
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

2-1987

Meta-level Programming: a Compiled Approach Meta-level Programming: a Compiled Approach

Hamid Bacha
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bacha, Hamid, "Meta-level Programming: a Compiled Approach" (1987). Electrical Engineering and
Computer Science - Technical Reports. 34.
https://surface.syr.edu/eecs_techreports/34

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/34?utm_source=surface.syr.edu%2Feecs_techreports%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Technical Report CIS-87-1
School of Computer and Information Science
Syracuse University

•Meta-level Programming: a Compiled Approach

Hamid Bacha

Logic Programming Research Center
School of Computer and Information Science

Syracuse University
Syracuse, NY 13210 USA

CSNET: bacha@syr

ABSTRACT

There has been some intense research lately focussed on the area of meta
level inference systems. In logic programming, the limitations of Prolog are
widely recognized and a meta-level approach has been suggested. Unfortunately,
only meta-interpreters have been considered so far. Moreover, these meta
interpreters are often themselves written on top of a Prolog interpreter. These
cascaded layers of interpreters result in an enormous slow down, rendering the
resulting system practically useless for all but a small number of toy applications.
This paper will report on the implementation of a fast incremental metaProlog
compiler. In the process, it will explore some of the issues involving meta-level
systems in general, and offer the view of a knowledge base as a microcosm of the
real world. To this effect, some new definitions are introduced and related to the
notion of VIEWPOINT. It is hoped that this type of results will broaden the
application area of logic programming to encompass most of the paradigms
needed by Artificial Intelligence systems.

February 9, 1987

-This research was supported in part by US Air Force grant F30602-81..C·0169

Meta-level Programming: a Compiled Approach*
Hamid Bacha

Logic Programming Research Center
School of Computer and Information Science

Syracuse University
Syracuse, NY 13210 USA

CSNET: bacha@syr

1. INTRODUCTION
Many researchers in the area of logic programming have recognized the limitations of Prolog

and suggested a meta level approach as a more powerful alternative. Unfortunately, only meta
interpreters have been considered so far. Moreover, these meta-interpreters are often themselves
written on top of a Prolog interpreter. These cascaded layers of interpreters result in an enormous
slow down that renders the resulting ~stem practically useless for all but a small number of toy
applications. Under the guidance of Ken Bowen, we have been looking for ways of implementing
a metaProlog compiler. This paper reports on some of the results that have been achieved so far.
The report will focus on the implementation of a high speed incremental metaProlog compiler
based on the Warren Abstract Machine (WAM) instruction set. In addition to running regular
Prolog very efficiently, this compiler handles many alternative databases (also referred to as
theories) simultaneously, and supports the creation of new theories from existing ones. We hope
these results will make logic programming more suitable for a variety of AI applications requiring
the use of alternative knowledge bases and frequent fast context switching.

2. OVERVIEW

A meta level approach to logic programming has been advocated by many researchers to
overcome some of the limitations of logic based programming languages such as Prolog (see for
example [GaUaire80] , [Bowen82J, (Bowenl-85J). Every computational system has certain aspects
that are explicit and can be talked about, while others are implicit and provided by the underly
ing architecture. The role of meta-level facilities as stated in [Rivieres86J is to make explicit some
tacit and otherwise inaccessible aspects of the system. The explicit aspects in, logic based systems
are represented by relations, functions, and objects named by predicates, functions, and constant
symbols. The implicit aspects include the sentences (which can be used but not mentioned), the
sets of axioms, the rules of inference, the derivability relation (1- or demo), the proof tree, and the
control strategy (see [Rivieres86]). Being able to treat as first class objects those otherwise impli
cit aspects provides a way to reason about them, pass them around as values of meta level vari
ables, and possibly modify them.

