Runtime Compilation Techniques for Data Partitioning and Communication Schedule Reuse

Ravi Ponnusamy
University of Maryland, Computer Science Department; Syracuse University, Northeast Parallel Architecture Center

Joel Saltz
University of Maryland, Computer Science Department

Alok Choudhary
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

Part of the Computer Sciences Commons

Recommended Citation

https://surface.syr.edu/npac/10

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Runtime Compilation Techniques for Data Partitioning and Communication Schedule Reuse*

Ravi Ponnusamy†‡ Joel Saltz† Alok Choudhary†
†Computer Science Department ‡Northeast Parallel Architectures Center
University of Maryland Syracuse University
College Park, MD 20742 Syracuse, NY 13244

Abstract

In this paper, we describe two new ideas by which HPF compiler can deal with irregular computations effectively. The first mechanism invokes a user specified mapping procedure via a set of compiler directives. The directives allow the user to use program arrays to describe graph connectivity, spatial location of array elements and computational load. The second is a simple conservative method that in many cases enables a compiler to recognize that it is possible to reuse previously computed results from inspectors (e.g. communication schedules, loop iteration partitions, information that associates off-processor data copies with on-processor buffer locations). We present performance results for these mechanisms from a Fortran 90D compiler implementation.

1 Introduction

In sparse and unstructured problems the data access pattern is determined by variable values known only at runtime. In these cases, programmers carry out preprocessing to partition work, map data structures and schedule the movement of data between the memories of processors. The code needed to carry out runtime preprocessing can also be generated by a distributed memory compiler in a process we call runtime compilation [23]. In this paper, we present methods and a prototype implementation where we demonstrate techniques that make it possible for compilers to efficiently handle irregular problems coded using a set of language extensions closely related to Fortran D [10] or Vienna Fortran [28].

On distributed memory architectures, loops with indirect array accesses can be handled by transforming the original loop into two sequences of code: an inspector and an executor. The inspector partitions loop iterations, allocates local memory for each unique off-processor distributed array element accessed by a loop, and builds a communication schedule to prefetch required off-processor data. In the execution phase, the actual communication and computation are carried out [21]. The ARF compiler [26] and KALI compiler [16] used this kind of transformation to handle loops with indirectly referenced arrays (irregular loops).

We propose a simple conservative method that often makes it possible to reuse previously computed results from inspectors (e.g. communication schedules, loop iteration partitions, information that associates off-processor data copies with on-processor buffer locations). The compiler generates code that, at runtime, maintains a record of when a Fortran 90D loop or intrinsic may have written to a distributed array that is used to indirectly reference another distributed array. In this scheme, each inspector checks this runtime record to see whether any indirection arrays may have been modified since the last time the inspector was invoked.

In distributed memory machines, large data arrays need to be partitioned between local memories of processors. These partitioned data arrays are called distributed arrays. Long term storage of distributed array data is assigned to specific processor and memory locations in the distributed machine. It is frequently advantageous to partition distributed arrays in an irregular manner. For instance, the way in which the nodes of an irregular computational mesh are numbered frequently does not have a useful correspondence to the connectivity pattern of the mesh. When we partition the data structures in such a problem in a way that minimizes interprocessor communication, we may need to assign arbitrary array elements to each processor. In recent years promising heuristics have been developed and tradeoffs associated with the different partitioning methods have been studied [24, 25, 19, 17, 2, 13].

We have implemented the runtime support and compiler transformations needed to allow users to specify the information needed to produce a customized distribution function. In our view, this information can consist of a description of graph connectivity, spatial location of array elements and information that associates array elements with computational load. Based on user directives the compiler produces code that, at runtime, generates a standardized representation of the above information, and then passes this standardized representation to a (user specified) partitioner. The compiler also generates code that, at runtime, produces a data structure that is used to partition loop it-

*This work was sponsored in part by ARPA (NAG-1-1485), NSF (ASC 9213821) and ONR (SC292-1-22913). Author Choudhary was also supported by NSF Young Investigator award (CCR-9357840). The content of the information does not necessarily reflect the position of the policy of the Government and no official endorsement should be inferred.
C Single statement loop L1

FORALL i = 1, N
y(ia(i)) = x(ib(i)) + ... x(ic(i))
END FORALL

C Sweep over edges: Loop L2

FORALL i = 1, N
REDUCE (ADD, y(end.ptl(i)), f(x(end.ptl(i)), x(end.pt2(i))))
REDUCE (ADD, y(end.pt2(i)), g(x(end.ptl(i)), x(end.pt2(i))))
END FORALL

Figure 2: Solving Irregular Problems

Figure 1: Example Irregular Loops

erations. To our knowledge, the implementation described in this paper is the first distributed memory Fortran compiler to provide this kind of support. We also note that in the Vienna Fortran [28] language definition, a user can also specify a customized distribution function. The runtime support and compiler transformation strategies described here can also be applied to Vienna Fortran.

