner which is dependent on the
number of cells present in the culture medium. Since the
Jurkat cells take up only a small amount of the platinum
present in the medium (<1%), the disappearance of the
HSQC NMR peak of carboplatin cannot be due to absorp-
tion of the drug by the cells. The study suggested that the
cells chemically modify carboplatin converting it into to
an NMR-silent species.

Suspecting that these observations may indicate a new
resistance mechanism for the platinum drugs that operates
outside the cell, we made Jurkat cells resistant to cisplatin
and used HSQC NMR to determine if and to what extent
resistant cells can also affect the distribution of platinum
species in the culture medium. In this report we show that
resistant Jurkat cells are much more effective than normal
Jurkat cells in modifying the monocarbonato complex 4

and the dicarbonato complex 5, and that they can also
modify cisplatin, 1. The modifications take place even
when the cells are removed from the medium, showing that
the platinum-modifying substance is released by the cells to
the medium so that the modification takes place outside the
cell. These observations are consistent with a new extracel-
lular resistance mechanism for cisplatin.

2. Materials and methods

2.1. Cisplatin resistant jurkat cells

Resistant Jurkat cells were prepared by exposing non-
resistant Jurkat cells to increasing concentrations of
cisplatin (Bedford Laboratories, Bedford, OH), in the con-
centration range, 1–50 lM, over the course of 5 months.
The cells were maintained in suspension culture under a

fully humidified atmosphere containing 5% CO2 at 37 �C.
The medium was RPMI-1640 supplemented with 10% (v/
v) FBS, 100 lg/mL streptomycin, 100 IU/mL penicillin,
and 2.0 mM L-glutamine. For concentrations of cisplatin
in the range, 1–10 lM, cells were exposed to drug for
�12 h, after which time, the cells were sedimented
(200 � g) for 5 min, the drug-containing medium was
removed and the cells were resuspended in fresh medium.
These cells were allowed to recover for 3–4 days before
exposure to a higher concentration of drug. For drug con-
centrations greater than 10lM, exposure of cells to drug
was 2 h, followed by a 3–4 day recovery period before the
next exposure to drug. Viabilities were assessed by light
microscopy using a hemacytometer under standard trypan
blue staining conditions [15].

2.2. 1H–15N HSQC NMR

The details of the 1H–15N HSQC NMR measurements
involving 15N-labeled were published previously [11].
Briefly described, the NMR experiments were two-dimen-
sional, 1H-15N, with inverse detection and decoupling dur-
ing acquisition without spinning the sample. Each NMR
experiment involving 65 lM drug in the culture medium
was 62 min (48 scans), giving 103 data points in the proton
dimension and 64 t1 values. The time for the first NMR time
point (t = 0) was taken as the NMR data collection time
plus �15 min for temperature equilibration divided by 2
or�0.63 h after the addition of labeled drug to the medium.
The stock solution used in these experiments, which con-
tained �3 mM 15N-labeled cisplatin in 154 mM NaCl, was
allowed to reach equilibrium 24 h before addition of drug
to the medium containing the cells. NMR data for a partic-
ular number of cells was collected as a function of time for
the duration of the 10 h experiment, and plots of the con-
centrations of species present as a function of time con-
structed. The NMR experiments involving 400 lM drug
were also 10 h in length. In these experiments, spectra were
measured every 16 min for the first 4 h and every hour for
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the remaining 6 h. For these experiments �3 mM stock
solutions of labeled drug in either 154 mM (normal saline)
or 105 mM NaCl (chloride ion concentration of RPMI)
were equilibrated for 24 h prior to their use.

The HSQC NMR spectra were collected in a capped
tube at 37 �C using a Bruker DRX500 AVANCE spec-
trometer (15N; 50.646 MHz) equipped with a 5-mm triple
axis probe. The NMR chemical shifts were referenced
externally to 1 M (15NH4)2SO4 in 95%, 5% H2O/D2O,
which was acidified to pH 1 by addition of H2SO4.
The 1H chemical shifts were referenced to external
Me3SiCD2CD2CO2Na, 2,2-dimethyl-2-silapentane-5-sulfo-
nate sodium salt, in a 23 mM, pH 7.2, bicarbonate solu-
tion. Volume integrations of peaks were obtained using
Bruker software.