All the meta level approaches undertaken so far, to the best of our knowledge, rely on
meta-interpreters. What's worse, these interpreters are sometiDles themselves written on top of
other (Prolog) interpreters. As [Sbapiro86J observed, every level of interpretation added to a

'This research was supported in part by US Air Force grant F30602...81·C-0169

- 2 -

computation results in a slow down of an order of magnitude. The use of a very slow system will
be restricted to toy applications instead of the more serious investigations that the added meta
level facilities promise to make possible. One remedy that has been suggested to alleviate this
problem is a program transformation technique known as partial evaluation [Takeuchi85]. It is
claimed that this technique removes unnecessary layers of interpretation by transforming an origi
nal program into a new' program that inherits the meta-interpreter functionality but runs faster.
The main problem we see with this approach is that the resulting program may not have any
resemblance to the original program. Being the fallible humans we are, it is hard to write pro
grams that run properly the first time through without a fair amount of debugging. Debugging
the resulting program is very h'ard without a great deal of knowledge about the transformations
that have taken place. This makes this method out of reach for the casual user.

To get rid of the meta-interpreters discussed above, we have been looking into ways of
implementing a metaProlog compiler. The implicit aspects we have targeted to make explicit are
the provability relation (demo in our case) and the set of axioms (theories). We wanted to be able
to treat theories as first class objects, and use demo to carry out proofs in any given theory. Since
Prolog uses a single theory, we also wanted to be able to execute Prolog programs without any
modification. The resulting system we are reporting on is a fast, incremental metaProlog compiler
implemented using an augmented Warren Abstract Machine instruction set [Warren83]. It is also
based on a modified version of the incremental compiler reported on by Ken Bowen in [Bowen86].
It uses the decompilation technique outlined by Kevin Buettner in [Buettner86] to get back the
source code of clauses from compiled code when needed.

3 .. IMPLEMENTATION CONSIDERATIONS

3.1 MOTIVATIONS FOR CURRENT APPROACH

In logic programming, a procedure is defined as a set of clauses having the same predicate
and arity. Prolog has a unique database of clauses (i.e. a single theory), hence every procedure is
very well defined and consists of all the clauses with the same predicate and arity in that data
base. MetaProlog, on the other hand, can have many alternative theories. Although on a concep
tual level every theory is a separate database, implementing them that way is very expensive both
in time and space. An enormous amount of unnecessary duplication will take place because of the
fact that many theories share a lot of procedures. A typical way of creating a new theory in
metaProlog is through the add_to predicate as in add_to(OldTheory, Assumption, NewTheory).
NewTheory inherits all the procedures defined in OldTheory except for the one involving the
clause Assumption. Implementing NewTheory as a separate database means duplicating all the
common procedures it shares ,,·ith OldTheory. The alternative is to view the collection of
theories as a single database. While this approach avoids duplication of shared procedures, it
introduces some confusion concerning the shared ones. The problem is that the clauses of a pro
cedure visible in one theory are not necessarily the same as the ones visible in another theory.
Consider the following procedure:

loves(john, jane).
loves(jane, jack).
loves(jane, john).

One theory Tl may view the procedure as:

loves(john, jane).
loves(jane, john).

while another theory, say T2, may vie'\v it as:

- 3 -

loves(john, jane).
loves(jane, jack).

Except for their disagreement about this love relationship, Tl and T2 may be identicaL That is
Tl and T2 have a different viewpoint about ODe relation but agree on everything else. This notion
of VIEWPOINT, which is explained below, is going to be the solution to our problem. It will per
mit us to regard every theory as a virtual database (containing all the procedures defined in that
theory) at the conceptual level, yet implement the collection of theories as a single database for
efficiency.

