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Deriving Private Information from Randomized Data

Zhengli Huang, Wenliang Du and Biao Chen
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Tel: 315-443-9180 Fax: 315-443-1122
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ABSTRACT
Randomization has emerged as a useful technique for data
disguising in privacy-preserving data mining. Its privacy
properties have been studied in a number of papers. Kar-
gupta et al. challenged the randomization schemes, and
they pointed out that randomization might not be able to
preserve privacy. However, it is still unclear what factors
cause such a security breach, how they affect the privacy
preserving property of the randomization, and what kinds
of data have higher risk of disclosing their private contents
even though they are randomized.

We believe that the key factor is the correlations among
attributes. We propose two data reconstruction methods
that are based on data correlations. One method uses the
Principal Component Analysis (PCA) technique, and the
other method uses the Bayes Estimate (BE) technique. We
have conducted theoretical and experimental analysis on the
relationship between data correlations and the amount of
private information that can be disclosed based our proposed
data reconstructions schemes. Our studies have shown that
when the correlations are high, the original data can be re-
constructed more accurately, i.e., more private information
can be disclosed.

To improve privacy, we propose a modified randomization
scheme, in which we let the correlation of random noises
“similar” to the original data. Our results have shown that
the reconstruction accuracy of both PCA-based and BE-
based schemes become worse as the similarity increases.

Keywords
Privacy-Preserving Data Mining, Randomization, PCA, and
Bayes Estimate.

1. INTRODUCTION
With the advance of the information age, data collection

and data analysis have exploded both in size and complex-
ity. The attempt to extract important patterns and trends
from the vast data sets has led to a challenging field called
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Data Mining. When a complete data set is available, var-
ious statistical, machine learning and modeling techniques
can be applied to analyze the data. In many contexts, data
are distributed across different sites. Traditionally, the data
warehousing approach has been used to mine distributed
databases. It requires that data from all the participat-
ing sites are collected at a centralized warehouse. However,
many data owners may be reluctant to share their data with
others due to privacy and confidentiality concerns. This is
a serious impediment to perform mutually beneficial data
mining tasks.

Privacy-Preserving Data Mining (PPDM) has emerged to
address this issue. The research of PPDM is aimed at bridg-
ing the gap between collaborative data mining and data
confidentiality. It involves many areas such as statistics,
computer sciences, and social sciences. It is of fundamental
importance to homeland security, modern science, and to
our society in general.

Agrawal and Srikant first proposed using randomization to
solve PPDM problems [2]. In their randomization scheme, a
random number is added to the value of a sensitive attribute.
For example, if xi is the value of a sensitive attribute, xi +r,
rather than xi, will appear in the database, where r is a ran-
dom value drawn from some distribution. It is shown that
given the distribution of random noises, recovering the dis-
tribution of the original data is possible. The randomization
techniques have been used for a variety of privacy preserving
data mining work [1, 21, 9, 7].

Kargupta et al. challenged the randomization schemes,
and they pointed out that randomization might not be se-
cure [16]. They proposed a random matrix-based Spectral
Filtering (SF) technique to recover the original data from the
perturbed data. Their results have shown that the recovered
data can be reasonably close to the original data. The re-
sults indicate that for certain types of data, randomization
might not preserve privacy as much as we have believed.

Motivated by Kargupta et al’s work, we want to answer
a series of important questions that are still unanswered:
what are the key factors that decide the accuracy of the data
reconstruction? what are the conditions that make data less
privacy preserving using randomization? can we improve
randomization to achieve better privacy? Being able to an-
swer these questions is important to understand how secure
the randomization schemes are: first it tells us what types
of data should not use the randomization to disguise; sec-
ond, this understanding gives us a clear direction on how to
improve the randomization to achieve better privacy preser-
vation.
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We hypothesize that the relationships among data at-
tributes might be the key factor that decides how much
privacy can be preserved. Our hypothesis is motivated by
the following intuitive extreme case: Assume that there are
m numbers that have exactly the same values z. If each
of them is disguised by an independent uniformly-random
number with mean zero, we can estimate the value z by cal-
culating the mean of these m perturbed numbers. As we
know, the mean converges to z when m becomes large. Al-
though the above example is unrealistic, it indicates that
when data are highly correlated (thus redundant), we are
able to derive, from the disguised data, more accurate in-
formation about the original data. In other words, there
exists a strong relationship between the correlation and the
randomization’s privacy-preserving property.

The goal of this paper is to find out such a relationship,
then based on which to understand how well the randomiza-
tion works in terms of privacy preserving. We have devel-
oped two methods that exploit the correlations among data
to reconstruct the original data from a randomized data set.

Our first scheme is based on Principal Component Analy-
sis (PCA) method, which provides a framework for us to
control the degree of redundancy, we choose to use a scheme
that is directly based on PCA theory. Kargupta’s scheme
is also based on PCA, but part of it is based on Matrix
perturbation theory, which makes it difficult to achieve a
clear understanding of the correlation-vs-privacy relation-
ship. The choice of directly basing on PCA is not motivated
by the performance (actually, both schemes have similar per-
formance under some conditions), it is rather motivated by
its simplicity and being able to give an intuitive theoreti-
cal explanation on why it works. We call both schemes the
PCA-based schemes.

We have also developed a method that is more general
than the PCA-base schemes. In this scheme, we formulate
the data reconstruction problem as an estimation problem,
i.e., given the disguised data Y , we find X, such that the
posterior probability P (X | Y ) is maximized. This is ex-
actly the Bayes estimate [20]. We use the Bayes estimate
techniques to solve X, and then use X as the final recon-
structed data. Our results show that this method can obtain
more accurate results than the PCA-based schemes.

Based on our conclusion that correlationship can reveal
private information, we propose a modified randomization
scheme, in which we let correlations of random noise “sim-
ilar” to the original data. We have shown that the results
of data reconstructions based on both PCA-based and BE-
based schemes become worse when the correlation of noise
becomes more and more “similar” to the original data.

The rest of the paper is organized as follows. We discuss
the related work in Section 2. In Section 3, we summa-
rize the factors that can affect the privacy of randomiza-
tion. In Section 4, we show a univariate data reconstruc-
tion scheme that does not exploit data correlations. The
result of this scheme is used as the baseline data for our
comparison. In Section 5 and 6, we present our PCA-based
data reconstruction scheme and BE-based data reconstruc-
tion scheme, respectively. The experiment results are pre-
sented in Section 7. Section 8 describes an improved ran-
domization scheme and its experiment results. Finally we
summarize our work in Section 9.