The samples for HSQC NMR measurement of the
amounts of platinum species as a function of the number
of resistant Jurkat cells present in the medium were pre-
pared by suspending the desired number of cells in 900 ll
of medium containing 95%/5% H2O/D2O, pH 7.2. Addi-
tion of 20 ll of the stock solution of 15N-labeled cisplatin
to the medium gave a final concentration of 65 lM total
platinum in the medium in a final volume of 920 ll. The
chloride concentration in the final solution, controlled by
the RPMI 1640 in the medium, was 105 mM. No NMR
peak for NH3 trans to CO�2

3 of 4 was observed for greater
than 5 � 105 resistant Jurkat cells in the NMR experiment.

Experiments showing that the platinum-modifying sub-
stance is released by the cells to the medium were done
as follows: 1.0 � 107 resistant Jurkat cells were incubated
in �1.0 mL of medium for 1 h in a capped Eppendorf tube
at 37 �C. After 1 h, the cells were sedimented (200 � g) for
3 min and the 822 lL of medium containing the cell-
released modifying substance was removed. To the recov-
ered medium were added 50 lL of D2O, and 128 lL of
3.13 mM 15N-cisplatin previously equilibrated in either

154 or 105 mM NaCl to give a final concentration of total
platinum of 400 lM in a final volume of 1 mL.

3. Results

3.1. Modification of species detected by HSQC NMR

To study the effects of resistant Jurkat cells on cisplatin,
the HSQC NMR peak intensities of cisplatin, 1, and its
monocarbonato complex, 4, I1 and I4, respectively,
Fig. 2, were measured as functions of time after the addi-
tion of the drug to culture medium containing different
numbers of cells. Fitting these plots of intensity vs. time
to exponentials allowed for extrapolation back to t = 0
for each NMR experiment, giving the initial intensity of
the species in the presence of the indicated number of cells.
With no cells present in the culture medium, I1(0) + I4(0)
represents 65 lM drug, giving the conversion factor C

between NMR peak intensity (peak volume) and concen-
tration. As was earlier shown by us [12], the monocarbona-
to complex 4 has non-equivalent ammonia molecules,
Fig. 1, and at neutral pH, the HSQC NMR peak for the
ammonia molecule trans to Cl� of 4 lies under the HSQC
NMR peak for 1. The concentration of 1, for any number
of cells, is then C[I1(0)–I4(0)] and that of 4 is C(2[I4(0)]).
Initial concentrations obtained in this way are plotted
against number of cells (diamonds for 1, squares for 4),
and least-square fit to lines (Fig. 3). With no cells present
in the culture medium the distribution of species in the
65 lM experiments is, [1] = (42.9 ± 2.3) lM and
[4] = (20.2 ± 1.9) lM. The slopes are (�3.7 ± 1.0) lM
per million resistant cells for 1 and (�8.6 ± 6.1) lM per
million resistant cells for 4. The same analysis earlier
applied to normal Jurkat cells [13] gives slopes of

Fig. 2. 1H–15N HSQC NMR of 65 lM 15N-cisplatin in the presence of 105

resistant Jurkat cells 1.6 h after the addition of the drug to the culture
medium.
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Fig. 3. The concentrations of 1 and 4 immediately after the addition of
65 lM cisplatin to the culture medium (t = 0), as functions of the numbers
of resistant and normal Jurkat cells present in the medium. Black
diamonds and black squares are for cisplatin, 1, and the monocarbonato
complex, 4, respectively, in the presence of resistant Jurkat cells; open
circles are for 4 in the presence of normal cells [13]. The concentrations of
species present at t = 0 were as determined in the Materials and methods.
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(1.0 ± 2.4) lM per million normal cells for 1 and
(�2.5 ± 0.8) lM per million cells for 4. The results for 4

with normal Jurkat cells are shown as circles and dashed
line (Fig. 3).