3.2 VIEWPOINTS

If we regard a procedure as a relation and its clauses as beliefs about the relation, we can
define a relation to be a collection of beliefs the same way a procedure is a collection of clauses.
The clauses of a procedure visible in a given theory will be the beliefs about a relation held by
that theory, i.e. they constitute the VIEWPOINT of the theory on the relation. From the example
above, we can see that the relation being defined is 'love' and that it consists of three possible
beliefs. The viewpoint of Tl about this love relation is that John loves Jane and Jane loves John,
while that of T2 is that John loves Jane but Jane loves Jack. Since a relation deals with a certain
subject (love, in this example), we can as well say that a theory has a viewpoint on the subject.
A the conceptual level, we have the following definitions about the portion of our world captured
by the database:

A database (or knowledge base) is a collection of theories.
A theory is a collection of VIE\VPOINTS.
A VIEWPOINT is a collection of beliefs about a relation (or subject).

We say that a collection of beliefs are related when they define the same relation. Similarly, we
say that a collection of VIEWPOINTS are related when they apply to the same relation. So a
maximal collection of related VIEWPOINTS represents all the different viewpoints of a relation in
our world as captured by the knowledge base. Note that our notion of VIEWPOINTS has noth
ing to do with that used in the metalanguage OMEGA [Attardi84]. Their viewpoints are collection
of assumptions which in our case will be referred to as theories. Our VIE\\'POINTS apply to indi
vidual relations.

3.3 VIEWPOINTS INHERITANCE

Whenever a new theory is created from an existing one, it inherits all the VIEWPOINTS of
its parent theory except for those newly introduced. The newly introduced VIEWPOINTS are
either modifications of VIEWPOINTS held by the parent theory, or VIEWPOINTS on relations
the parent theory knows nothing about. Since VIE\VPOINTS are collections of beliefs, they are
modified by either adding some new beliefs (add_to(OldTheory, Beliefs, NewTheory)) or deleting
some existing ones (drop_from(OldTheory, Beliefs, NewTheory)). A VIEWPOINT Vi on a partic
ular relation R held by a theory Ti is passed down to all its descendant theories until one of
them, say Tj, develops it own VIE\\r>OINT Vj about the relation R. From that point, all the
descendants of Tj inherit the new VIEWPOINT Vj, but the ancestor theories retain their old
VIE\\'POINT Vi. (In analogy, if you believe premarita.l sex is ok but your ancestors don't, you
may pass your viewpoint to your children, but you can't influence your ancestor's viewpoint).

We assume the existence of a distinguished theory, call it BASETHEORY, of which every
theory is a descendant. Since VIEWPOINTS held by this theory are inherited by all theories
(except where modified), we can refer to them as FACTS. So a FACT is a (near) universally held
VIEWPOINT. Of course no theory is required to believe what the rest of the world believes and

- 4 -

may develop its own VIE'VPOINT on any relation. To determine what VIEWPOINT holds in
what theory, each viewpoint carries the signature of the theory in which it originated. A
VIEWPOINT V holds in a theory T if it either carries the signature of T, or carries the signature
of one of T's ancestors and is the latest such VIEWPOINT about the given relation. In particular,
any FACT that has not been disbelieved by one of T's ancestors still holds in T.

It may seem that one may have to examine all the existing theories to decide what
VIEWPOINT about a certain relation holds in a given theory. Through a clever representation of
theories, we'll show later on an algorithm that retrieves the VIEWPOINTS extremely fast.

4 Th1PLEMENTATION STRATEGY
Since the implementation is based on the WAM technology, a slight modification of the

instruction set is necessary in order to accommodate metaProlog. In particular, two new registers
and two new instructions are needed. The registers are referred to as meta_CTR (Current Theory
Register) and meta_BTR (Base Theory Register) and point respectively to a repre~entation of the
current theory and BASETHEORY. They are accessed through the builtins current_theory(X) and
base_theory(X) respectively. These predicates provide the first link between the object level and
the meta level because the (meta) variable in their argument range over sets of clauses from the
object leveL The Dew instructions are FACT_INS and VIEWPOINT_INS and will be explained
later. The TRY_ME instructions are removed and replaced by the TRY instructions.