2. RELATED WORK
There are two general approaches to privacy preserving

data mining: the randomization approach and the Secure
Multi-party Computation (SMC) approach. In the random-
ization approach, random noises are added to the original
data, and only the disguised data are shared [2, 1, 21, 9, 7].
There are two different randomization methods: the Ran-
dom Perturbation scheme and the Randomized Response
scheme.

Agrawal and Srikant proposed a scheme for privacy-preserving
data mining using random perturbation [2]. This work has
been extended by Agrawal and Aggarwal [1]. Under the
scheme, Evfimievski et al. proposed an approach to con-
duct Privacy-Preserving Association Rule Mining [9].

The randomized response is mainly used to deal with cat-
egorical data. Rizvi and Haritsa presented a scheme called
MASK to mine associations with secrecy constraints [21];
Du and Zhan proposed an approach to conduct Privacy-
Preserving Decision Tree Building [7]. All these approaches
are based on the Randomized Response technique proposed
by Warner [26].

Privacy is analyzed in most of the above studies, in addi-
tion, two studies have focused on the privacy analysis. The
first one is due to Evfimievski et al. [8], and the other is due
to Kargupta et al. [16]. In their paper, Evfimievski et al.
presented a formula of privacy breaches and a methodology
to limit the breaches in the field of association rule mining.

Kargupta et al. pointed out an important issue: arbitrary
randomization is not safe [16]. Inspired by their work, we
study why and how correlations affect privacy. In addition
to correlations, we identify other potential factors that can
influence privacy.

Another approach to achieve Privacy-Preserving Data Min-
ing is to use Secure Multi-party Computation (SMC) tech-
niques. Briefly, an SMC problem deals with computing cer-
tain function on multiple inputs, in a distributed network
where each participant holds one of the inputs; SMC en-
sures that no more information is revealed to a participant
in the computation than what can be inferred from the par-
ticipant’s input and the final output [11].

Several SMC-based privacy-preserving data mining schemes
have been proposed [17, 19, 23, 24, 5]. Lindell and Pinkas
used SMC to build decision trees over the horizontally par-
titioned data [17]. Vaidya and Clifton proposed the solu-
tions to the clustering problem [24] and the association rule
mining problem [23] for vertically partitioned data. Several
SMC tools and fundamental techniques are also proposed in
the literature [19, 5]. Some more schemes were presented in
recent conferences as follows. Wright et al. [27] and Meng
et al. [18] used SMC to solve privacy-preserving Bayesian
network problems. Gilburd et al. proposed a new privacy
model, k-privacy, for real-world large-scale distributed sys-
tems [10]. Sanil et al. described a privacy-preserving algo-
rithm of computing regression coefficients [22]. Du et al.
have developed building blocks to solve secure two-party
Multivariate Linear Regression and Classification problems [6].
Wang et al. used an iterative bottom-up generalization to
generate data, which remains useful to classification but dif-
ficult to disclose private sources [25].
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3. DERIVING PRIVATE INFORMATION
Kargupta et al. used a data reconstruction approach to

derive private information from a disguised data set [16].
Namely, a new data set X∗ is reconstructed from the dis-
guised data using certain algorithms, and the difference be-
tween X∗ and the actual original data set X indicates how
much private information can be disclosed. The further
apart X∗ is from X, the higher level of the privacy preserva-
tion is achieved. Therefore, the difference between X∗ and
X can be used as the measure to quantify how much pri-
vacy is preserved. Our work also uses data reconstruction
approaches, but we propose two different data reconstruc-
tion algorithms.

A variety of information can lead to the disclosure of pri-
vate information in a disguised data set. We summarize
several of them in the following:

• Attribute Dependency: Attributes in many data sets
are not independent, and some attributes might have
a strong correlationship among themselves. It is im-
portant to understand how such relationship can cause
private information disclosure.

• Sample Dependency: For certain types of data sets,
such as the time series data, there exists serial depen-
dency among the samples. Even after perturbing the
data with random noise, this dependency can still be
recovered. For instance, various techniques are avail-
able from the signal processing literature to de-noise
the contaminated signals. One interesting research
problem is: for different types of data, what kind of
dependency relationships will help the adversaries re-
construct the original data?

• Partial Value Disclosure: In practice, it is possible
that the values of some attributes can be disclosed (via
other channels). For example, assume we have a med-
ical database that is disguised by randomization schemes.
Knowing that the patient Alice has diabetes and heart
problems, we might be able to estimate the other in-
formation about her. How to quantify privacy under
these circumstances?

• Data Mining Results: In the SMC approach, all the
participating parties can see the final results. These
results contain aggregate information about the data,
which can lead to possible privacy breaches. For exam-
ple, in the association rule mining, assume that there
is a rule saying that A implies B with 90% of support.
Even if one party knows only A and the association
rule results, he or she will be able to infer B with
high confidence. How do various data mining results,
including classification models, association rules, and
clustering affect individual privacy? Kantarcioglu et
al. has initiated studies on this issue [15].

The scope of the problems described above are broader
than what we have covered in this paper. In this paper, we
focus on the first problem, i.e., how to use data correlation
information to derive private information?

4. UNIVARIATE DATA RECONSTRUCTION
In this section, we describe two data reconstruction meth-

ods derived from the existing work on randomization. The

first approach is only based on the distribution of noise. It
does not consider the distribution of the original data X.
The second approach bases its guess on the posterior distri-
bution P (X|Y ), which can be estimated from the disguised
data. Because both reconstruction methods treat each at-
tribute independently without considering the dependency
relationship among attributes, we treat X and Y as if they
are one attribute.

We assume that the adversaries have the disguised data
Y = X +R, where X is the original data, and R is the noise
with a zero mean. Let X have n records or objects, which
are considered as realizations of n independent identically
distributed (i.i.d.) random variables or i.i.d. random vec-
tors (when there are multiple attributes). Let R have the
same size of data values as X. They are the realizations of
n independent random variables or random vectors, drawn
from a certain distribution.

4.1 Using Noise Distribution
This is a naive guessing method: for each disguised data

item y, the adversaries always use y as its guess of the origi-
nal, i.e., the adversaries always guess the value of the random
noise to be zero. We call this method the Noise Distribution-
based Reconstruction (NDR).

