
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1997

A Comparison of Annealing Techniques for Academic Course A Comparison of Annealing Techniques for Academic Course

Scheduling Scheduling

M.A. Saleh Elmohamed
Syracuse University, Northeast Parallel Architectures Center, salah@npac.syr.edu

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Paul Coddington
Syracuse University, Northeast Parallel Architectures Center ; University of Adelaide, Department of
Computer Science

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Elmohamed, M.A. Saleh; Fox, Geoffrey C.; and Coddington, Paul, "A Comparison of Annealing Techniques
for Academic Course Scheduling" (1997). Northeast Parallel Architecture Center. 8.
https://surface.syr.edu/npac/8

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/8?utm_source=surface.syr.edu%2Fnpac%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

DHPC-045

SCCS-777

A Comparison of Annealing Techniques
for Academic Course Scheduling

M.A. Saleh Elmohamed and Geoffrey Fox
Northeast Parallel Architectures Center

Syracuse University, Syracuse NY 13244, U.S.A.fsaleh, gcfg@npac.syr.edu

Paul Coddington
Northeast Parallel Architectures Center

Syracuse University, Syracuse NY 13244, U.S.A.
and

Department of Computer Science�
University of Adelaide, Adelaide SA 5005, Australia

paulc@cs.adelaide.edu.au

4 April 1998

Abstract

In this study we have tackled the NP-hard problem of academic class scheduling (or timetabling)
at the university level. We have investigated a variety of approaches based on simulated anneal-
ing, including mean-field annealing, simulated annealing with three different cooling schedules,
and the use of a rule-based preprocessor to provide a good initial solution for annealing. The
best results were obtained using simulated annealing with adaptive cooling and reheating as
a function of cost, and a rule-based preprocessor. This approach enabled us toobtain valid
schedules for the timetabling problem for a large university, using acomplex cost function that
includes student preferences. None of the other methods were able to provide a complete valid
schedule.�Current address.

1

1

1 Introduction

The primary objective of this study is to derive an approximate solution to the problem of university
class scheduling, or timetabling, which can be summarized as follows: given data sets of classes and
their days, enrollments, and instructors; rooms and their capacities, types, and locations; distances
between buildings; priorities of each building for different departments; and students and their class
preferences; the problem is to construct a feasible class schedule satisfying all the hard constraints
and minimizing the medium and soft constraints. Hard constraints are space and time constraints
that must be satisfied, such as scheduling only one class at a time for any teacher, student, or
classroom. Medium and soft constraints are student and teacher preferences that should be satisfied
if possible.

The timetabling problem (TTP) is a high-dimensional, non-Euclidean, multi-constraint combi-
natorial optimization problem, and is consequently very difficult to solve. This problem has been
tackled by many researchers, mostly in the field of operations research. A number of different
heuristics have been tried on different instances of the problem, from high school to university
course scheduling (see the reviews by de Werra [5] and Shaerf[30] and the papers collected in
Ref. [4]). For small to medium size problems, such as exam scheduling, high school scheduling,
or course scheduling for a university department, many of these methods work well. However no
particular method has yet been shown to produce good resultsfor real-world problems on a much
larger scale, such as scheduling all courses for a large university, which we address in this paper.
Also, we are not aware of any large scale study that takes intoaccount constraints due to student
preferences, as we have done.

We have used data for classes at Syracuse University. Currently this problem is handled by the
university scheduling department in a semi-automated fashion. A scheduling program is used to
find a partial solution, and substantial manual effort is required to iterate towards a final solution.
Also, when scheduling a certain semester (e.g. fall 1996), atemplate of a previous semester (e.g.
fall 1995) is used as part of the input data.

We have applied the following optimization techniques to this problem:

1. A rule-based expert system.

2. Mean-field annealing.

3. Simulated annealing with geometric cooling.

4. Simulated annealing with adaptive cooling.

5. Simulated annealing with adaptive cooling and reheatingas a function of cost.

6. Simulated annealing (using each of the three different cooling schedules) with a rule-based
preprocessor to provide a good initial solution.

The best results were obtained using simulated annealing with adaptive cooling and reheating
as a function of cost, and with a rule-based preprocessor to provide a good initial solution. Using
this method, and with careful selection of parameters and update moves, we were able to generate
solutions to the class scheduling problem using real data for a large university. None of the other
methods were able to provide a complete valid solution.

