
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1999

Java’s insecure parallelism Java’s insecure parallelism

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch, "Java’s insecure parallelism" (1999). College of Engineering and Computer Science -
Former Departments, Centers, Institutes and Projects. 11.
https://surface.syr.edu/lcsmith_other/11

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Flcsmith_other%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/11?utm_source=surface.syr.edu%2Flcsmith_other%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Java's Insecure Paral le l i sm

P E R BRINCH HANSEN

Syracuse University, 2-175 CST, Syracuse, NY 13244
pb h @top. cis. syr. edu

Abs t r ac t : The author examines the synchronization features of Java and finds that they
are insecure variants of his earliest ideas in parallel programming published in 1972-73. The
claim that Java supports monitors is shown to be false. The author concludes that Java
ignores the last twenty-five years of research in parallel programming languages.

Z e y w o r d s : programming languages; parallel programming; monitors; security; Java;

We must expect posterity
to view with some asperity

the marvels and the wonders
we're passing on to it;

but it should change its attitude
to one of heartfelt gratitude

when thinking of the blunders
we didn't quite commit.

Pier Hein (1966)

1. P L A T F O R M - I N D E P E N D E N T P A R A L L E L P R O G R A M M I N G

Java has resurrected the well-known idea of platform-independent parallel program-
ming. In this paper I examine the synchronization features of Java to discover their
origin and determine if they live up to the s tandards set by the invention of monitors
and Concurrent Pascal a quarter of a century ago.

In the 1970s my students and I demonstra ted tha t it is possible to write nontriv-
ial parallel programs exclusively in a secure language tha t supports monitors. The
milestones of this work were:

• The idea of associating explicit queues with monitors [Brinch Hansen 1972].

• A class notation for monitors [Brinch Hansen 1973].

• A moni tor language, Concurrent Pascal [Brinch Hansen 1975a].

• A portable compiler t ha t generated pla t form-independent parallel code [Hart-

mann 1975].

• A portable interpreter t ha t ran platform-independent parallel code on a wide
variety of computers [Brinch Hansen 1975b].

ACM SIGPLAN Notices 38 V. 34(4) April 1999

• A portable operating system, Solo, written in Concurrent Pascal [Brinch Hansen
197G].

• A book on abstract parallel programming [Brinch Hansen 1977].

Monitors and Concurrent Pascal inspired other researchers to develop monitor vari-
ants [Hoare 1974a] and more than a dozen monitor languages, including Modula [Wirth
1977], Pascal Plus [Welsh 1979], and Mesa [Lampson 1980]. The portable implemen-
tat ion of Concurrent Pascal was widely distributed and used on a variety of computers
ranging from mainframes to microcomputers [Brinch Hansen 1993b].

2. S E C U R I T Y A G A I N S T I N T E R F E R E N C E

Hoare [1974b] introduced the essential requirement tha t a programming language must
be secure in the following sense: The language should enable a compiler and its run-
time system to detect as many cases as possible in which the language concepts break
down and produce meaningless results.1

For a parallel programming language the most important security measure is to
check that processes access disjoint sets of variables only and do not interfere with
each other in time-dependent ways.

The Concurrent Pascal compiler checked that every process and monitor only re-
ferred to its own variables; tha t processes interacted through monitor procedures only;
and that processes did not deadlock by calling monitors recursively (either directly or
indirectly).

The Concurrent Pascal interpreter ensured mutual exclusion of all operations on
the variables of any process or monitor. It even made it impossible for a process and
a peripheral device to access the same variable simultaneously.

Unless the parallel features of a programming language are secure in this sense, the
effect of a parallel program is generally both unpredictable and time-dependent and
is therefore meaningless. This does not necessarily prevent you from writing correct
parallel programs. It does, however, force you to use a low-level, error-prone notation
that precludes effective error checking during compilation and execution.