We will describe the runtime support, compiler transformations and language extensions required to provide the new capabilities described above. We assume that irregular accesses are carried out in the context of a single or multiple statement loop where the only loop carried dependencies allowed are left hand side reductions (e.g. addition, accumulation, max, min, etc). We also assume that irregular array accesses occur as a result of a single level of indirection with a distributed array that is indexed directly by the loop index.

In the example loops shown in Figure 1, we employ Fortran D syntax to depict two loops. The first loop is a single statement loop with indirect array references without dependencies. The second loop is a loop in which we carry out reduction operations. The second loop is similar to those loops found in unstructured computational fluid dynamics codes and molecular dynamics codes. We use this loop to demonstrate our runtime procedures and compiler transformations in the following sections.

We have implemented our methods as part of the Fortran 90D compiler being developed by Syracuse University [9]. Our implementation results on simple templates reveal that the performance of the compiler generated code is within 10% of the hand parallelized version.

This paper is organized as follows. We set the context of the work in Section 2. In Section 3, we describe the runtime technique to save communication schedules. In Section 4 we describe the procedures used to couple data and loop iteration partitioners to compilers. In Section 5 we present an overview of our compiler effort. We describe the transformations which generate the standard data structure and describe the language extensions we use to control compiler-linked runtime partitioning. In Section 6 we present performance data to characterize the performance of our methods. We briefly discuss related work in Section 7 and we conclude in Section 8.

2 Overview

2.1 Overview of CHAOS

We have developed efficient runtime support to deal with problems that consist of a sequence of clearly demarcated concurrent computational phases. The project is called CHAOS; the runtime support is called the CHAOS library. The CHAOS library is a superset of the earlier PARTI library [21, 26, 23].

Solving concurrent irregular problems on distributed memory machines using our runtime support, involves five major steps (Figure 2). The first three steps in the figure concern mapping data and computations onto processors. We provide a brief description of these steps here, and will discuss them in detail in later sections.

Initially, the distributed arrays are decomposed in a known regular manner. In Phase A of Figure 2, CHAOS procedures can be called to construct a graph data structure (the GeoCoL data structure) using the data access patterns associated with a particular set of loops. The GeoCoL graph data structure is passed to a partitioner. The partitioner calculates how data arrays should be distributed.

In Phase B, the newly calculated array distributions are used to decide how loop iterations are to be partitioned among processors. This calculation takes into account loop data access patterns. In Phase C we carry out the actual remapping of arrays and loop iterations.

In Phase D, we carry out the preprocessing needed to (1) coordinate interprocessor data movement, (2) manage the storage of, and access to, copies of off-processor data, and (3) support a shared name space. This preprocessing involves generating communication schedules, translating
array indices to access local copies of off-processor data and allocating local buffer space for copies of off-processor data. It is also necessary to retrieve globally indexed but irregularly distributed data-sets from the numerous local data. It is also necessary to retrieve globally indexed but processor memories. Finally, in Phase E we use information from the earlier phases to carry out the necessary computation.

CHAOs and PARTI procedures have been used in a variety of applications, including sparse matrix linear solvers, adaptive computational fluid dynamics codes, molecular dynamics codes and a prototype compiler [23] aimed at distributed memory multiprocessors.

2.2 Overview of Existing Language Support

The data decomposition directives we employ for irregular problems will be presented in the context of Fortran D. While our work will be presented in the context of Fortran D, the same optimizations and analogous language extensions could be used for a wide range of languages and compilers such as Vienna Fortran and HPF. Vienna Fortran, Fortran D and HPF (evolved from Fortran D and Fortran 90) provide a rich set of data decomposition specifications; a definition of such language extensions may be found in [10, 8]. These languages, as currently specified, require that users explicitly define how data is to be distributed.

Fortran D can be used to explicitly specify an irregular inter-processor partition of distributed array elements. In Figure 3, we present an example of such a Fortran D declaration. In Fortran D, one declares a template called a distribution which is used to characterize the significant attributes of a distributed array. The distribution fixes the size, dimension and way in which the array is to be partitioned between processors. A distribution is produced using two declarations. The first declaration is DECOMPOSITION. Decomposition fixes the name, dimensionality and size of the distributed array template. The second declaration is DISTRIBUTE. Distribute is an executable statement and specifies how a template is to be mapped onto processors.