2

2 The Timetabling Problem

Timetabling is the assignment of time slots to a set of events, subject to constraints on these as-
signments. The NP-completeprofessors and classestimetabling problem [7, 13, 14] is a constraint
satisfaction problem that can be briefly stated as follows:

For a certain school withNp professors,Nq classes,Nx classrooms and lecture halls, andNs
students, it is required to scheduleNl professor-class pairs within a time limit ofNt time slots
producing a legal schedule. A legal schedule needs to be found such that no professor, class, or
student is in more than one place at a time, and no room is expected to accommodate more than one
lesson at a time or more students than its capacity.

The constraints for this problem can be hard, medium or soft.The medium and soft constraints
have an associated cost (or penalty), and if they are not satisfied, the goal is to minimize this cost.
Soft constraints have a lower priority (and thus lower cost)than medium constraints. The hard
constraints must be satisfied, so their associated cost mustbe reduced to zero. A feasible schedule
is one that satisfies all the hard constraints.
Hard constraints are usually constraints that physically cannot be violated. This includes events
that must not overlap in time, such as:� classes taught by the same professor,� classes held in the same room,� a class and a recitation or a lab of the same class.

Another examples are space or room constraints:� A class cannot be assigned to a particular room unless the capacity of the room is greater than
or equal to the class enrollment.� Some classes, such as laboratories, require a certain type of room.

Medium constraints are usually considered to be those constraints that fall into the gray area be-
tween the hard and soft constraints [9]. In our implementation, we define medium constraints to be
constraints such as time and space conflicts which, like hardconstraints, cannot physically be vio-
lated (for example, it is not possible for one person to be in two different classes at the same time).
However we consider these constraints to be medium rather than hard if they can be avoided by mak-
ing adjustments to the specification of the problem. The primary example is student preferences.
We cannot expect to be able to satisfy all student class preferences, in some cases, certain students
will have to adjust their preferences since certain classeswill clash, or will be oversubscribed.

Medium constraints have a high penalty attached to them, although not as high as that associated
with the hard constraints. In the final schedule the penalty of these constraints should be minimized
and preferably reduced to zero. Some examples of medium constraints are:� Avoid time conflicts for classes with students in common.� Eligibility criteria for the class must be met.� Do not enroll athletes in classes that conflict with their sport practice time (of course, depend-

ing on the sport).

3

Soft constraints are preferences that do not deal with time conflicts, and havea lower penalty (or
cost) associated with them. We aim to minimize the cost, but do not expect to be able to reduce it to
zero. Some examples are:� For each student, balance the three-day (Mon, Wed, Fri) as well as the two-day (Tue, Thu)

schedules.� Balance or spread out the lectures over the week.� Classes may request contiguous time slots.� Balance enrollment in multi-section classes.� Lunch and other break times may be specified.� Professors may request periods in which their classes are not taught.� Professors may have preferences for specific rooms or types of rooms.� Minimize the distance between the room where the class is assigned and the building housing
its home department.

Some soft constraints may have higher priority (and thus higher cost) than others. For example,
preferences involving teachers will have higher priority than the preferences of students.

The cost function measures the quality of the current schedule and generally involves the
weighted sum of penalties associated with different types of constraint violations. The aim of the
optimization technique is to minimize the cost function.

3 Mean-Field Annealing

One of the potential drawbacks of using simulated annealingfor hard optimization problems is that
finding a good solution can often take an unacceptably long time. Mean-field annealing (MFA)
attempts to avoid this problem by using a deterministic approximation to simulated annealing, by
attempting to average over the statistics of the annealing process. The result is improved execution
speed at the expense of solution quality. Although not strictly a continuous descent technique, MFA
is closely related to the Hopfield neural network [15, 17].

Mean-field annealing has been successfully applied to high school class scheduling [14]. For
scheduling, it is advantageous to use a Potts neural encoding to specify discrete neural variables (or
neurons) for the problem. This is defined in its simplest formas a mapping of events onto space-time
slots, for example an eventi, in this case a professor-class pair (p; q), is mapped onto a space-time
slot a, in this case a classroom-timeslot pair (x; t). Now, the Potts neuronsSia are defined to be1
if eventi takes place in space-time slota, and0 otherwise. In this way, the constraints involved can
be embedded in the neural net in terms of the weightswi;j of the neural network, which encode a
Potts normalization condition such as

Pa Sia = 1.
For a full derivation of the mean-field annealing algorithm from its roots in statistical physics,

see Hertzet al. [15] or Petersonet al. [29]. Here we will just give a brief overview of the method.
The basic idea is that it is possible to approximate the actual cost or energy functionE, which is a
function of discrete neural variablesSia, by an effective energy functionE0

that can be represented

4

in terms of continuous variablesUia andVia. These are known as mean field variables, sinceVia is
an approximation to the average value ofSia at a given temperatureT .