Let yi = xi + ri for i = 1, . . . , n, where xi, yi, ri are
samples of X, Y , and R, respectively. The mean square
error (m.s.e.) of the NDR scheme can be derived in the
following:

m.s.e. =
1

n

nX
i=1

(yi − xi)
2 =

1

n

nX
i=1

r2
i =

1

n

nX
i=1

(ri − 0)2

From the above equation, the m.s.e. of NDR is exactly
the variance of the random numbers. When the random
numbers have a large variance, the reconstruction accuracy
of NDR is low.

4.2 Using Univariate Distribution
NDR scheme is not good for reconstructing the original

data. It does not consider the distribution of X and Y ,
which can be helpful for data reconstruction.

In this subsection, we show how to reconstruct the original
data for each attribute based on some distributions. Since
we treat each attribute of the data set independently, we call
this method the Univariate Distribution-based Reconstruc-
tion (UDR).

Let fX , fY , fR represent the distribution of X, Y , and
R, respectively. We first derive the posterior distribution
P (X|Y ), which gives us the probability for different values
of X after having observed the value of Y . Since our goal
is to reconstruct the original data, we need to pick a value
that can minimize the overall mean square error. Our next
theorem indicates that picking the expected value of the
distribution achieves the minimum mean square error:

Theorem 4.1. Given a distribution f(x), let x̄ be the ex-
pected value of x. Let z be a constant. The mean square
error e =

R∞
−∞(x− z)2f(x)dx is minimized when z = x̄.

Proof. If we want to find what value of z makes the
e =

R∞
−∞(x − z)2f(x)dx minimum, we can differentiate the

equation twice on z. Then we find a value which makes the
first derivative equal to zero and the second derivative larger
than zero. This value indeed minimizes the value of e. The
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first derivative is:

∂
R∞
−∞(x− z)2f(x)dx

∂z
= 0

then
Z ∞

−∞
2 ∗ (x− z)f(x)dx = 0.

2 ∗
Z ∞

−∞
xf(x)dx− 2z ∗

Z ∞

−∞
f(x)dx = 0

Z ∞

−∞
xf(x)dx− z = 0

z = x̄

(1)

The second derivative is:

∂2
R∞
−∞(x− z)2f(x)dx

∂2z
= 2 > 0 (2)

Therefore to minimize mean square errors, z must be the
expected value of x.

Next we will show how to compute the posterior distribu-
tion P (X|Y ) and its expected value. To compute P (X|Y ),
we need to know the distributions fX , fY , and fR. R’s dis-
tribution fR is public. Y ’s distribution fY can be estimated
from the samples, i.e., the disguised data set. X’s distri-
bution fX is unknown; however, it has been shown by the
studies in the privacy preserving data mining area that fX

can be estimated from the disguised data [2]. Therefore, in
our next analysis, we assume all three distributions fX , fY ,
and fR are known. We have the following:

P (x|Y = y) =
f(y|x)fX(x)

fY (y)
=

fR(y − x)fX(x)

fY (y)
. (3)

Therefore the expected value of X given the disguised
value Y = y is the following:

E(x|Y = y) =

Z ∞

−∞
x

fX(x)fR(y − x)

fY (y)
dx

=

R∞
−∞ xfX(x)fR(y − x)dx

fY (y)
. (4)

We thus use E(x|Y = y) as our guess to reconstruct the
original data.

It should be noted that UDR only considers the distri-
bution of one dimension; it does not use any correlation
between different attributes. If the attributes are highly
correlated, the use of the correlations will greatly help the
adversaries’ estimations. In the following sections, we will
study how to take advantage of the correlations among the
attributes.

5. PCA-BASED DATA RECONSTRUCTION
In this section, we will present a different estimation tech-

nique which is based on PCA (principal component analy-
sis). We called this technique PCA-Based Data Reconstruc-
tion (PCA-DR). To help readers understand PCA-DR, we
briefly describe how PCA works.

5.1 Principal Components Analysis
Principal Component Analysis (PCA)[14] is a way to re-

duce the dimensionality of a data set with interrelated vari-
ables, but still contain as much variance of the data set as
possible. If a data set has m variables, each of which has n
implementations, PCA can transform the data set to a new
data set with p ≤ m variables, which are uncorrelated and
are ordered by the variances they contain. We usually say
there is a strong trend along a direction if the variance in
the direction is large.

Let D be a data set of n records of m variables (also
called attributes). It can be viewed as a transposed vector
of m variables. Let us start to search for the first prin-
cipal component (PC), which presents the largest variance
of the original data set in the direction of a certain vec-
tor. We look for a linear function De1 of the variables of
D which has maximum variance, where e1 is a vector of m
constants. To get the second PC. we look for a linear func-
tion De2, uncorrelated with De1, and having maximum vari-
ance. Accordingly, a linear function Dep, uncorrelated with
De1, ..., Dep−1, is found which has maximum variance. The
result vectors De1, De2, ..., Dep are called principal compo-
nents (PCs). Since the value of p is always smaller than or
equal to m, PCA is used for compression. The variances in
the directions of the vectors decrease from De1 to Dep.

If some variables have significant correlations among them,
the first few generated PCs will count most of the vari-
ances in D. Accordingly, the subsequently-generated PCs
will count a smaller portion of the variances of D.

In order to find PCs, the covariance matrix C is computed.
This is the matrix whose (i, j)-th entry is the covariance
between the ith and jth variables of D (when i = j, it
is the variance of the ith attribute of D). Then, ek is an
eigenvector of C corresponding to its kth largest eigenvalue
λk. The kth PC is Dek, the variance of which is equal to
λk. We briefly introduce the procedures of decreasing the
number of the data dimensions and of restoring data below.

5.1.1 Decreasing the Dimensionality
Let the original data set be D as before. The mean of

each attribute of the data set is 0 due to the requirement of
PCA. A non-0-mean data set can always be adjusted to a
0-mean data set by subtracting the mean of each attribute
from it. Then all operations can be executed on the adjusted
data set. When the operations are done and restoring the
data set is wanted, the mean will be added back. For the
simplicity of presentation, we ignore the adjustment steps
and consider all data sets we use here are 0-mean data sets.

From D, its covariance matrix C can be computed. Using
C, eigenvectors [e1, e2, ..., em] can then be obtained, so is
their corresponding eigenvalues: λ1, ..., λm, where λ1 >=
λ2 >= ... >= λm.