In order to determine the number of moles of each plat-
inum species that is modified by a single cell, we multiply
the slopes by the reaction volume (920 lL) and divide by
106. We find that one resistant cell modifies (3.4 ± 0.9) fmol
of 1 and (7.9 ± 5.6) fmol of 4 in less than �0.6 h (the time
at which we make our first NMR measurement). For com-
parison, a normal Jurkat cell modifies (2.8 ± 0.9) fmol of 4

and only slightly modifies 1, [13].

3.2. Release of the platinum-modifying substance to the

medium

As indicated in the Materials and methods, these exper-
iments were done by placing normal or resistant Jurkat
cells in fresh medium for 1 h, separating the cells from
the medium by centrifugation, adding 15N-cisplatin to the
medium and collecting HSQC NMR data on the medium
containing the drug. In order to decrease the time required
to collect acceptable NMR data, the final concentration of
total platinum in these experiments was 400 lM. In addi-
tion, stock drug solutions were pre-equilibrated at two dif-
ferent NaCl concentrations, 154 and 105 mM. Typical
NMR results for these experiments are shown in Fig. 4,
with a, b, and c for medium only, medium exposed to nor-
mal Jurkat cells, and medium exposed to resistant Jurkat
cells. The true intensities for species 1 and 4 were obtained
as I1–I4 and 2I4, respectively. The intensity of species 5 was
never more than 10% of the intensity of 4. Since 5, a carbo-
nato species like 4, was also attacked by the modifying sub-
stance, I5 was added to the intensity of 4 before obtaining
the true intensities.

We expect that intensities for all species decrease with
time because of the slow reaction of these compounds with
substances in the medium [11,13,14], so it is not possible to
obtain the conversion factor between intensities and con-
centrations. Therefore we have calculated the ratio of the
true intensities for 1 and 4 which is the same as the concen-
tration ratio [1]/[4]. For medium not exposed to cells, the
true intensity for 1 is obtained by subtracting the intensity
for 4 from that of 1 because the second resonance of 4 lies
beneath the resonance of 1. For medium exposed to cells,
the changed pH shifts the second resonance of 4 so that
it is seen directly and subtraction is not necessary.

If the conversion of 1 to 4 is fast relative to the rate of
reaction of these compounds with substances present in
culture media (amino acids, nutrients, etc.), this ratio is
expected to decrease for the first few hours (the conversion
of 1 to 4) and then remain constant, assuming that 1 and 4

react at the same rate with substances in culture media. In
Fig. 5 we plot this ratio vs. time for 400 lM cisplatin in (a)
culture medium that has not been exposed to cells, (b) in
medium exposed to normal Jurkat cells, and (c) in medium
exposed to resistant Jurkat cells. The initial decrease in the

ratio and its constancy for later times is very clearly shown.
Each set of data was fitted to A + Be�Ct by minimizing the
mean-square deviation, as shown. The value of the ratio at

Fig. 4. HSQC NMR spectra of 400 lM 15N-cisplatin in culture medium.
(a) Drug in medium not exposed to cells. (b) Drug in medium previously
exposed to 3 � 106 normal Jurkat cells for 1 h. (c) Drug in medium
previously exposed to 3 � 106 resistant Jurkat cells for 1 h. Spectra taken
2.6 h after addition of drug to the culture medium. Species are as indicated
in Fig. 1. The stock solution of drug used in these experiments was
equilibrated in 154 mM NaCl.
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t = 0 (just after the reaction of cisplatin with substances in
the medium) is A + B. For culture medium which has not
been exposed to cells, the value is 12.1 ± 0.3, for culture

medium previously exposed to normal cells, 22.2 ± 1.0
and for medium previously exposed to resistant cells
27.8 ± 1.3. Since the ratio [1]/[4] is greatest for resistant
cells, they are more effective than normal cells in modifying
4 in the culture medium. While this same conclusion was
reached in NMR experiments having the cells in contact
with the drug (Fig. 3), Fig. 5 shows that the modifying sub-
stance is released by the cells and that the modification
takes place in the medium.