Fortran D provides the user with a choice of several regular distributions. In addition, a user can explicitly specify how a distribution is to be mapped onto processors. A specific array is associated with a distribution using the Fortran D statement ALIGN. In statement S3 of Figure 3, two of size \(N \) each, one dimensional decompositions are defined. In statement S4, decomposition \(\text{reg} \) is partitioned into equal sized blocks, with one block assigned to each processor. In statement S5, array \(\text{map} \) is aligned with distribution \(\text{reg} \). Array \(\text{map} \) will be used to specify (in statement S7) how distribution \(\text{irreg} \) is to be partitioned between processors. An irregular distribution is specified using an integer array; when \(\text{map}(i) \) is set equal to \(p \), element \(i \) of the distribution \(\text{irreg} \) is assigned to processor \(p \).

\[
\begin{align*}
\text{S1} & \quad \text{REAL*8} \ x(N), y(N) \\
\text{S2} & \quad \text{INTEGER} \ \text{map}(N) \\
\text{S3} & \quad \text{DECOMPOSITION} \ \text{reg}(N), \text{irreg}(N) \\
\text{S4} & \quad \text{DISTRIBUTE} \ \text{reg}(\text{block}) \\
\text{S5} & \quad \text{ALIGN} \ \text{map} \text{ with reg} \\
\text{S6} & \quad \ldots \ \text{set values of map array using some mapping method.} \ldots \\
\text{S7} & \quad \text{DISTRIBUTE} \ \text{irreg}(\text{map}) \\
\text{S8} & \quad \text{ALIGN} \ x, y \ \text{with irreg} \\
\end{align*}
\]

Figure 3: Fortran D Irregular Distribution

The difficulty with the declarations depicted in Figure 3 is that it is not obvious how to partition the irregularly distributed array. The map array which gives the distribution pattern of \(\text{irreg} \) has to be generated separately by running a partitioner. The Fortran-D constructs are not rich enough for the user to couple the generation of the map array to the program compilation process. While there are a wealth of partitioning heuristics available, coding such partitioners from scratch can represent a significant effort. There is no standard interface between the partitioners and the application codes.

3 Communication Schedule Reuse

The cost of carrying out an inspector (phases B, C and D in Figure 2) can be amortized when the information produced by the inspector is computed once and then used repeatedly. Compile time analysis needed to reuse inspector communication schedules is touched upon in [12, 7].

We propose a simple conservative method that in many cases allows us to reuse the results from inspectors. The results from an inspector for loop \(L \) can be reused as long as:

- distributions of data arrays referenced in loop \(L \) have remained unchanged since the last time the inspector was invoked, and
- there is no possibility that indirection arrays associated with loop \(L \) have been modified since the last inspector invocation.

The compiler generates code that at runtime maintains a record of when a Fortran 90D loop's statements or array intrinsic may have written to a distributed array that is used to indirectly reference another distributed array. In this scheme, each inspector checks this runtime record to see whether any indirection arrays may have been modified since the last time the inspector was invoked.

In this presentation, we assume that we are carrying out an inspector for a forall loop. We also assume that all
indirect array references to any distributed array y are of the form $y(ia(i))$ where ia is a distributed array and i is a loop index associated with the forall loop.

A data access descriptor (DAD) for a distributed array contains (among other things) the current distribution type of the array (e.g., block, cyclic, irregular) and the size of the array. In order to generate correct distributed memory code, whenever the compiler generates code that references a distributed array, the compiler must have access to the array's DAD. In our scheme, we will maintain a global data structure that contains information on when any array with a given DAD may have been modified.

We maintain a global variable $n\text{mod}$ which represents the cumulative number of Fortran 90D loops, array intrinsics or statements that have modified any distributed array. Note that we are not counting the number of assignments to the distributed array, instead we are counting the number of times the program will execute any block of code that writes to a distributed array. $n\text{mod}$ may be viewed as a global time stamp. Each time we modify an array with a given data access descriptor $\text{DAD}(a)$, we update a global data structure $\text{laatmod}(\text{DAD}(a))$ with the current value of the global variable $n\text{mod}$ (i.e., the current global timestamp). Thus when a loop, array intrinsic or statement modifies a we set $\text{laatmod}(\text{DAD}(a)) = n\text{mod}$. If the array a is remapped, it means that $\text{DAD}(a)$ changes. In this case, we increment $n\text{mod}$ and then set $\text{laatmod}(\text{DAD}(a)) = n\text{mod}$.