From an implementation point of view, the metaProlog database consists of a collection of
relations (procedures) and a tree of theories having BASETHEORY as the root. A theory is a col
lection of VIEWPOINTS. A relation is a collection of beliefs (clauses). A VIEWPOINT is a collec
tion of beliefs from a relation that that are valid in a given theory. Though VIEWPOINTS can
be viewed as subsets of relations, the clauses contained in the relations are not duplicated. The
VIEWPOINTS contain references to those clauses~

4.1 THEORY REPRESENTATION

The theories are organized as a tree having BASETHEORY as the root and the rest of the
theories as nodes. Each theory is assigned a positive integer as its ID number. Theory ID's are
integers starting with 0 for BASETHEORY and increasing by one for every new theory. Since
they uniquely identify each theory, the theory ID's will sometimes be used to refer to the theories
themselves throughout this discussion. Every theory is the root of a subtree having for nodes all
its descendants. Figure 1 ShOVlS an example of a metaProlog database. BASETHEORY contains
the procedures that are common to all the theories. The system builtins, for example, reside in
BASETHEORY. New theories are introduced by either consulting an outside file, or modifying
and existing theory.

A theory is represented by its ID number, its parent theory, a sequence start theory, and a
default theory. The ID number (referred to as THEORYID(T)) and the parent theory
(PARENT(T)) of a theory T are exactly what they mean. The sequence start theory ST of a
theory T (ST = SEQSTART(T)) is an ancestor theory of T such that the theory ID's of the
theories between ST and T form a continuous sequence of consecutive integers. Put another way,
for any theory X and integer i = THE0 RYID(X), if i is between THE0 RYID(ST) and
THEORYID(T), then X is an ancestor of T. The ID of ST must be the smallest possible of any
sequence that can be formed. Figure 2 clearly shows the idea of sequence start. The default
theory DT of a theory T (DT = DEFAULT(T)) is the oldest ancestor of T other that
BASETHEORY. Obviously, a default theory is always a direct descendant. of BASETHEORY.
The sequence start and the default theory are needed to efficiently locate VIEWPOINTS as will

- 5-

be seen later OD.

BASETHEORY

o

Relation pi!:
11: pel).
12: p(2).
13: p(3).

Relation q/l:
ml: q(a).

2

-f (Z)

3

Fig. 1. shows a metaProlog database. + stands for add_to and .. for drop_from

4.2 VIEWPOINT REPRESENTATION

At the implementation level, VIE\VPOINTS are merely index blocks containing a set of
pointers to actual clauses of a certain procedure. We distinguish two levels of indexing: level 1
which contains a chain of TRY instructions, and level 2 which contains the more sophisticated
indexing scheme using SWITCH_ON_TERM. In addition, a VIEWPOINT contains the IT> of the
theory in which it originated (SIGNATURE), and a reference to to the VIEWPOINT (if any) it
supersedes (PREV_VP). Preceding the TRY or SWITCH_ON_TERM instruction is either the
FACT_INS or VIEWPOINT_INS instruction. FACT_INS indicates that the current VIEWPOINT
has been defined in BASETHEORY and can safely be used. VIEWPOINT_INS protects the
VIEWPOINT and indicates that a verification must take place to ascertain that the VIEWPOINT

- 6 -

is held by the current theory. A procedure table is used to locate the last VIEWPOINT available
for any known relation. When a new VIE\VPOINT about an existing relation is created, the entry
for that relation in the procedure table is made to point to the new VIEWPOINT, while the latter
is made to point to the preceding VIEWPOINT (related VIEWPOINTS are linked together).

4.3 MATCHING VIEWPOINTS AND THEORIES

From our experience with metaProlog, we found out that we usually start with few initial
theories (most often one), and create new theories by adding or deleting some clauses. Most of the
procedures in the initial theories remain static. That's why we called the initial theories default
theories. The default theory of any given theory is the oldest ancestor that is a direct descendant
of BASETHEORY (see figure 2). Given a theory and a goal (as in demo(Theory, Goal)), the
question we are confronted with is to find in the theory the clauses whose head potentially match
the goal. Those clauses are exactly what we refer to as a VIEWPOINT. So the question becomes
that of .finding the VIEWPOINT (if any) corresponding to the goal that is valid in the theory. If
the VIEWPOINT exists, it would have originated either in the given theory or in one of its ances
tors. What we need is a fast way to locate that VIEWPOINT. That's where the default theory
and the sequence start come into play.