This approach effectively smooths out the energy function and makes it easier to find the min-

imum value, which is obtained by solving the saddle point equations @E0@Via = 0 and @E0@Uia = 0,
which generate a set of self-consistent mean field theory (MFT) equations in terms of the mean field
variablesU andV : Uia = � 1T @E@Via (1)Via = eUiaPb eUib : (2)

The MFA algorithm involves solving equations 1 and 2 at a series of progressively lower tem-
peraturesT : this process is known as temperature annealing. The critical temperatureTc, which
sets the scale ofT , is estimated by expanding equation 2 around the trivial fixed-point [13, 14]V (0)ia = 1Na , whereNa is the number of possible states of each of the network neurons. For exam-
ple, for the events defined by professor-class pairs(p; q) mapped onto classroom-timeslots(x; t),
we haveNpNq neurons, each of which hasNxNt possible states, in which caseV (0)pq;xt = 1NxNt .

Equations 1 and 2 can be solved iteratively using either synchronous or serial updating. The
iterative dynamics to evolve the mean field variables towarda self-consistent solution is explained in
detail by Petersonet al. [28]. The solutions correspond to stable states of the Hopfield network [17].
Observe from equation 2 that any solution to the MF equationsrespects a continuous version of the
Potts condition Xa Via = 1 8 i: (3)

3.1 The Mean-Field Annealing Algorithm

The generic MFA algorithm appears in Figure 1. At high temperaturesT , the mean-field solutions
will be states near the fixed-point symmetrical maximum entropy stateVia = 1=Na. At low tem-
peratures, finding a mean-field solution will be equivalent to using the Hopfield model, which is
highly sensitive to the initial conditions and known to be ineffective for hard problems [17]. MFA
improves over the Hopfield model by using annealing to slowlydecrease the temperature in order
to sidestep these problems.

These characteristics are similar to those of simulated annealing, which is no surprise since both
it and the mean-field method compute thermal averages over Gibbs distributions of discrete states,
the former stochastically and the latter through a deterministic approximation. It is therefore natural
to couple the mean-field method with the concept of annealingfrom high to low temperatures.

In addition to the structure of the energy function, there are three major interdependent issues
which arise in completely specifying a mean-field annealingalgorithm for a timetabling problem:� The values of the coefficients of terms in the energy function.� The types of dynamics used to find solutions of the MFT equations at eachT .

5

1. Choose a problem and encode the constraints into weightsfwijg.
2. Find the approximate phase transition temperature by linearizing equation (2).

3. Add a self-coupling�-term if necessary. In a neural net, this corresponds to a feedback
connection from a neuron to itself.

4. Initialize the neuronsVia to high temperature values1Na plus a small random term such asrand[�1; 1]� 0:001; and setT (0) = Tc.
5. Until (� � 0:99) do:� At eachT (n), update allUia andVia by iterating to a solution of the mean field equa-

tions.� T (n+ 1) = �T (n), we chose� = 0:9
6. The discrete valuesSia that specify the schedule are obtained by rounding the mean field

valuesVia to the nearest integer (0 or 1).

7. Performgreedy heuristicsif needed to account for possible imbalances or rule violations.

Figure 1: The Generic Mean-Field Annealing Algorithm� The annealing schedule details, i.e. the initial temperature T (0), the rules for deciding when
to reduceT and by how much, and the termination criteria.

Petersonet al. [14] introduced a quantity calledsaturation, �, defined as� = 1NiXia V 2ia ; (4)

whereNi is the number of events (in this case the number of professor-class pairs). This charac-
terizes the degree of clustering of events in time and/or space,�min = 1Na corresponds to high
temperature, whereas�max = 1 means that all theVia have converged to 0 or 1 values, indicating
that each event has been assigned to a space-time slot.

The first step of Figure 1 is to map the constraints of the problem into the neural net connection
weights. In our implementation, at eachTn the MFA algorithm (Figure 1) performs one update
per neural variable (defined as one sweep) with sequential updating using equations 1 and 2. After
reaching a saturation value close to 1 (we chose� = 0:99) we check whether the obtained solutions
are valid, i.e.Ehard = 0. If this is not the case the network is re-initialized and is allowed to resettle.
We repeat this procedure a number of times until the best solution is found. A similar procedure
was carried out on high school scheduling by Petersonet al. [14].