The first time an inspector for a forall loop L is carried out, it must perform all the preprocessing. Assume that L has m data arrays x_i^L, $1 \leq i \leq m$, and n indirection arrays, ind_j^L, $1 \leq j \leq n$. Each time an inspector for L is carried out, we store the following information:

- $\text{DAD}(x_i^L)$ for each unique data array x_i^L, for $1 \leq i \leq m$, and
- $\text{DAD}(\text{ind}_j^L)$ for each unique indirection array ind_j^L, for $1 \leq j \leq n$ and
- $\text{laatmod}(\text{DAD}(\text{ind}_j^L))$, for $1 \leq j \leq n$.

We designate the values of $\text{DAD}(x_i^L)$, $\text{DAD}(\text{ind}_j^L)$ and $\text{laatmod}(\text{DAD}(\text{ind}_j^L))$ stored by L's inspector as $L\text{.DAD}(x_i^L)$, $L\text{.DAD}(\text{ind}_j^L)$ and $L\text{.laatmod}(\text{DAD}(\text{ind}_j^L))$.

For a given data array x_i^L and indirection array ind_j^L in a forall loop L, we maintain two sets of data access descriptors. For instance, we maintain:

- $\text{DAD}(x_i^L)$ the current global data access descriptor associated with x_i^L, and
- $L\text{.DAD}(x_i^L)$ is a record of the data access descriptor that was associated with x_i^L when L carried out its last inspector.

For each indirection array ind_j^L, we also maintain two timestamps:

- $\text{last}\text{mod}(\text{DAD}(\text{ind}_j^L))$ is the global timestamp associated with the current data access descriptor of ind_j^L, and
- $L\text{.last}\text{mod}(\text{DAD}(\text{ind}_j^L))$ is the global timestamp of data access descriptor $\text{DAD}(\text{ind}_j^L)$, last recorded by L's inspector.

After the first time L's inspector has been executed, the following checks are performed before the subsequent executions of L. If any of the following conditions is false, the inspector must be repeated for L.

1. $\text{DAD}(x_i^L) == L\text{.DAD}(x_i^L)$, $1 \leq i \leq m$
2. $\text{DAD}(\text{ind}_j^L) == L\text{.DAD}(\text{ind}_j^L)$, $1 \leq j \leq n$
3. $\text{last}\text{mod}(\text{DAD}(\text{ind}_j^L)) == L\text{.last}\text{mod}(L\text{.DAD}(\text{ind}_j^L))$, $1 \leq j \leq n$.

As the above algorithm tracks possible array modifications at runtime, there is potential for high runtime overhead in some cases. The overhead is likely to be small in most computationally intensive data parallel Fortran 90 codes (see Section 6). Calculations in such codes primarily occur in loops or Fortran 90 array intrinsics, so we need to record modifications to a DAD once per loop or array intrinsic call.

We employ the same method to track possible changes to arrays used in the construction of the data structure produced at runtime to link partitioners with programs. We call this data structure a GeoCoL graph, and it will be described in Section 4.1.1. This approach makes it simple for our compiler to avoid generating a new GeoCoL graph and carrying out a potentially expensive repartition when no change has occurred.

We could further optimize our inspector reuse mechanism by noting that there is no need to record modifications to all distributed arrays. Instead, we could limit ourselves to recording possible modifications of the sets of arrays that have the same data access descriptor as an indirection array. Such optimization will require interprocedural analysis to identify the sets of arrays that must be tracked at runtime. Future work will include exploration of this optimization.

4 Coupling Partitioners

In irregular problems, it is often desirable to allocate computational work to processors by assigning all computations that involve a given loop iteration to a single processor [3]. Consequently, we partition both distributed arrays and loop iterations using a two-phase approach (Figure 2). In the first phase, termed a "data partitioning" phase, distributed arrays are partitioned. In the second phase, called "workload partitioning", loop iterations are partitioned using the information from the first phase. This appears to be a practical approach, as in many cases
the same set of distributed arrays are used by many loops. The following two subsections describe the two phases.

4.1 Data Partitioning

When we partition distributed arrays, we have not yet assigned loop iterations to processors. We assume that we will partition loop iterations so as to attempt to minimize non-local distributed array references. Our approach to data partitioning makes an implicit assumption that most (although not necessarily all) computation will be carried out in the processor associated with the variable appearing on the left hand side of each statement - we call this the *almost owner computes rule*.

There are many partitioning heuristics methods available based on physical phenomena and physical proximity [24, 2, 25, 13]. Currently these partitioners must be coupled to user programs in a manual fashion. This manual coupling is particularly troublesome and tedious when we wish to make use of parallelized partitioners. Further, partitioners use different data structures and are very problem dependent, making it extremely difficult to adapt to different (but similar) problems and systems.