The search for a VIEWPOINT is triggered by the instruction VIEWPOINT_INS. The first
place to look for the VIEWPOINT is in the theory we are trying to prove the goal in. The next
most likely place is either the default theory, since we expect most of the procedures there to be
static, or BASETHEORY. H all fail, we'll have to methodically look at the ancestors of the
theory in question. Note that the VIEWPOINTS that occur only in BASETHEORY carry the
instruction FACT_INS which doesn't trigger any search. (This feature permits regular Prolog pro
grams to run without any everhead). Since every VIEWPOINT carries the signature (ID number)
of the theory in which it originated, we simply check that signature against the ID's of the
theories we are matching against. Given a theory T and a goal G, the following algorithm returns
the correct VIEWPOINT) if one exists, and NIL otherwise. Assume the goal G has predicate
PRED and arity AR.

1. LastVP = PROCEDURE_TABLE(PRED~);

2. if SIGNATURE(LastVP) = THEORYID(T) or
SIGNATURE(LastVP) = DEFAULTID(T) or
SIGNATURE(LastVP) = BASETHEORYID

return(LastVP);

while (true) do
3. if SIGNATURE(LastVP) <= THEORYID(T) and

SIGNATtffiE(LastVP) >= SEQSTART(T)
return LastVP;

4. if SIGNATURE(LastVP) < SEQSTART(T) or
(SIGNATURE(LastVP) > THEORYID(T) and LASTVP(LastVP))

return(NIL);

5. while SIGNATURE(LastVP) > THEORYID(T) and not LASTVP(LastVP) do
LastVP = PREV_VP(LastVP);

6. while SEQSTART(T) > SIGNATURE(LastVP) and
SEQSTART(T) < > THEORY_ID(meta_BT) do

T = PARENT(SEQSTART(T));
end outer while

- 7 -

0:0:0:0

1:0:1:1

2:1:1:1

3:2:1:1

7:3:7:16:5:4:1

4:1:4:1

5:4:4:1

11:5:11:1

12:7:12:1

Fig. 2. Each metaProlog theory is represented as 1) theory ID,
2) parent theory, 3) sequence start, 4) default theory

- 8 -

Please note that the algorithm is presented in its most meaningful way rather than its most
efficient ,,-ray. Before we describe the algorithm, we would like to point out that the search for the
VIEWPOINT takes place along a single branch of the tree. This branch starts from
BASETHEORY and goes all the way to T. It includes all the ancestors of T. What we are trying
to do is find the first intersection between the ID's of the theories on this branch and the signa
tures of a collection of related VIEWPOINTS corresponding to the goal G. If such an intersection
exists, we return the corresponding VIE\\rpOINT. Else, we return NIL. What follows is a descrip-
tion of the algorithm.
DEFAULTID, BASETHEORYID, and SEQSTARTID are the ID's of the default theory, base
theory, and sequence start theory respectively. LASTVP(V) is true if V is the last VIEWPOINT
in the chain, Le. there is no VIEWPOINT preceding V~