From the beginning, Hoare and I recommended extensive compile-time checking
of modular parallel programs as an effective way of preventing most t ime-dependent
errors. However, by 1991 Hoare sadly concluded that "a subsequent generation has
lost tha t understanding." If you are unfamiliar with the rationale for interference
control, you should study the history of the field from 1971-75. I see no point in
repeating what I carefully explained and published decades ago. The reliability of this
programming approach has been amply demonstrated in practice.

1This definition of security differs somewhat from its usual meaning of "the ability of a system to
withstand attacks from adversaries" [Naur 1974].

39

3. S H A R E D C L A S S E S

My operating systems book [Brinch Hansen 1973] introduced the first programming
notat ion for monitors, shared classes, based on a restricted form of the class concept
of Simula 67 [Dahl 1972]. The book includes the bounded buffer shown in Fig. 1. (I
have replaced my original Pascal notation with Java syntax.)

shared class B
{ int max = i0, p, c, full;

int[] buffer = new int[max];

public void send(Jut m)
< await (full < max);

buffer[p] = m;
p = (p + I) ~ max;
full = full + I;

}

public int receive()
{ await (full > 0);

int m = buffer[c];
c = (c + I) ~ max;
full = full - i;
return m;

}

public B()
< p = O; c = O; full = O; }

}

Figure 1 A shared class with await statements (1973).

This notat ion introduces a class of message buffers of the same type B. Each buffer
may be shared by parallel threads. The buffer concept is defined in terms of its da ta
representation, the possible operations on it, and its initialization. In Java terminology
these class components are known as the instance variables, synchronized methods, and
the constructor of a buffer.

A buffer instance b of type B is declared and used as follows by parallel threads:

B b; b.send(5); int x = b.receive();

For a particular class instance b~ the following restrictions apply:

• The instance variables are private to the class instance and can only be accessed
within the class.

• The synchronized methods are executed strictly one at a t ime as critical regions
on the instance variables.

Hoare [1972] had introduced the concept of a conditional critical region tha t is
delayed until a shared data structure satisfies a Boolean condition. In a shared class,

40

I expressed the same idea by means of an awa i t s tatement, which can occur anywhere
within a critical region [Brinch Hansen 1972].

4. E X P L I C I T Q U E U E S

At the t ime I was concerned about the inefficiency of conditional critical regions which
retest Boolean conditions repeatedly until they are true. As an alternative I decided to
let the programmer control the frequency with which scheduling expressions are reeval-
uated. I did this by associating explicit queues with shared variables. Critical regions
can delay calling processes in these queues and resume them later [Brinch Hansen
1972].

shared class B
{ int max = 10, p, c, full;

iut[] buffer = new int[max];
event e;

public void send(int m)
{ while (full == max) await(e);

buffer[p] = m;
p = (p + 1) Y. m a x ;
full = full + I;
c a u s e (e) ;

}

public int receive()
{ while (full =--0) await(e);

int m = buffer[c];
c = (c + 1) Z max;
full = full - 1;
c a u s e (e) ;
return m ;

}

public B()
{ p = O; c = O; full = O; }

}

Figure 2 A shared class with an explicit queue (1972).

Figure 2 illustrates this idea. The buffer class is extended with a single queue
variable e of type even t . Every synchronized method now begins with a waiting loop

of the form

while (!condition) await (e) ;

and ends with the statement cause(e). The await operation makes a process leave

its critical region and enter the queue e. The cause operation enables all processes in

the queue e to eventually reenter their critical regions one at a time.
The programmer can control the scheduling of processes to any degree desired

by associating each queue with a group of similar processes or an individual process.

41

Since every instance of a Java class uses a single queue only, I have imposed the same
restriction on Fig. 2.

The key idea is that the queuing operations automatically maintain mutual exclu-
sion of all access to monitor variables during the evaluation of scheduling conditions.

Since my proposal was completely unrelated to the unpredictable event queues of
the 1960s, I will call them explicit queues in this paper.

All subsequent monitor proposals were based on minor variations of the same ideas:
A monitor is essentially a shared class with explicit queues.

5. S Y N C H R O N I Z E D JAVA M E T H O D S

Only trivial changes are required to turn the shared class (Fig.2) into a correct Java
class (Fig.3):

• The class is no longer declared as shared .