4.1.1 Interface Data Structures for Partitioners

We link partitioners to programs by using a data structure that stores information on which data partitioning is to be based. Data structure partitioners can make use of different kinds of program information. Some partitioners operate on data structures that represent undirected graphs [24], [15], [19]. Graph vertices represent array indices, graph edges represent dependencies. Consider the example loops in Figure 1. In both loops, the graph vertices represent the N elements of arrays x and y. The graph edges in the first loop in Figure 1 are the union of:

- edges linking vertices ia(i) and ib(i), i = 1,N
- edges linking vertices ia(i) and ic(i), i = 1,N

The graph edges in the second loop of Figure 1 are the union of edges linking vertices end_pt1(i) and end_pt2(i).

In some cases, it is possible to associate geometrical information with a problem. For instance, meshes often arise from finite element or finite difference discretizations. In such cases, each mesh point is associated with a location in space. We can assign each graph vertex a set of coordinates that describe its spatial location. These spatial locations can be used to partition data structures [2, 22].

Vertices may also be assigned weights to represent estimated computational costs. In order to accurately estimate computational costs, we need information on how work will be partitioned. One way of deriving weights is to make the implicit assumption that an owner compute rule will be used to partition work. Under this assumption, computational cost associated with executing a statement will be attributed to the processor owning a left hand side array reference. This results in a graph with unit weights in the first loop in Figure 1. The weight associated with a vertex in the second loop of Figure 1 would be proportional to the degree of the vertex when functions f and g have identical computational costs. Vertex weights can be used as a sole partitioning criterion in "embarrassingly parallel problems", problems in which computational costs dominate.

A given partitioner can make use of combinations of connectivity, geometrical or weight information. For instance, we find that it is sometimes important to take estimated computational costs into account when carrying out coordinate or inertial bisection for problems where computational costs vary greatly from node to node. Other partitioners make use of both geometrical and connectivity information [5].

Since the data structure that stores information on which data partitioning is to be based can represent Geometrical, Connectivity and/or Load information, we call this the GeoCoL data structure.

4.1.2 Generating GeoCoL Data Structure

We propose a directive `CONSTRUCT` that can be employed to direct a compiler to generate a GeoCoL data structure. A user can specify spatial information using the keyword `GEOMETRY`.

The following is an example of a GeoCoL declaration that specifies geometrical information:

```
C$ CONSTRUCT G1 (N, GEOMETRY(3, xcord, ycord, zcord))
```

This statement defines a GeoCoL data structure called G1 having N vertices with spatial coordinate information specified by xcord, ycord, and zcord. The `GEOMETRY` construct is closely related to the geometrical partitioning or `value based decomposition` directives proposed by von Hanxleden [11].

Similarly, a GeoCoL data structure which specifies only vertex weights can be constructed using the keyword `LOAD` as follows.

```
C$ CONSTRUCT G2 (N, LOAD(weight))
```

Here, a GeoCoL construct called G2 consists of N vertices with vertex i having LOAD weight(i).

The following example illustrates how connectivity information is specified in a GeoCoL declaration. Integer arrays `edge_list1` and `edge_list2` list the vertices associated with each of E graph edges.

```
C$ CONSTRUCT G3 (N, LINK(E, edge_list1, edge_list2))
```

The keyword `LINK` is used to specify the edges associated with the GeoCoL graph.

Any combination of spatial, load and connectivity information can be used to generate GeoCoL data structure. For instance, the GeoCoL data structure for a partitioner that uses both geometry and connectivity information can be specified as follows:

```
C$ CONSTRUCT G4 (N, GEOMETRY(3, xcord, ycord, zcord), LINK(E, edge_list1, edge_list2))
```
REAL*8 x(nnode), y(nnode)
INTEGER end.pt1(nedge), end.pt2(nedge)
S1 DYNAMIC, DECOMPOSITION reg(nnode),
 reg2(nedge)
S2 DISTRIBUTE reg(BLOCK), reg2(BLOCK)
S3 ALIGN x,y with reg
S4 ALIGN end.pt1, end.pt2 with reg2
 call read-data(end-pt1, end-pt2, ...)
S5 CONSTRUCT G (nnode, LINK(nedge,end-pt1,
 end-pt2))
S6 SET distfmt BY PARTITIONING G USING
 RSB
S7 REDISTRIBUTE reg(distfmt)
C Loop over edges involving x, y
 C Loop over faces involving x, y

Figure 4: Example of Implicit Mapping in Fortran 90D

Once the GeoCoL data structure is constructed, data
partitioning is carried out. We assume there are P pro-
cessors:

1. At compile time dependency coupling code is gener-
 ated. This code generates calls to the runtime sup-
 port that, when the program executes, generates the
 GeoCoL data structures,
2. The GeoCoL data structure is passed to a data par-
 titioning procedure that partitions the GeoCoL into
 P subgraphs.
3. The GeoCoL vertices assigned to each subgraph
 specify an irregular distribution.