Assume that the data have large variances along the direc-
tions of the first p eigenvectors, and small variances along
the directions of the other m − p eigenvectors. Let E =
[e1, e2, ..., ep] be a matrix of size m ∗ p. The following equa-
tion describes the transformation that can reduce dimen-
sions.

Dn = DE, (5)

where Dn is a new data matrix of size n ∗ p. Thus, the
number of the dimensions of the data set decreases from m
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to p.

5.1.2 Restoring the Original Data
Next we restore the original data from the new data. If

p = m, E is orthogonal, meaning that its transpose is its
inverse. We have:

D = Dn(E)−1 = DnET

If E is only composed of p (< m) eigenvector, the above
equation is only an approximation and becomes

D̂ = DnET (6)

where D̂ is the estimated original data set.
When we use reduced E (e.g. the first p eigenvectors),

the restored data will not reflect the variances along the
directions of the other m − p eigenvectors. However, the
restored data still contains most information of the data
set because the variances in the directions of the principal
eigenvectors are maintained. We call an eigenvector “princi-
pal” if it is used to calculate the principal components. We
call an eigenvalue “principal” when it is corresponding to a
principal eigenvector.

5.2 PCA-Based Data Reconstruction
Existing methods have not exploited the correlations when

quantifying privacy. We believe that the correlations can
help the adversaries make more accurate guess. For exam-
ple, let Ai be an attribute in the data set. If several at-
tributes are highly correlated with Ai, then we have redun-
dant information about Ai. We should be able to estimate
Ai with better accuracy based on this information.

When a data set has strong correlations among its data,
the data set has large variances in the directions of some
vectors but small variances in the other directions. The ad-
dition of noise does not change the trends too much, because
if the random numbers added to the original data are inde-
pendent, their variances will be evenly distributed among
all the directions.

Principal Component Analysis is a technique that identi-
fies those trends. Let us consider the information loss when
we only select p principals out of the total m. There will be
information loss. All the variance along the other m− p di-
rections will be lost. However, when the data are highly cor-
related, the variances along the first p directions are much
larger than the variances along the rest m − p directions.
Thus removing those m − p directions during the transfor-
mation does not cause much information loss.

The information loss for the random numbers is different.
In randomization scheme, random numbers are independent
for each attribute. Their correlations are zero. Therefore,
their variance will be evenly distributed to those m direc-
tions. If we remove m − p directions in the PCA transfor-
mation, we are able to remove m−p

m
portion of the random

numbers’ variance. The more variance of random numbers
we remove, the better.

Therefore, if the data is highly correlated, then more di-
mensions can be reduced without causing too much informa-
tion loss for the original data; at the same time, the informa-
tion loss for the noise increases. Intuitively speaking, during
the PCA transformation using the first p < m principals, we
can filter out a portion of the random numbers.

Based on the above observation, we present a PCA-based
data reconstruction scheme. Since PCA introduces infor-

mation loss, it is important to understand how much of the
original information is lost and how much of the noise is
lost. Using the PCA-based scheme proposed by Kargupta et
al. [16], the information loss and noise loss cannot be clearly
quantified, because of matrix perturbation theory also used
in that scheme complicates the analysis. Therefore, to be
able to understand how correlation affect the privacy of the
randomization scheme, we choose to use PCA directly to
reconstruct the data. Namely we reconstruct the original
eigenvalues and eigenvectors, and then based on the original
eigenvalues, we select the principal components. Since the
original eigenvalues reflect the degree of correlations among
data attributes, the number of principal components and
the sum of their variances indicate how much of the original
information is kept via PCA.

5.2.1 Estimating Covariance Matrix
To conduct PCA, we need to know the covariance matrix

for the original data. How do we get the covariance matrix
for the original data? The following theorem provides the
answer.

Theorem 5.1. Let Xi and Xj represent two variables in
the data set. Cov(Xi + Ri, Xj + Rj) represents the (i, j)-
th entry of the covariance matrix from the disguised data
set, where Ri and Rj are random variables with zero means,
and they are independent from Xi or Xj . Cov(Xi, Xj) rep-
resents the (i, j)-th entry of the covariance matrix from the
original data set. Let σ be the standard deviation of Ri. We
have the following relationship:

Cov(Xi + Ri, Xj + Rj)

=

�
Cov(Xi, Xj) + σ2, for i = j

Cov(Xi, Xj), for i 6= j

Proof. Based on the definition of the covariance, we
have the following equations:

Cov(Xi + Ri, Xj + Rj)

= E((Xi + Ri)(Xj + Rj))− E(Xi + Ri)E(Xj + Rj)

= E(XiXj) + E(Ri)E(Xj) + E(Xi)E(Rj)

+E(RiRj)− E(Xi)E(Xj)

= E(XiYi) + 0 + 0 + E(RiRj)− E(Xi)E(Xj)

= Cov(Xi, Xj) + E(RiRj).

When i 6= j, Ri and Rj are independent, so E(RiRj) =
E(Ri)E(Rj) = 0; when i = j, E(RiRi) = E((Ri−0)2) = σ2,
where σ is the standard deviation of the random variables
Ri. Combining this with the above equation, we have proved
the theorem.

When the sample size is large enough, the relationship
presented in the above theorem carries over to the sample
covariance matrices (PCA is applied to sample covariance
matrices). The above theorem indicates that we can de-
rive the covariance matrix of the original data based on the
disguised data. All we need to do is to subtract σ2 from
the diagonal elements of the covariance matrix that is de-
rived from the disguised data. Although the derived matrix
is only an approximation, when the number of samples be-
comes larger, the approximation becomes more accurate.
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5.2.2 Applying PCA
After getting the approximated sample covariance ma-

trix for the real data, we can use the following PCA-based
method to reconstruct the original data (recall that Y repre-
sents the disguised data. We use C to represent the sample
covariance matrix derived from Y ):

1. Conduct PCA to get C = QΛQT , where Λ is a diag-
onal matrix consisting of eigenvalues, and Q a matrix
formed by eigenvectors.

2. Let p be the number of principal components to be
selected. Set Q̂ to be the first p columns of Q. 1

3. Reconstruct the data using X̂ = Y Q̂Q̂T .

Let m be the number of attributes in the data set. If
p = m (i.e., we do not reduce the dimension), the above
reconstruction procedure gets back to Y , and nothing is fil-
tered out. When p < m, X̂ will lose information. If we
lose the same amount information on both X and R, then
such a transformation is not helpful. However, as we have
discussed earlier, when the data are highly correlated, we
do not lose much information on X; more importantly, we
lose information about R, and the amount of information
loss with regard to R should, intuitively speaking, be pro-
portional to the ratio of p

m
. In the next sub-section, we will

formally quantify the information loss on R.