The MFA implementation was a little more complicated than the implementation of simulated
annealing and the expert system, since it had many more parameters to handle, and it was often
more difficult to find optimal values for these parameters. For example, one complication is the
computation of the critical temperatureTc, which involved an iterative procedure of a linearized

6

dynamic system. On the other hand, we observed that the convergence time was indeed much less
than any of the convergence times of the simulated annealingusing the three annealing schedules
studied. For more details on our MFA implementation, see Ref. [10].

4 The Rule-Based System

We have implemented a fairly complex rule-based expert system for solving the timetabling prob-
lem, for three reasons. Firstly, it gives us a benchmark as tohow well other methods do in com-
parison to this standard technique. Secondly, a simplified version of the rule-based system is used
to provide sensible choices for moves in the simulated annealing algorithm, rather than choosing
swaps completely at random, and this greatly improves the proportion of moves that are accepted.
Thirdly, we have used this system as a preprocessor for simulated annealing, in order to provide a
good initial solution.

Simulated annealing is a very time-consuming, computationally intensive procedure. Using an
expert system as a preprocessor is a way of quickly providinga good starting point for the annealing
algorithm, which reduces the time taken in the annealing procedure, and improves the quality of the
result. Our results clearly support this rationale for the case of academic scheduling.

The rule-based expert system consists of a number of rules (or heuristics) and conventional
recursion to assist in carrying out class assignments. We have developed this system specifically for
the problem of academic scheduling. The basic data structures or components of the system are:

1. Distance matrix of values between each academic department and every other building under
use for scheduling.

2. Class data structure of each class scheduled anywhere in campus. These structures are capable
of linking with each other.

3. Room data structure of each room (regardless of type) involved in the scheduling process.
Like classes, room structures are also linked with each other.

4. Data structures for time periods to keep track of which hour or time slot was occupied and
which was not.

5. Department inclusion data structure giving department inclusion within other larger depart-
ments or colleges.

6. Students structures indicating classes of various degree of requirements and preferences for
each student.

The basic function of the system is as follows: given data files of classes, rooms and buildings,
department-to-building distance matrix, students data, and the inclusion data, using the abovemen-
tioned data structures, the system builds an internal database which in turn is used in carrying out
the scheduling process. This process involves a number of essential sub-processes such as checking
the distances between buildings, checking building, room type and hours occupied, checking and
comparing time slots for any conflicts, checking rooms for any space conflict, and keeping track of
and updating the hours already scheduled.

The rule-based system uses an iterative approach. The basicprocedure for each iteration is as
follows. The scheduling of classes is done by department, soeach iteration consists of a loop over all

7

departments. The departments are chosen in order of size, with those having the most classes being
scheduled first. The system first loops over all the currentlyunscheduled classes, and attempts
to assign them to the first unoccupied room and timeslot that satisfies all the rules governing the
constraints. Since constraints involving capacity of rooms are very difficult to satisfy, larger classes
are scheduled first, to try to avoid not having large enough rooms later for those class sections with
large enrollments.

In some cases the only rooms and timeslots that satisfy all the rules will already be occupied by
previously scheduled classes. In that case, the system attempts to move one of these classes into a
free room and timeslot, to allow the unscheduled class to be scheduled.

Next, the system searches through all the scheduled classes, and selects those that have a high
cost, by checking the medium and soft constraints such as howclosely the room size matches the
class size, how many students have time conflicts, whether the class is in a preferred time period
or a preferred building, and so on. Selecting threshold values for defining what is considered a
“high” cost in each case is a subjective procedure, but it is straightforward to choose reasonable
values. When a poorly scheduled class is identified, the system searches for a class to swap it with,
so that the hard constraints are still satisfied, but the overall cost of the medium and soft constraints
is reduced.

This process of swapping rooms continues provided all the rules are satisfied and no “cycling”
(swapping of the same classes) occurs. Once all the departments have been considered, this com-
pletes one iteration. The system continues to follow this iterative procedure until a complete itera-
tion produces no changes to the schedule.

There are many rules dealing with space and hours, type of room, and priority of room. Many
are quite complex, but some of the basic rules, such as those implementing the hard constraints,
can be quite straightforward – for example, the following isthe basic rule for dealing with time and
space conflicts for a room:

IF [room(capacity)> class(space-requested)] and [no time conflict in this room]THEN assign
the room to the class.

When the rule-based system is used as a preprocessor, it produces a partial schedule as an output,
since it is usually unable to assign all of the given classes to rooms and times slots. The output is
divided into two parts: the first consists of classes, with their associated professors and students,
assigned to various rooms; and the second is a list of classesthat could not be assigned due to
constraint conflicts.