Statement 1 gets the latest VIE\\rpOINT from the procedure ta.ble.
Statement 2 checks for the most likely cases as explained earlier.
Statement 3 checks whether the VIEWPOINT occurred between the current theory T and the
sequence start theory ST. The idea of a sequence of theories can best be illustrated through an
example. If we are given theory 10 from example 2 and a possible VIEWPOINT V, we can say
that V is valid in T if V originated anywhere in the sequence from 7 to 10. The reason is that V is
the latest such VIEWPOINT originating in the sequence (related VIEWPOIN'TS are chained
together through PREY_VP from the latest to the earliest, and we have access to the latest one
Crom the procedure table). So even if we have more than one VIEWPOINT in the sequence, V is
still the correct one. Also, if V is the latest VIEWPOINT in the sequence, there is no way for V
not to be valid in T because every theory in the sequence is an ancestor of T. On the other hand,
if we are given theory 7 and a VIEWPOINT from theory 4, there is no way this VIEWPOINT
can be valid in 7 because there is no continuous sequence between 3 and 7. This feature makes
the algorithm very fast because we don't need to check every theory in the sequence. We merely
ascertain that the VIEWPOINT originated somewhere in between.
Statement 4 checks whether we have enough information to conclude that there is no
VIEWPOINT for goal G in theory T. One way to decide that is if the VIEWPOIl'lT on hand ori
ginated before T's default theory even existed. This fact can be witnessed by the signature being
smaller than the theory ID of the default theory (Remember the smaller the ID the older the
theory in terms of creation). Another way is if the signature of the VIEWPOINT on hand is
greater than the theory ID of T, and we have no more VIEWPOINTS available.
Statement.5 is reached if the VIEWPOINT on hand is not a suitable one for theory T. We need
to find another one that is possibly acceptable. No VIEWPOINT that originated after T was
created can be valid in T. So we need to traverse the chain of VIEWPOINTS backward (through
PREY_VP) until we find one that originated before T.
Statement 6 traverses the branch of theories backward until we reach either BASETHEORY, or a
sequence where the VIEWPOIN'T from the previous loop may be valid. We know from the previ
ous loop that we have a VIEWPOINT whose signature is less than the ID of T (unless we reached
the last available VIEWPOINT), but if that 10 is also smaller than SEQSTARTID(T), then we
should find an earlier sequence along the branch for a possible match.

An example at this point to clarify the above confusion might be a blessing. Suppose we are
solving the goal :-p(X) in theory 10 from example 2 (demo(TlO, p(X)). Figure 3 shows three possi
ble VIEWPOINTS for pi! (we shov.'ed the clauses themselves in the VIEWPOINTS instead of
pointers to them for clarity). From the procedure table, we get the 3rd VIEWPOINT for p/l ..
This VIEWPOINT originated in theory 12. Theory 12 is greater then our intended theory 10, so
there is no way this VIE\VPOIN'T could be valid in 10. We traverse the chain backward until we
find a VIEWPOINT with a signature less than 10. The second VIEWPOINT does the job since it
originated in 3. The SEQSTART for 10 is 7 because 7, 8, and 9 are all ancestors of 10. Now 3 is
less than 7J so there is no need to consider this sequence. Instead, we go to a previous sequence
which happens to be 1,2,3. 3 mathes the signature of the VIEWPOINT, so the second
VIEWPOINT is the one that is held by our theory 10. X gets instanciated to b then c. Notice
that the next VIE\\'POINT originated in 2 which is also an ancestor of 10. But we are only

- 9 -

interested in the first intersection, so it is disregarded.

o
2

p(a)
p(b)
p(c)

3

pCb)
p(c)

pCb) j

p(c) I procedure_table entry for p/l

(3) /

Fig. 3. Three \'IE\VPOINTS on relation pi!

The algorithm just described is very efficient for 2 reasons. One is that we search only along
a single branch (between the given theory and BASETHEORY). For this reason, the total number
of theories in the database is immaterial. Second and most important, we don't examine every
theory along the branch. \Ve look at sequences of theories at once. So the complexity of the algo
rithm depends on the number of the sequences along a single branch. Of course, one might create
a pathological case where every sequence consists of only one theory. Then we'll have to examine
every theory but only along one branch. In our experience, the tendency has been to always
create long sequences of theories. The only time we need to create more than one branch is Vtl'hen
we have different alternative assumptions to explore. Even then, we tend to create one branch,
follow it to a certain depth, then back up to a previous theory aJon-g the branch and start on a
new branch.