The GeoCoL data structure is constructed with the ini-
tial default distribution of distributed arrays. Once we
have the new distribution given by the partitioner, we re-
distribute the arrays based on the new distribution. A
communication schedule is built and used to redistribute
the arrays from the default to the new distribution.

4.2 Linking Data Partitioners

In Figure 4 we illustrate a possible set of partitioner
coupling directives for the loop L2 in Figure 1. We use
statements S1 to S4 (Figure 4) to produce a default initial
distribution of arrays x and y and the indirection array
in loop L1, end-pt. The statements S5 and S6 directs the
generation of code to construct the GeoCoL graph and call
the partitioner. Statement S5 indicates that the GeoCoL
graph edges are to be generated based on the relations
between distributed arrays x and y in loop L1 and the rela-
tionship is provided by using the keyword LINK in the

S'5 CONSTRUCT G (nnode, GEOMETRY(3, xc, yc, zc))
S'6 SET distfmt BY PARTITIONING G USING
 RSB
S'7 REDISTRIBUTE reg(distfmt)
C Loop over edges involving x, y
 C Loop over faces involving x, y

Figure 5: Example of Implicit Mapping using Geometric
Information in Fortran 90D

CONSTRUCT statement. The statement S6 in the fig-
ure calls the partitioner RSB (recursive spectral bisection)
with GeoCoL as input. The user will be provided a library
of commonly available partitioners and the user can choose
any one one of them. Also, the user can link a customized
partitioner as long as the calling sequence matches. Fi-
nally, the distributed arrays are remapped in statement S7
using the new distribution returned by the partitioner.

Figure 5 illustrates code similar to that shown in Fig-
ure 4 except that here the use of geometric information
is shown. Arrays xc, yc, and zc, which carry the spatial
coordinates for elements in x and y, are aligned with the
same decomposition to which arrays x and y are aligned.
Statement S'5 specifies that the GeoCoL data structure is
to be constructed using geometric information. S'6 spec-
fies that recursive binary coordinate bisection is used to
partition the data.

4.3 Loop Iteration Partitioning

Once we have partitioned data, we must partition com-
putational work. One convention is to compute a program as-
signment statement S in the processor associated with the
distributed array element on S's left hand side. This con-
vention is normally referred to as the "owner-computes"
rule. (If the left hand side of S references a replicated
variable then the work is carried out in all processors).
One drawback to the owner-computes rule in sparse codes
is that we may need to generate communication within
loops even in the absence of loop carried dependencies.
For example, consider the following loop:

FORALL i=1,N
S1 x(ib(i)) =
S2 y(ia(i)) = x(ib(i))
END FORALL

This loop has a loop independent dependence between
S1 and S2 but no loop carried dependencies. Were we to
assign work using the owner-computes rule, for iteration
i, statement S1 would be computed on the owner of ib(i)
(OWNER(ib(i))) while statement S2 would be computed
on the owner of ia(i) (OWNER(ia(i)). The value of y(ib(i))
would have to be communicated whenever OWNER(ib(i))
\neq OWNER(ia(i)).

An alternate convention is to assign all work associated
with a loop iteration to a given processor. We have devel-
oped data structures and procedures to support iteration
partitioning.

Our current default is to employ a scheme that places
a loop iteration on the processor that is the home of the
largest number of the iteration’s distributed array refer-
ences.

5 Compiler Support

In the previous section we presented directives a pro-
grammer can use to implicitly specify how data and loop
iterations are to be partitioned between processors. In this
section we outline compiler transformations used to carry
out this implicitly defined work and data mapping. The
compiler transformations generate code which embeds the
CHAOS mapper coupler procedures.

We use the example in Figure 4 to show how the compiler
procedures are embedded in the code. A (simplified) ver-

on of the compiler transformation is shown in Figure 6.
We start with BLOCK array distributions. Statements S5
to S7 in Figure 4 are used to generate a data distribution.
When the CONSTRUCT statement is encountered, the
compiler generates code with embedded CHAOS proce-
sure calls, during program execution, the CHAOS pro-
cedures generate the GeoCoL data structure. The Geo-

CoL data structure is then passed to an user specified
partitioner. When the REDISTRIBUTE statement is
encountered, the compiler generates code with embedded CHAOS pro-
cedure calls to move arrays (x and y) aligned with the initial
distribution (reg) to the new distribution (distfmt).