5.3 Analysis
For the sake of simplicity, we only analyze PCA-DR using

covariance matrix from the original data. That is, the co-
variance matrix is directly obtained from the original data,
rather than being estimated from the disguised data. There
are only minor differences between the covariance matrices
from original data and the estimated one. From the last
step of PCA procedure described earlier, we have

X̂ = Y Q̂Q̂T ,

so we get

X̂ = (X + R)Q̂Q̂T

= XQ̂Q̂T + RQ̂Q̂T . (7)

The error between X̂ and the original data X comes from
two sources: one is the error caused by XQ̂Q̂T , the other
is the error caused by RQ̂Q̂T . The former is decided by
the correlations among data and the number of principals
included in Q̂. The latter can be quantified by the following
theorem:

Theorem 5.2. Let m be the number of the attributes of
the original data set, p be the number of principal compo-
nents being used in PCA-DR. The variance of the random
noise is σ2, and its mean is 0. Let δ2 be the mean square
error of PCA-DR caused by RQ̂Q̂T . We have the following
relationship:

1There are a number of ways to select principal components.
We can fix the number of selected principal components; we
can also fix the portion of the original information that we
want to keep; we can also choose the dominant eigenvalues
by finding the largest gap between the dominant eigenvalues
and the non-dominant ones. The last method is used in our
experiments.

δ2 = σ2 p

m
. (8)

Proof. See Appendix A.

Due to Theorem (5.2), the mean square error that is
caused by R in PCA-DR scheme is proportional to the vari-
ance of the random numbers and the ratio of p

m
. This con-

firms our intuitive explanation. We will also use experiments
to verify these relationships.

6. BAYES-ESTIMATE-BASED DATA RECON-
STRUCTION

The PCA-based reconstruction works well when the data
are highly correlated. However, when the correlations of
data are not high enough, the non-principal components will
not be many; according to Theorem (5.2), we will not be able
to filter out significant amount of the noise. Our results in
Section 7 will show that when the correlations become low,
the accuracy achieved by the PCA-based scheme is even
worse than the univariate data reconstruction scheme.

In this section, we describe a more accurate data recon-
struction method. We want to fully take advantage of the
correlationship among data. Unlike the PCA-based schemes,
which use this correlationship to filter out noise, We for-
mulate the data reconstruction problem as an estimation
problem, i.e., based on the disguised data that we have ob-
served and on the data correlationship that we know, we
use a value that can most likely produce such an observa-
tion as our reconstructed data. In other words, given the
disguised data Y , we search for X, such that the posterior
distribution P (X | Y ) is maximized. We then use X as the
data reconstructed from the disguised data. This is the idea
of the Bayes estimate [20]. We call our scheme the Bayes-
Estimate-based Data Reconstruction (BE-DR).

To simplify derivation, we assume that the original data
have multivariate normal distribution. This assumption is
reasonable since this distribution is a good approximate dis-
tribution in many situations [13]. Because of the appealing
properties of multivariate normal distribution, the calcula-
tion of Bayes estimate is simplified to computation of matri-
ces and vectors even though the form of the distribution is
more complicated. As we will explain later, this assumption
can be relaxed.

6.1 Data Reconstruction
Suppose that random noise used for each attribute has

normal distribution and it is independent from those used
for other attributes. Suppose that an adversary only has
the disguised data set and the distribution of the random
noise. Let the original data have m attributes and n records.
They can be considered as observations of a random vector
of length m. Let the random vector of the original data be
~X. Similarly let the random vector of the noise be ~R, and
the random vector of the disguised data ~Y . Let f ~X , f~Y ,

f~R represent the distributions of ~X, ~Y , ~R, respectively. The

distribution of ~X and ~R are described in the following:

f ~X(~x) =
1

(2π)m/2|Σx|1/2
e−

1
2 (~x− ~µx)T Σ−1

x (~x− ~µx)

f~R(~r) =
1

(2πσ)m/2
e−

1
2 (~r− ~µr)T (~r− ~µr)/σ2

,
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where Σx is the covariance matrix of the original data, σ2

is the variance of the random noise, ~µx, ~µr are the mean
vectors of the original data and the noise data.

We use the posterior distribution P ( ~X|~Y ) to represent the

probabilities for different values of ~X given an observation
of ~Y . By using Bayesian rule, we get the following formulae:

P ~X,~Y (~x|~Y = ~y) =
f ~X(~x)f~Y | ~X(~y|~x)

f~Y (~y)
, (9)

where f~Y | ~X(~y|~x) represents the probability of getting ~y from

~x, which is exactly the probability of the random number
(~y − ~x). Therefore, f~Y | ~X(~y|~x) = f~R(~y − ~x).

We want to find a value of ~X, such that P ~X,~Y (~x|~Y = ~y)

is maximized. Noticing that the denominator f~Y (~y) does

not change when ~X changes, we only need to consider the
numerator. Thus we only need to maximize:

f ~X(~x)f~Y | ~X(~y|~x) = f ~X(~x)f~R(~y − ~x)

=
1

(2π)m/2|Σx|1/2
e−

1
2 (~x− ~µx)T Σ−1

x (~x− ~µx) ·
1

(2πσ)m/2
e−

1
2 (~y−~x− ~µr)T (~y−~x− ~µr)/σ2

(10)

Since the logarithm is a monotone one-to-one function, we
could maximize the following function instead:

−1

2
(~x− ~µx)T Σ−1

x (~x− ~µx)− 1

2
(~y − ~x)T (~y − ~x)/σ2.

Note that in the above equation the constant terms are
ignored because it does not affect computing the maximum
estimator of ~x; the mean vector ~µr is ignored too since it is
assumed to be zero vector in randomization schemes.

We let the first derivative of the above equation with re-
spect to ~x be 0. We get:

Σ−1
x (~x− ~µx) + (~x− ~y)/σ2 = 0.

After simplifying and rearranging the above equation, we
have

~̂x = (Σ−1
x + 1/σ2 · I)−1(Σ−1

x ~µx + ~y/σ2), (11)

where I is the identity matrix of the same size as Σx.
Equipped with Equation (11), we now describe our Bayes-

Estimate-based data reconstruction scheme:

1. Derive Σx from Theorem (5.1) using disguised data Y .

2. Derive ~µx by computing the mean vector of the dis-
guised data. We know that ~µx ≈ ~µy because random
noises have zero means.