4. Discussion

Fig. 3 shows the concentrations of cisplatin, 1, and its
monocarbonato complex, 4, �0.6 h after adding 65 lM cis-
platin to suspensions containing culture medium and the
indicated numbers of normal or resistant cells. As is shown
in the plot, resistant Jurkat cells are much more effective in
modifying 4 in the culture medium than are normal Jurkat
cells. The linear fits shown have slopes of �3.7 and
�8.6 lM per million resistant cells for species 1 and 4;
for normal cells, the slopes are �0 (not shown – the actual
value is +1.0 ± 2.4 lM per million cells [13]) and �2.4 lM
per million cells for species 1 and 4. This means that a sin-
gle normal cell modifies 2.8 fmol of 4, and a single resistant
Jurkat cell modifies 3.4 fmol of 1 and 7.9 fmol of 4. Cis-
platin, 1, is more resistant to attack by the modifying sub-
stance in the medium than is 4, whether the substance is
produced by normal or resistant cells.

The conclusion that resistant cells can modify more 4

than normal cells is confirmed in the 400 lM experiments
shown in Figs. 4 and 5. However, since the cells were no
longer present when the NMR data were collected, it is
clear that the platinum-modifying substance is released
by the cells to the medium. It is also clear that this modify-
ing reaction is rapid, occurring prior to the first NMR mea-
surement, less than �16 min. Because more 4 than 1 is
modified by the cell-released substance, the platinum spe-
cies re-equilibrate at early times, i.e., 1 converts to 4, pro-
ducing the exponential decay observed in Fig. 5. At later
times, after the platinum species reach equilibrium with
each other, the absolute intensities of both decrease slowly
with time [11]. Since their ratio remains constant, they
appear to react at equal rates with substances in the
medium.

Although both the nature of the substance released by
cells and the products formed are unknown, some explana-
tions for the loss of the HSQC NMR signals can be ruled
out. For example, while the platinum drugs readily react
with thiols by ligand displacement, the initial products of
these reactions, which have NH3 trans to S� are easily
detected by HSQC NMR [13,16,17]. The fact that no
HSQC NMR active product peaks are observed at
��40 ppm (N), strongly suggests that attack by thiols,
e.g. GSH, is not responsible for the modification of 1 and
4 in these studies. Another possibility for the loss of peak
intensity is that the platinum compounds are binding to a
macromolecule, which broadens NMR lines making
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culture media from HSQC NMR, as function of time. Total concentration
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signals undetectable. However, earlier studies by Sadler
and coworkers showed that HSQC NMR peaks for 15N
cisplatin are easily observed when the drug is bound to
the 66 kD protein, human serum albumin [18]. It seems
unlikely that the cell releases a high molecular weight pro-
tein for the modification of these platinum compounds.
Furthermore, the amount of platinum compounds taken
up by, or bound to, cells [13] is much less than the decrease
in peak intensity seen in the HSQC NMR.

Most important, the modification of species 1 and 4

takes place in the absence of cells, so is an extracellular pro-
cess. Since previous experiments [13] have shown that the
modified species, which are HSQC NMR-silent, do not
enter cells, this modification is a mechanism for drug resis-
tance. Despite the fact that the molecular mechanisms of
resistance to the platinum drugs have been studied for dec-
ades, inquiry in this area has largely focused in what hap-
pens after the drug enters the cell. However, recent studies
suggest that tumors can recognize and reorganize their
microenvironment to maximize their survival in the pres-
ence of anticancer drugs [18,19]. This ability, which has
an important impact on the success of chemotherapy,
could be the basis for an extracellular resistance mechanism
that modifies toxins before they have the chance to pene-
trate the membrane and enter the cell.

In this report we use a sensitive NMR technique, HSQC
NMR, to show that a substance released by Jurkat cells can
modify cisplatin and its mono- and dicarbonato complexes
in the culture medium. Since resistant Jurkat cells are able
to modify more of the platinum compounds than normal
cells, this appears to be an undiscovered resistance mecha-
nism for cisplatin that operates outside the cell. In view of
the fact that acquired resistance is one of the major limita-
tions in platinum chemotherapy; this observation can have
important consequences for the design of new platinum
drugs for treating cancer. We hope that this report will
stimulate interest in the role of carbonate in the molecular
mechanism of action of the platinum drugs.
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