Loop iterations are partitioned at runtime using the
method described in Section 4.3 whenever a loop accesses
at least one irregularly distributed array.

6 Experimental Results

6.1 Timing Results for Schedule Reuse

In this section, we present performance data for the
schedule saving technique proposed in Section 3 for the
Fortran 90D compiler implementation. These timings in-
volve a loop over edges of an 3-D unstructured Euler
solver [20] for 10K and 53K mesh points and an electro-
static force calculation loop in a molecular dynamics code
for 648 atom water simulation [4]; the functionality of
these loops is equivalent to the loop L2 in Figure 1. Ta-

ble 1 depicts the performance results of compiler generated
code with and without the schedule reuse technique for

Start with block distribution of arrays x, y and
end pts
Read Mesh (end pt1, end pt2, ...)
C$ CONSTRUCT G (nnode, LINK (nedge, end pt1,
end pt2))
K1 Call CHAOS procedures to generate GeoCoL data
structure
C$ SET distfmt BY PARTITIONING G USING
RSB
K2 Pass GeoCoL to RSB graph partitioner
K3 Obtain new distribution format from the parti-
tioner(distfmt)
C$ REDISTRIBUTE reg (distfmt)
K4 Remap arrays (x and y) aligned with
distribution reg to distribution distfmt

Figure 6: Compiler Transformations for Implicit Data
Mapping

unstructured mesh and molecular dynamics loops, vary-
ing the number of processors of Intel iPSC/860 hypercube.
The table presents the execution time of the loops for 100
iterations with distributed arrays decomposed irregularly
using a recursive binary dissection partitioner. The results
shown in the table emphasizes the importance of schedule
reuse.

6.2 Timing Results using the Mapper

Coupler

In this section, we present data that compares the the
cos costs incurred by the compiler generated mapper coupler
procedures with the cost a hand embedded mapper cou-
pler. These timings involve a loop over edges of an 3-D
unstructured Euler solver and the electrostatic force cal-
culation loop in a molecular dynamics code. The compiler-
linked mapping technique was incorporated in the Fortran
90D compiler being developed at Syracuse University. We
present the performance of our runtime techniques on dif-
ferent number of processors on an Intel iPSC/860.

To map arrays we employed two different kinds of parallel
partitioners 1) a geometry based partitioner (coordinate
bisection [2]) and 2) a connectivity based partitioner (re-
cursive spectral bisection [24]). The performance of the
compiler embedded mapper version and hand parallelized
version are shown in Table 2.

In Table 2, Partitioner depicts the time needed to par-
tition the arrays using the partitioners, Executor depicts the
time needed to carry out the actual computation and com-
unication, and inspector depicts the time taken to build the schedule. In Table 2, Partition under Spectral
Bisection depicts the time needed to partition the GeoCoL
graph data structure using a parallelized version of Simon’s
eigenvalue partitioner [24]. We partitioned the GeoCoL
graph into a number of subgraphs equal to the number of processors employed. It should be noted that any common parallelized partitioner could be used as a mapper. The graph generation time depicts the time required to generate GeoCoL graph. The Executor time shown in Table 2 gives the time needed to carry out the executor phase for 100 times. The results shown in the table demonstrate that the performance of the compiler generated code is within 10% of the hand coded version. In Table 4, we have included timings for a hand coded block partitioned version of the code in order to quantify the performance effects that arose from the decision to partition the problem. In the blocked version, we assigned each processor contiguous blocks of array elements. We see that the use of either a coordinate bisection partitioner or a spectral bisection partitioner lead to a factor of two to three reduction in the executor time compared to the use of block partitioning. This example also points out the importance of the number of executor iterations on which partitioner should be chosen. When compared to the recursive coordinate bisection partitioner, the recursive spectral bisection partitioner is associated with a faster time per executor iteration but a significantly higher partitioning overhead.

A detailed performance of the compiler-linked coordinate bisection for the unstructured mesh loop and the molecular dynamics loop is shown in Table 3. In Table 4, we present timing results for naive partition of arrays - we assigned each processor contiguous blocks of arrays to processors using BLOCK distribution allowed in HPF. Irregular distribution of arrays performs much better than the existing BLOCK distribution supported by HPF.