3. For each ~y, derive ~̂x using Equation (11).

4. Use ~̂x as the reconstructed value.

The BE-based scheme, the PCA-based scheme, and the
univariate data reconstruction scheme have the following re-
lationship: when the correlations among data are low, e.g.,
data are independent, the results of BE-DR should converge
to the univariate data reconstruction. This is because when
data are independent, data from one attribute cannot help
the reconstruction of another attribute. Thus, the BE-DR

scheme is equivalent to the univariate data reconstruction.
On the other hand, when the correlations among data be-
come high, the results of BE-DR should be similar to those
of PCA-DR, because they both fully exploit the correlation-
ship among data.

Regarding our assumption on the multivariate normal dis-
tribution: although we have only shown the results for data
sets that satisfy multi-normal distribution, the approach can
be extended to data sets that satisfy other distribution.
However, for other distributions, we might not be able to
derive an equation with a simple analytic form for its first
derivative. In such situations, the Bayes estimate must be
sought using numerical methods, such as Gradient descent
methods [12, 3]. We will study them in our future work.

7. EXPERIMENT

7.1 Methodology
We have designed a series of experiments to evaluate the

PCA-DR scheme and the BE-DR scheme. Our goal is to
find out how the correlations among the attributes affect
the accuracy of these methods. Data correlations can be af-
fected by a number of parameters, including the ratio of the
number of principal components to the number of attributes
and the variance of data on the principal and non-principal
components. We have designed experiments to study how
these parameters affect our schemes. We also compare our
results with SF algorithm [16].

We decided to use synthetic data for our experiments, be-
cause it is difficult to find real data sets that bear properties
pre-determined for each experiment. Our approach is to
generate a covariance matrix first, then generate the syn-
thetic data set based on the covariance matrix, and finally
conduct the PCA-DR or BE-DR procedure. However, gen-
erating a covariance matrix with pre-determined properties
is not a trivial task either. To better control the proper-
ties of the matrix, we generated the covariance matrix in a
reverse way: we generated the eigenvalues and eigenvectors
first, and then we computed the covariance matrix from the
eigenvalues and eigenvectors. We can control the properties
of covariance matrix by changing eigenvalues. Our proce-
dure is described in the following:

1. We specify Λ as a diagonal matrix with the correspond-
ing eigenvalues on its diagonal. The size of Λ is m by
m.

2. By using Gram-Schmidt orthonormalization process [4],
we generate an orthogonal matrix Q of size m by m.
We consider each column of Q as an eigenvector.

3. We let the covariance matrix C = Q× Λ×QT .

4. We generate a data set based on the covariance matrix.
In our experiments, we use mvnrnd from Matlab to
generate data from C. The function mvnrnd generates
a data set of multivariate normal distribution based on
the provided covariance matrix and the mean vector.
This resultant data set will be used as the original data
set X.

5. We randomly generate a noise data set using normal
distributions. This noise data set is then added to the
original data set to form the disguised data set Y .
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Figure 1: Experiment 1: Increase the Number of
Attributes

Benchmark. The objective of this paper is to show how
much the correlations among the attributes can help disclose
private information. Therefore, we compare our results with
the data reconstruction method that does not consider cor-
relations. UDR (Univariate Data Reconstruction) described
in Section 4 is such a data reconstruction scheme. We use its
results as our baseline comparison. The difference between
our PCA-DR, BE-DR results and the UDR results indicates
how much the correlations can help disclose private infor-
mation.

7.2 Experiment 1: Increasing the Size of the
Covariance Matrix

In this experiment, we change the correlations among data
by increasing the number of attributes while fixing the num-
ber of principal components. We first fixed the number of
principal components to p by letting the first p eigenvalues
in Λ to be λ, and the other m−p eigenvalues to be relatively
small numbers. p is 5 in the experiment. We then increased
the size of Λ from p to m.

Since UDR is used as the benchmark, we would like to
keep its result a constant when we generate different data
sets for this experiment. However, we found that this was
not an easy task. Since the mean square error of UDR only
depends on the standard deviation of the original data (we
have already fixed the distribution of the disguising noises),
to keep it the same, we should keep the average standard
deviation of each attribute the same. Due to the following
property of eigenvalues, by selecting the eigenvalues that
satisfy this property, we can keep the results of UDR almost
the same:

mX
i=1

λi =

mX
i=1

aii, (12)

where aii is the diagonal element of the covariance matrix,
i.e., it is the variance of the ith attribute.

Once the data is generated, we use the UDR, PCA-DR,
BE-DR and SF schemes to reconstruct the original data
from the disguised data, and measure the mean square er-
rors between the reconstructed data and the original data.
The results are depicted in Figure 1.
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Figure 2: Experiment 2: Increase the Number of
Principal Components

The experimental results clearly show that all the correlation-
based reconstruction schemes (SF, PCA-DR, and BE-DR)
have lower reconstruction errors when the number of at-
tributes increase. Since the number of principal components
in this experiment is fixed, the larger the number of the at-
tributes, the higher the correlations, and as this experiment
indicates, the more accurately one can reconstruct the orig-
inal data. We also see that UDR scheme is not sensitive to
the change of correlations because it does not exploit such a
relationship. The performance of UDR is much worse com-
pared to the other schemes when the data correlations are
high.

We also observed that SF scheme does not perform as well
as the PCA-DR scheme in this experiment. However, this
comparison result does not always hold. The key difference
of the SF scheme and the PCA-DR scheme is how to sepa-
rate the principal components and the non-principal compo-
nents. SF scheme uses the bounds derived from the matrix
perturbation theory to identify and separate the principal
components from the non-principal components. Our exper-
iments show that when the eigenvalues on the non-principal
components are not very small, the derived bounds tend not
to be quite accurate. That might be the cause of SF’s worse
performance. In our experiment 3, we will show that when
the eigenvalues on the non-principal components are small,
the performance of SF and that of PCA-DR are indeed close.

Most importantly, the experiment shows that BE-DR achieves
better performance than PCA-DR and SF schemes. This re-
sult is consistent throughout all our experiments. The rea-
son is that the BE-DR method utilizes all the information,
including the non-principal components, while the PCA-
based schemes discard the non-principal components.

7.3 Experiment 2: Increasing the number of
principal components

In this experiment, we change the correlations among data
from another angle: instead of changing the value of m as in
the previous experiment, we change the value of p, the num-
ber of principal components. When p increases, the num-
ber of principal components increases, thus the correlations
among data decrease.