- 10-

5. PROVABILITY RELATION AND CONTEXT SWITCHING

Once we have theories to play with, the provability relation is easily axiomatized. The demo
predicate takes a theory as ODe argument, and the goal to be proved in that theory as a second
argument. (More arguments may be added in the future to handle access to the proof tree, and to
affect the control strategy). It becomes the standard way of switching contexts. At a lower level,
context switching is achieved via the predicate set_current_theory which takes a theory represen
tation as its argument and sets the register meta_CTR to that value. Demo can be defined as fol-
lows:

demo(NewTheory, Goal) :-
current_theory(CT),
shift_context(NewTheory, CT),
cal1(Goal),
set_current_theory(CT), !.

shirt_context(Newtheory, OldTheory) :
set_current_theory(NewTheory).

shift_context(Newtheory, OldTheory):- j. reset old context if goal fails */
set~current_theory(OldTheory).

Since theories are first class objects and can be values of variables, we added the possibility of
using demo with a variable in its first argument (demo(X,. Goal). This is equivalent to saying find
me a theory in which the given goal is solved. We intend to add the possibility of distinguishing
between the case where any theory in the system can be considered as a solution, and the case
where we are interested only in theories along the current line of reasoning. A current line of rea
soning is defined as the collection of theories between the current theory and its corresponding
default theory. So we can either ask for any theory that is a solution for a given goal, or restrict
our attention to theories along the current line of reasoning.

8. REMARKS AND CONCLUSION

The ideas expressed in this paper have already been implemented. The unoptimized experi
mental version of metaProlog runs the standar~ naive reverse benchmark for 30 elements on a
VAX/780 at about 8K LlPS in BASETHEORY (C-Prolog gets around 2K LIPS). The overhead
is hardly noticeable when the number of sequences along a given branch is smalL However, the
performance may slow down by as much as 50% for some pathological cases where every sequence
contains only one theory. Once again, the number of theories in the database is immateriaL The
only theories that are considered during the search for a VIEWPOINT are the ancestors of the
given theory, that is the theories on the branch delimited by BASETHEORY and the given
theory.

One of the ideas behind this line of research is the view of a knowledge base as a microcosm
of the real wold. IT we are modeling political decision making for example, we can let the theories
encompass the ideas of different decision makers (a person is viewed as a. collection of ideas and
opinions). Each default theory would have opinions that are widely held in a certain region or cul
ture. BASETHEORY would have the knowledge about policies that are internationally accepted
(international law). Other areas such as medical diagnosis or electronics can also be structured to
fit within this paradigm.

Programs in BASETHEORY run without any of the overhead associated with metaProlog theories.

- 11 -

The aspects to be made explicit targeted in this first part of the project are the treatment of
theories, fast context switching, and the provability relation (demo)~ Some other aspects to be
considered for the future include access to the proof tree, choice of control strategy, and operators
on theories. Also in consideration is the addition of control. statements about other statements.
For some theories, one would like to to have statements about applicable inference steps, together
with the relative likelihood that the inference would lead to a desired solution [Batali86]~ One
promising approach for operators on theories is intentional negation [Barbuti86]~ Intentional nega
tion is used to derive the effective complement of a theory which can in turn be used to derive
negative information. A program will be represented by two theories, one for computing positive
information, the other for negative information. Intentional negation uses SLDIN resolution
which has been proved sound and complete [Barbuti86J. To combine two theories, we would com
bine the positive parts, and synthesize the negative part. To compute the intersection, we com
bine the negative parts and synthesize the positive part. As stated in [Barbuti86], a set of opera
tors on theories along with constructs for composing them would provide a sound, formal tool for
manipulating chunks of knowledge represented as logic theories.