• The instance variables are declared as p r i v a t e .

• The class methods are declared as s y n c h r o n i z e d methods tha t may cause a
run-time Excep t ion .

• The queue variable e is replaced by a single anonymous queue.

• The scheduling methods, awai t and cause are renamed wai t and n o t i f y A l l .

I remark in passing that I have no idea what general meaning the Java designers
ascribe to a "critical region" tha t can be interrupted by exceptions (even if it includes
an exception handler).

A comparison of Figs. 1-3 makes it clear that a Java class with synchronized
methods, waiting loops and notifyAll statements is a variant of my earliest ideas in
parallel programming: the shared class and scheduling queues, published in 1972-73.

Hoare's [1974a] contribution to the monitor concept was to replace my resume-all
queues with first-in, first-out queues (known as conditions). Java includes a first-in,
first-out variant of the notifyAll method, named notify.

Gosling [1996, p. 399] claims that Java uses monitors to synchronize threads. Un-
fortunately, a closer inspection reveals that Java does not support a monitor concept:

• Unless they are declared as sy n ch ro n i zed , Java class methods are unsynchro:
nized.

• Unless they are declared as private, Java class variables are public (within a
package).

Consequently, parallel threads can access shared variables, either directly or indirectly,
without any synchronization. One can, in fact, write a Java class tha t uses both private
and public variables accessed by both synchronized and unsynchronized methods.

42

class B
{ private int max = 10, p, c, full;

private int[] buffer = new int[max];

public synchronized void send(int m)
throws Exception

{ while (full == max) wait();
buffer[p] = m;
p = (p + 1) Z max;
full = full + I;
notifyAll();

}

public synchronized int receive()
throws Exception

{ while (full == O) wait();
int m = buffer[c];
c : (c + i) Z max;
full : full - 1;
notifyAll () ;
return m;

}

public B()
{ p = O; c = O; full = O; }

}

Figure 3 A Java class with synchronized methods (1996).

I do not see how one can assign any general meaning to a programming notation
that invites time-dependent errors as the default case. Nor do I see how a compiler
can detect such errors. The failure to give an adequate meaning to thread interaction
is a very deep flaw of Java that vitiates the conceptual integrity of the monitor concept.

Well, if Fig. 3 is not a Java monitor, what is it then? It is just a programming style
that imitates insecure monitors. Almost any programming language (including assem-
bly language) enables you to adopt programming styles based on abstract concepts
that are not supported directly by the language.

Since every Java object is associated with a single anonymous queue only, it would
have been a significant improvement if Java had adopted my original shared classes
with the awai t statements and access restrictions described earlier (Fig. 1).

6. J A V A ' S M I S T A K E

Java's most serious mistake was the decision to use the sequential part of the language
to implement the run-time support for its parallel features. It strikes me as absurd to
write a compiler for the sequential language concepts only and then a t tempt to skip
the much more difficult task of implementing a secure parallel notation. This wishful
thinking is part of Java's unfortunate inheritance of the insecure C language and its
primitive, error-prone library of threads methods.

43

Six years ago, I wrote [Brinch Hansen 1993a]:

The 1980s will probably be remembered as the decade in which program-
mers took a gigantic step backwards by switching from secure Pascal-like
languages to insecure C-like languages. I have no rational explanation for
this trend. But it seems to me that if computer programmers cannot even
agree that security is an essential requirement of any programming lan-
guage, then we have not yet established a discipline of computing based
on commonly accepted principles.

In 1975 Concurrent Pascal demonstrated that platform-independent parallel pro-
grams (even small operating systems) can be written in a secure programming language
with monitors. It is astounding to me that Java's insecure parallelism is taken seri-
ously by the programming community, a quarter of a century after the invention of
monitors and Concurrent Pascal. It has no merit.

Although the development of parallel languages began around 1972, it did not stop
there. Today we have three major communication paradigms: monitors, remote pro-
cedures, and message passing. Any one of them would have been a vast improvement
over Java's insecure variant of shared classes. As it is, Java ignores the last twenty-five
years of research in parallel languages.