We fixed the size of the covariance matrix to be 100 ∗100,
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Figure 3: Experiment 3: Increase the Eigenvalues
of the non-Principal Components

i.e., there were 100 attributes. We let the first p eigenvalues
in matrix Λ be λ, and the rest m − p eigenvalues be very
small numbers compared with λ. This way, the number of
principal components is p. In the experiment, we increase
the value of p from 2 to 100. We use the same method as the
previous experiment to maintain the result of UDR method
a constant.

The results of this experiment are depicted in Figure 2.
The results show that SF, PCA-DR and BE-DR achieve
better accuracy when the number of principal components
becomes less, i.e., the correlations become higher.

For PCA-based schemes, intuitively speaking, when the
number of principal components increases, the correlations
among the attributes become weaker. Thus we need to keep
more directions in the PCA-based data compression. As a
result, more noises are kept because they are evenly distrib-
uted along all directions; therefore the accuracy of the data
reconstruction decreases.

For the same reason as the previous experiment, the BE-
DR scheme demonstrates a better performance than the
PCA-DR schemes.

7.4 Experiment 3: Increasing the Eigenvalues
of non-principal Components

Eigenvalues of non-principal components represent the dis-
carded variances on those non-principal directions. They
can affect the reconstruction results of PCA-based schemes
and BE-based scheme. In this experiment, we examine how
the eigenvalues influence the estimation results of PCA-DR
and BE-DR.

We fixed the size of Λ to 100 ∗ 100. We let the first 20
eigenvalues be λ and the other 80 eigenvalues be variables.
Here we let them change from 1 to 50, which is still smaller
than λ(=400 in our experiment).

The results are depicted in Figure 3. From the results,
changing the eigenvalues of the non-principal components
does not affect UDR, but it does significantly affect SF,
PCA-DR and BE-DR. When the eigenvalues become larger
or the correlations of the original data are low, the accuracy
of SF, PCA-DR and BE-DR all become worse. Because
SF and PCA-DR discard the information along the non-
principal eigenvectors, when the eigenvalues of those eigen-

vectors become larger, more information of the original data
is discarded; thus the estimation errors become higher. Af-
ter certain points, the original information is discarded so
much that the errors of SF and PCA-DR schemes are even
higher than UDR.

BE-DR scheme does not have the above drawbacks. As
demonstrated by the figure, the performance of BE-DR con-
verges to the performance of UDR when the correlations of
data are low. Note that UDR also “implicitly” uses the
Bayes estimate principle, but instead on single attribute.
When data correlations are low, the data become more and
more independent; thus multivariate Baye estimate recon-
struction becomes equivalent to univariate data reconstruc-
tion because no correlation among attributes can be ex-
ploited.

8. IMPROVING PRIVACY PRESERVATION
OF DATA RANDOMIZATION

8.1 An Improved Randomization Scheme
From the analysis of PCA, we know that the variances

of the random noises are evenly distributed among both
principal and non-principal components, while most of the
information of the original data concentrates on the prin-
cipal components. Therefore, when we discard those non-
principal components, we can remove (or filter) far more
noises than what we do to the original data. However, if
random noises also concentrate on the principal components,
separating original data from random noises becomes diffi-
cult.

Motivated by the above observation, we propose to use
correlated random noises to disguise original data. In partic-
ular, we let the correlations of the random noises similar to
the correlations of the original data. For example, when the
original data have a multivariate normal distribution with
covariance matrix C, we generate the random noises using
the same covariance matrix. This guarantees that noises
also concentrate on the principal components (of the origi-
nal data).

Under the new randomization scheme, the PCA-based
data reconstruction scheme is still the same, but the formula
in Equation (11) for BE-based scheme needs to be modified.
We have the following formula for BE-DR.

Theorem 8.1. Let the covariance matrix of the original
data be Σx, and the covariance matrix of the random noises
be Σr. Let the mean vectors of original data and noise data
be ~µx and ~µr, respectively. Let the disguised data vector ~y.
Then the Bayes estimate of the original data vector is

~̂x = (Σ−1
x + Σ−1

r )−1(Σ−1
x ~µx − Σ−1

r ~µr + Σ−1
r ~y). (13)

Proof. Similar to the derivation of Equation (11)

Because the original data cannot be directly observed, we
do not have the covariance matrix Σx. However, we can esti-
mate Σx using the disguised data Y and the covariance ma-
trix of the random noise. The following theorem describes
how to derive Σx:

Theorem 8.2. Let the covariance matrix of the original
data, random noise, and the disguised data be Σx, Σr, and
Σy, respectively. We have the following relationship:

Σy = Σx + Σr. (14)
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Figure 4: Experiment 4: Increasing the correlation
dissimilarity of the original data and random noise.

Proof. Similar to the proof of Theorem 5.1

There are two important aspects of privacy preserving
data mining. One is to preserve the original data’s pri-
vacy, the other is to do the data mining. Therefore, regard-
less of how the random noises are generated, the disguised
data set should be useful for data mining. Equation (14)
indicates that when the data are multivariate normal, we
can reconstruct the probability distribution of the original
data from the disguised data set. This distribution is suf-
ficient for many data mining computations. Actually, the
reason why randomization can be used in achieving privacy-
preserving data mining is that those supported data mining
operations are based on aggregate information (e.g. distrib-
ution). Therefore, our improved randomization scheme can
still be used in many privacy-preserving data mining com-
putations.

8.2 Experiment Results
To understand how the correlations among random noises

affect the data reconstruction methods, we use random noises
with different levels of “similarity” compared to the covari-
ance matrix Σx of the original data. We hypothesize that
the privacy is better protected when the noises are more
“similar” to Σx. We use the following correlation dissimi-
larity metric to quantify the difference between the correla-
tions among random noises and the correlations among the
original data.

Definition 8.1. (Correlation Dissimilarity) Let two
data sets be X, R with the same size of n by m. Let the
matrix of correlation coefficients for X be CX . Let the ma-
trix of correlation coefficients for R be CR. The correlation
dissimilarity between X and R is defined as:

Dis(X, R) =
1

m2 −m

vuut
mX

i=1

mX

j=1,j 6=i

(CX(i, j)− CR(i, j))2,

where (i, j) means an element in the ith row and jth column.
Note that, we do not consider the diagonal elements of the
matrices of correlation coefficients because they are always
1 and should not be counted for the dissimilarity.