5 Simulated Annealing

Simulated annealing (SA) has been widely used for tackling different combinatorial optimization
problems, particularly academic scheduling [35, 7, 8]. Thebasic algorithm is described in Figure 2.
The results obtained depend heavily on the cooling scheduleused. We initially used the most com-
monly known and used schedule, which is the geometric cooling, but later tried adaptive cooling,
as well as the method of geometric reheating based on cost [3].

A comprehensive discussion of the theoretical and practical details of SA is given in [1, 27, 32,
34]. It suffices here to say that the elementary operation in the Metropolis method for a combina-
torial problem such as scheduling is the generation of some new candidate configuration, which is
then automatically accepted if it lowers the cost (C), or accepted with probabilityexp(��C=T),

8

1. Generate an initial schedules.
2. Set the initial best schedules� = s.
3. Compute cost ofs : C(s).
4. Compute initial temperatureT0.
5. Set the temperatureT = T0.
6. Whilestop criterionis not satisfied do:

(a) RepeatMarkov chain length(M) times:

i. Select a random neighbors0 to the current schedule,(s0 � Ns) .

ii. Set�(C) = C(s0)� C(s) .

iii. If (�(C) � 0 fdownhill moveg):� Sets = s0 .� If C(s) < C(s�) then sets� = s.
iv. If (�(C) > 0 fuphill moveg):� Choose a random numberr uniformly from [0; 1].� If r < e��(C)=T then sets = s0 .

(b) Reduce (or update) temperatureT .

7. Return the schedules�.
Figure 2: The Simulated Annealing Algorithm

whereT is the temperature, if it would increase the cost by�(C). Also, in Figure 2,s is the current
schedule ands0 is a neighboring schedule obtained from the current neighborhood space (Ns) by
swapping two classes in time and/or space.

Thus the technique is essentially a generalization of the local optimization strategy, where, at
non-zero temperatures, thermal excitations can facilitate escape from local minima.

The SA algorithm has advantages and disadvantages comparedto other global optimization
techniques. Among its advantages are the relative ease of implementation, the applicability to al-
most any combinatorial optimization problem, the ability to provide reasonably good solutions for
most problems (depending on the cooling schedule and updatemoves used), and the ease with which
it can be combined with other heuristics, such as expert systems, forming quite useful hybrid meth-
ods for tackling a range of complex problems. SA is a robust technique, however, it does have some
drawbacks. To obtain good results the update moves and the various tunable parameters used (such
as the cooling rate) need to be carefully chosen, the runs often require a great deal of computer time,
and many runs may be required.

Depending on the problem to which it is applied, SA appears competitive with many of the best
heuristics, as shown in the work of Johnsonet al. [21].

9

5.1 Timetabling Using the Annealing Algorithm

The most obvious mapping of the timetabling problem into theSA algorithm involves the following
constructs:

1. astate is a timetable containing the following sets:� P : a set of professors.� C: a set of classes.� S: a set of students.� R: a set of classrooms.� I: a set of time intervals.

2. acost or “energy” E(P;C; S;R; I) such that:� E(P): is the cost of assigning more than maximum number of allowed classesMp to
the same professor, plus scheduling one or more classes thatcause a conflict in the
professor’s schedule.� E(C): is the cost of scheduling certain classes at/within the same time period in violation
of the exclusion constraint, for example.� E(S): is the cost of having two or more classes conflict in time; plus cost of having in the
schedule one or more classes that really don’t meet the student’s major, class requested,
or class requirements; plus the cost of not having the classes evenly spread out over the
week, etc.� E(R): is the cost resulting from assigning room(s) of the wrong size and/or type to a
certain class.� E(I): is the cost of having more or less time periods than required, plus cost of an
imbalanced class assignments (a certain period will have more classes assigned to than
others, etc.).

3. A swap (or a move) is the exchange of one or more of the following: classci with classcj in
the setC with respect to time periodsIi andIj, and/or with respect to classroomRi andRj,
respectively. Generally, this step is referred to as class swapping.

Along with all of the necessary constraints, the simulated annealing algorithm also takes as input
data the following: the preprocessor output in the form of lists of scheduled and non-scheduled
classes and their associated professors and room types, a list of rooms provided by the registrar’s
office, a department to building distance matrix, a list of students and their class preferences, and a
list of classes that are not allowed to be scheduled simultaneously.