7. YOU GOTTA HAVE STYLE

If programmers no longer see the need for interference control then I have apparently
wasted my most creative years developing rigorous concepts which have now been
compromised or abandoned by programmers.

However, if you agree with me, but consider it futile to swim against the tide of
the times, it seems appropriate to end this paper on programming language design
by quoting Peter Naur's [1992] comments about the related subjects of writing and
programming style [with emphasis added]:

Good writing is very difficult, even for persons who have complete mastery
of everyday spoken language. Good style is achieved only through insight,
practice, and effort. By anoJogy we can expect good programming style to
remain a combination off sound principles, talent, and work, and the fight
against poor style is never ending.

Acknowledgements

It is a pleasure to acknowledge the helpful comments of Jonathan Greenfield, A1 Hart-
mann, Giorgio Ingargiola, Henk Kruijer, Ted Lewis, Michael McKeag, Peter O'Hearn
and Charles Reynolds.

44

References

1. Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the A CM
15, 7 (July), 574-578.

2. Brinch Hansen, P. 1973. Operating System Principles, Section 7.2 Class Concept, July,
226-232, Englewood Cliffs N J: Prentice Hall.

3. Brinch Hansen, P. 1975a. The programming language Concurrent Pascal. IEEE Trans-
actions on Software Engineering 1, June, 199-207.

4. Brinch Hansen, P. 1975b. Concurrent Pascal machine. Information Science, California
Institute of Technology, Pasadena, CA, October.

5. Brinch Hansen, P. 1976. The Solo operating system. Software-Practice and Experience
6, 2 (April-June), 141-200.

6. Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice Hall,
Englewood Cliffs, NJ. Includes Brinch Hansen 1975a, 1975b, 1976.

7. Brinch Hansen, P. 1993a. Letter to C. A. R. Hoare, February 20.

8. Brinch Hansen, P. 1993b. Monitors and Concurrent Pascal: A personal history. 2nd
ACM Conference on the History of Programming Languages, April, Cambridge MA:
1-35.

9. Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. 1972. Structured Programming,
175-220. New York: Academic Press, 175-220.

10. Gosling, J., Joy, B., and Steele, C. 1996. The Java Language Specification, Reading
MA: Addison-Wesley.

11. Hartmann, A.C. 1975. A Concurrent Pascal compiler for minicomputers. Pasadena
CA: Information Science, California Institute of Technology.

12. Hein, P. 1966. Crooks. Cambridge MA: The M.I.T. Press.

13. Hoare, C. A. R. 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C. A. R. Hoare and R. H. Perrott, Eds., New York: Academic Press, 61-71.

14. Hoare, C. A. R. 1974a. Monitors: an operating system structuring concept. Commu-
nications of the ACM 17, (October), 549-557.

15. Hoare, C. A. R. 1974b. Hints on programming language research. In Computer Systems
Reliability, C. Bunyan, Ed., Berkshire, England: Infotech International, 505-534.

16. Hoare, C. A. R. 1991. Letter to the author. Reprinted in Brinch Haaasen [1993b].

17. Lampson, B. W., and Redell, D. D. 1980. Experience with processes and monitors in
Mesa. Communications of the ACM 23, 2 (February), 105-117.

18. Naur, P. 1974. Concise Survey of Computer Methods. Lund, Sweden: Studentlittera~
tur.

19. Naur, P. 1992. Computing: A Human Activity. Reading MA: Addison-Wesley Pub-
lishing.

20. Welsh, J., and Bustard, D. W. 1979. Pascal-Plus--another language for modular mul-
tiprogramming. Software--Practice and Experience 9, 11 (November), 947-957.

21. Wirth, N. 1977. Modula: a programming language for modular multiprogramming.
Software--Practice and Experience 7, 1 (January-February), 3-35.

45

	Java’s insecure parallelism
	Recommended Citation

	tmp.1286816405.pdf.dlTwK