Similar to the experiments in Section 7, we generate an
original data set with 100 attributes, where the first 50 eigen-
values have large numbers and the others have small num-
bers. To make it convenient to control the degree of correla-
tion dissimilarity between the noises and the original data,
we generate random noises based on these eigenvalues and
the corresponding eigenvectors of the original data. More
specifically, we fix the eigenvectors of the noises to be the
same as those of the original data, and we then change the
values of the eigenvalues. As a result, we will get a new
covariance matrix, based on which we can generate random
noises. It should be noted that there are many other ways
to generate random noises with different correlation dissim-
ilarities.

Our experiment results are depicted in Figure 4. The
figure indicates that when the correlations of the random
noises are almost the same as that of the original data, data
reconstruction has the highest error, i.e., the privacy is best
preserved. When the dissimilarity increases, the privacy
preservation becomes worse (with the SF algorithm being
the exception). The vertical line we draw in the middle of
the figure represents the situation where the random noises
are not correlated (i.e., the random noises of different at-
tributes are independent). Therefore, the curves on the left
side of the vertical line show how much privacy we can gain
by using correlated random noises as opposed to indepen-
dent noises.

On the right hand of the vertical line, noises are still cor-
related, but they are correlated very differently compared to
the original data X. Actually, based on the ways we gener-
ate those noises, the noises on the right side of the vertical
line start to concentrate on the non-principal components,
whereas the noises on the left side of the line concentrate
on the principal components. Our results have shown that
the accuracy of PCA-DR and BE-DR continues to increase.
This is because the amount of noises used to disguised the
principal components of the original data becomes less.

We noticed that the SF algorithm behaves differently after
the point of the vertical line. The main reason for this is that
the filtering bounds of the SF are derived from independent
random noises. It may not optimally filter the noises when
noises are correlated.

9. CONCLUSION
In this paper, we studied how correlations affect the pri-

vacy of a data set disguised via the random perturbation
scheme. We presented two methods to reconstruct original
data from a disguised data set. One scheme is based on PCA
(Principal Component Analysis), and the other scheme is
based on the Bayes estimate. Using PCA concepts, we give
an intuitive and theoretical explanation on how correlation
can affect the data privacy for a randomized data set. Our
results have shown that both the PCA-based schemes and
the BE-based scheme can reconstruct more accurate data
when the correlation of data increases. Our results have
also shown that the BE-based scheme is always better than
the PCA-based schemes.

To defeat the data reconstruction methods that exploit
the data correlation, we proposed a modified random per-
turbation, in which the random noises are correlated. Our
experiments show that the more the correlation of noises re-
sembles that of the original data, the better privacy preser-
vation can be achieved.
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Our future work will study how information other than
correlation can affect privacy. For example, we will study
how partial knowledge of a disguised data set can compro-
mise privacy.
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APPENDIX

A. PROOF OF THEOREM 5.2
Suppose that the random data is a matrix R of size n∗m,

and the eigenvectors of the covariance matrix of the original
data set is Q:

R =

0
B@

r11 . . . r1m

...
. . .

...
rn1 . . . rnm

1
CA , Q =

0
B@

e11 . . . e1m

...
. . .

...
em1 . . . emm

1
CA

where n is the number of records and m is the number of
attributes. Let the first p eigenvectors of Q be principal
and form another matrix Q̂. Before calculating RQ̂Q̂T , we
compute the mean square of RC, where C is an m × m
matrix:

C =

0
B@

c11 . . . c1m

...
. . .

...
cm1 . . . cmm

1
CA ,

then RC is:

RC =

0
B@

Pm
i=1 r1ici1 . . .

Pm
i=1 r1icim

...
. . .

...Pm
i=1 rnici1 . . .

Pm
i=1 rnicim

1
CA .

The mean square of the first column of RC is:

1

n

nX
j=1

(

mX
i=1

rjici1)
2 =

1

n

mX
i=1

mX

k=1

(

nX
j=1

rjirjkci1ck1)

Then we investigate the term in the parenthesis. If i = k,
the term is:

(
1

n

nX
j=1

rjtrjt)ct1ct1

where t is any integer from 1 to m. If n is large enough, the
term becomes:

(σ2)ct1ct1.

If i 6= j, the term is:

(
1

n

nX
j=1

rjsrjt)cs1ct1,

where, s, t are any integer from 1 to m. If considering the sth
and tth column of the random number to be the variables
Rs and Rt, E(RsRt) = E(Rs)E(Rt) = 0. When n is large
enough, 1

n

Pn
j=1 rjsrjt = 0. Therefore the above term when

s 6= t is 0 when n is large enough.
Then the mean square of the first column is:

σ2
mX

t=1

c2
t1. (15)

Similarly, we have the mean square errors of all columns.
We have:

σ2
mX

t=1

c2
tk, k = 1, ..., m. (16)

The the mean square of all columns is

σ2

m

mX

k=1

mX
t=1

c2
tk. (17)

Then we know that the mean square of RC is the variance
of the random numbers times the summation of the square
of all elements of C divided by m.

Let us calculate Q̂Q̂T .

Q̂Q̂T

=

0
B@

e11 . . . e1p

...
. . .

...
em1 . . . emp

1
CA

0
B@

e11 . . . em1

...
. . .

...
e1p . . . emp

1
CA

=

0
B@

Pp
i=1 e1ie1i . . .

Pp
i=1 e1iemi

...
. . .

...Pp
i=1 emie1i . . .

Pp
i=1 emiemi

1
CA (18)

From the previous description, the mean square of RQ̂Q̂T is

σ2

m

mX
j=1

mX

k=1

(

pX
i=1

ejieki)
2 =

σ2

m

pX
t=1

pX
i=1

(

mX
j=1

mX

k=1

ejiekiejtekt)

We investigate the terms in the parenthesis. If i = t,

mX
j=1

mX

k=1

ejiekiejtekt =

mX
j=1

e2
js

mX

k=1

e2
ks, s = 1, ..., p

= 1(Q is orthogonal).

If i 6= t,

mX
j=1

mX

k=1

ejiekiejtekt =

mX
j=1

ejiejt

mX

k=1

ekiekt

= 0(Q is orthogonal).

Thus, the mean square of RQ̂Q̂T is σ2 p
m

. Then the mean

square error of PCA-DR caused by RQ̂Q̂T is:

δ2 = σ2 p

m
(19)
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