7 Related Work

Research has been carried out by von Hanxleden [11] on compiler-linked partitioners which decompose arrays based on distributed array element values, these are called value based decompositions. Our GEOMETRY construct can be viewed as a particular type of value based decomposition. Several researchers have developed programming environments that are targeted towards particular classes of irregular or adaptive problems. Williams [25] describes a programming environment (DIME) for calculations with unstructured triangular meshes using distributed memory machines. Baden [1] has developed a programming environment targeted towards particle computations. This programming environment provides facilities that support dynamic load balancing.

There are a variety of compiler projects targeted at distributed memory multiprocessors [27, 16]. Jade project at Stanford, DINO project at Colorado and CODE project at Austin provide parallel programming environments. Runtime compilation methods are employed in four compiler projects; the Fortran D project [14], the Kali project [16], Marina Chen's work at Yale [18] and our PARTI project [21, 26, 23]. The Kali compiler was the first compiler to implement inspector/executor type runtime preprocessing [16] and the ARF compiler was the first compiler to support irregularly distributed arrays [26].

In earlier work, several of the authors of the current paper outlined a strategy (but did not attempt a compiler implementation) that would make it possible for compilers to generate compiler embedded connectivity based partitioners directly from marked loops [6]. The approach described here requires more input from the user and lesser compiler support.

8 Conclusions

In this paper, we have described and and presented timing data for a prototype Fortran 90D compiler implementation. The work described here demonstrates two new
Table 3: Performance of Compiler-linked Coordinate Bisection Partitioner with Schedule Reuse

<table>
<thead>
<tr>
<th>Tasks (Time in Secs)</th>
<th>10K Mesh Processors</th>
<th>53k Mesh Processors</th>
<th>648 Atoms Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Partitioner</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Inspector</td>
<td>1.2</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Remap</td>
<td>3.1</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Executor</td>
<td>12.7</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Total</td>
<td>17.6</td>
<td>10.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Table 4: Performance of Block Partitioning with Schedule Reuse

<table>
<thead>
<tr>
<th>Tasks (Time in Secs)</th>
<th>10K Mesh Processors</th>
<th>53k Mesh Processors</th>
<th>648 Atoms Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Inspector</td>
<td>1.5</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Remap</td>
<td>3.1</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Executor</td>
<td>26.0</td>
<td>20.8</td>
<td>14.7</td>
</tr>
<tr>
<td>Total</td>
<td>30.4</td>
<td>23.3</td>
<td>16.0</td>
</tr>
</tbody>
</table>

ideas for dealing effectively with irregular computations. The first mechanism invokes a user specified mapping procedure using a set of directives. The second is a simple conservative method that in many cases makes it possible for a compiler to recognize the potential for reusing previously computed results from inspectors (e.g. communication schedules, loop iteration partitions, information that associates off-processor data copies with on-processor buffer locations).

We view the CHAOS procedures described here as forming a portion of a portable, compiler independent, runtime support library. The CHAOS runtime support library contains procedures that

- support static and dynamic distributed array partitioning,
- partitions loop iterations and indirection arrays,
- remap arrays from one distribution to another and
- carry out index translation, buffer allocation and communication schedule generation,

We consider our work to be a part of the ARPA sponsored integrated effort towards developing powerful compiler independent runtime support for parallel programming languages. The runtime support can be employed in other High Performance Fortran type compilers, and in fact, a subset of the runtime support described here has been incorporated into the Vienna Fortran compiler.

We tested our prototype compiler on computational templates extracted from an unstructured mesh computational fluid dynamics code [20] and from a molecular dynamics code [4]. We embedded our runtime support by hand and compared its performance against the compiler generated code. The compiler's performance on these templates was within about 10% of the hand compiled code.

The CHAOS procedures described in this paper are available for public distribution and can be obtained from netlib or from the anonymous ftp site hyena.cs.umd.edu.

Acknowledgments

The authors would like to thank Alan Sussman and Raja Das for many fruitful discussions and for help in proofreading. The authors would like to thank Geoffrey Fox, Chuck Koelbel and Sanjay Ranka for many enlightening discussions about universally applicable partitioners and how to embed such partitioners into compilers; we would also like to thank Chuck Koelbel, Ken Kennedy and Seema Hiranandani for many useful discussions about integrating into Fortran-D runtime support for irregular problems. Our special thanks go to Reinhard von Hanxleden for his helpful suggestions.

The authors would also like to gratefully acknowledge the help of Zeki Bozkus and Tom Haupt and the time they spent orienting us to internals of the Fortran 90D compiler. We would also like to thank Horst Simon for the use of his unstructured mesh partitioning software.

References