The intense level of research that has been focussed lately on meta-level inference engines
seems to indicate that it is a promising area which may yield some very important results in the
area of artificial intelligence~ Ken Bowen, for example, has shown that many of the common tech
niques used for knowledge representation in AI can be closely captured in metaPROLOG
(Bowen2-85)~ John Batali said: 'meta-level architectures provide a technical mean, if not a full
account, of how we make our programs understand themselves a.nd exploit that understanding in
their opera.tion' [Batali86]. Meta-level systems seem to embody to a certain degree some level of
introspection. Introspection plays an important role in awareness and mental activity among
humans. This connection alone is enough to encourage us to look further into the nature and
architectures of this systems and exploit their full potential toward a new way of computing and
computer design.

8. ACKNOWLEDGEMENTS
The author is deeply indebted to Ken Bowen for his role in guiding this research. He is also

very grateful to the following people from the Logic Programming Research Group for numerous
valuable discussions on metaProlog: Kevin Buettner, Dyas Cicekli, Andrew Turk, and Keith
Hughes.

- 12 -

REFERENCES

[Attardi84] Attardi G., Simi M. (lg84): Metalanguage and reasoning across
viewpoints. In proc. 6th ECAI, Pisa, Italy, 19S4.

[Batali86] Batali, J. (1986): Reasoning about Control in Software Meta-Level Architec
tures. In proe. from the conference on Meta-Level Architectures and reflection,
Alghero-Sardinia, Ita)y.

(Barbuti86] Barbuti, R., Manearella, P., Pedresch, D., and Turini F. (1086): Inten
sional Negation in Logic Programs. Submitted for publication to Journal or Logie Pro-
gramming.

[Bowen82] Bowen, K.A., Kowalski, R (1082): Amalgamating Language and
Metalanguage in Logic Programming. Logic Programming, eds. Clark K.L. and Tarn
lund S.A., Academic Press, New York, pp! 153-172.

(Bowenl-85] Bowen, K.A. and Weinber, T. (lQ85): A Meta-level Extention of Prolog.
In proe. of lQS5 IEEE Symposium on Logie Programming. Boston. pp. 869-675.

(Bowen2-85] Kenneth Bowen. Meta-level programming and knowledge representation.
New Generation Computing, 3(4):350-383, 10S5.

(Bowen86] Bowen, K.A., Buettner, K.A., Cicekli, I., Turk, A. (1986): A Fast Incremen
tal Portable Prolog Compiler. In proc. of 3rd International Conference on Logic Pro
gramming, Lodon 19S6.

(Buettner88] Buettner, KaA.. (1986): Fast Deeompilation or Compiled Prolog Clauses.
In proc. or 3rd International Conference on Logic Programming, Lodon 1986.

[Gallaire80] Gallaire, H., Lasserre, C. (1980): A Control Metalanguage for Logic
Prgramming. In proc. from Logic Programming Workshop, July 1980.

[Rivieres86] des Riviere, J. (1986): Meta-Level Facilities in Logic-Based Computational
Systems. In proc. ·from the conference on Meta-Level Architectures and reflection,
Algher~Sardinia,Italy.

[Shapiro86] Safra, S., Shapiro, E. (1986): Meta Interpreters For Real.

[Takeuchi85] Takeuchi, A., Furukawa, K. (lgS5): Partial Evaluation of Prolog Pro
grams and its Application to Meta-programming. ICOT Technical Report TR-126.
To appear in proc. IFIPS-86.

[\Varren83] Warren, D.B.D., (1983): An Abstract Prolog Instruction Set. Techninal
Note 30g. Artificial Intelligence Center, SRI International, 1983.

	Meta-level Programming: a Compiled Approach
	Recommended Citation

	SU-CIS-87-01_001c
	SU-CIS-87-01_002c
	SU-CIS-87-01_003c
	SU-CIS-87-01_004c
	SU-CIS-87-01_005c
	SU-CIS-87-01_006c
	SU-CIS-87-01_007c
	SU-CIS-87-01_008c
	SU-CIS-87-01_009c
	SU-CIS-87-01_010c
	SU-CIS-87-01_011c
	SU-CIS-87-01_012c
	SU-CIS-87-01_013c