To use simulated annealing effectively, it is crucial to usea good cooling schedule, and a good
method for choosing new trial schedules, in order to efficiently sample the search space. We have
experimented with both these areas, which are discussed in the following sections.

10

5.2 The Annealing Schedules

Three annealing schedules have been used in our experimentsto update the temperature of the SA
algorithm in Figure 2: geometric cooling, adaptive cooling, and adaptive reheating as a function of
cost.

The first schedule we have used isgeometric cooling, where the new temperature (T 0
) of the

SA algorithm is computed using T 0 = �T ; (5)

where� (0 < � < 1) denotes the cooling factor. Typically the value of� is chosen in the range0:90
to0:99. This cooling schedule has the advantage of being well understood, having a solid theoretical
foundation, and being the most widely used annealing schedule. Our results obtained from using
this standard cooling schedule will be used as a baseline forcomparison with those using the other
two schedules, which allow the rate of cooling to be varied.

The second annealing schedule we used is the method ofreheating as a function of cost (RFC),
which was used for timetabling by Abramsonet al.[3], but the ideas behind it are due to Kirkpatrick
et al. [22, 23] and White [36]. Before introducing this schedule wefirst summarize a few relevant
points on the concept of specific heat (CH). Specific heat is a measure of the variance of the cost (or
energy) values of states at a given temperature. The higher the variance, the longer it presumably
takes to reach equilibrium, and so the longer one should spend at the temperature, or alternatively,
the slower one should lower the temperature.

Generally, in combinatorial optimization problems, phasetransitions [16, 26] can be observed
as sub-parts of the problem are resolved. In some of the work dealing with the traveling salesman
problem using annealing [24], the authors often observe that the resolution of the overall structure
of the solution occurs at high temperatures, and at low temperatures the fine details of the solution
are resolved. As reported in [3], applying a reheating type procedure, depending on the phase,
would allow the algorithm to spend more time in the low temperature phases, thus reducing the total
amount of time required to solve a given problem.

In order to calculate the temperature at which a phase transition occurs, it is necessary to com-
pute the specific heat of the system. A phase transition occurs at a temperatureT (CmaxH) when the
specific heat is maximal (CmaxH), and this triggers the change in the state ordering. If the best so-
lution found to date has a high energy or cost then the super-structure may require re-arrangement.
This can be done by raising the temperature to a level which ishigher than the phase transition
temperatureT (CmaxH). Generally, the higher the current best cost, the higher thetemperature which
is required to escape the local minimum. To compute the aforementioned maximum specific heat,
we employ the following steps [3, 34, 27].

At each temperatureT , the annealing algorithm generates a set of configurationsC(T). LetCi denote the cost of configurationi, C(T) is the average cost at temperatureT , and�(T) is the
standard deviation of the cost atT .

At temperatureT , the probability distribution for configurations is:Pi(T) = e�CikTPj e�CjkT : (6)

The average cost is computed as:< C(T) >=Xi2C CiPi(T) : (7)

11

Therefore, the average square cost is:< C2(T) >=Xi2C C2i Pi(T) : (8)

The variance of the cost is:�2(T) =< C2(T) > � < C(T) >2 : (9)

Now, the specific heat is defined as:CH(T) = �2(T)T 2 : (10)

The temperatureT (CmaxH) at which the maximum specific heat occurs, or at which the system
undergoes a phase transition, can thus be found.

Reheating sets the new temperature to beT = K � Cb + T (CmaxH) ; (11)

whereK is a tunable parameter andCb is the current best cost. Reheating is done when the tem-
perature drops below the phase transition (the point of maximum specific heat) and there has been
no decrease in cost for a specified number of iterations, i.e.the system gets stuck in a local min-
imum. Reheating increases the temperature above the phase transition (see equation 11), in order
to produce enough of a change in the configuration to allow it to explore other minima when the
temperature is reduced again.

The third cooling schedule we have tried isadaptive cooling. In this case, a new temperature is
computed based on the specific heat, i.e. the standard deviation of all costs obtained at the currentT . The idea here is to keep the system close to equilibrium, by cooling slower close to the phase
transition, where the specific heat is large. There are many different ways of implementing this idea,
we have chosen the approach taken by Huanget al. [18], which was shown to yield an efficient
cooling schedule. LetTj denote the current temperature, at stepj of the annealing schedule. After
calculating�(Tj) from equation 9, the new temperatureTj+1 is computed as follows:Tj+1 = Tj � e� aTj��(Tj) ; (12)

wherea is a tunable parameter. Following suggestions by Otten and van Ginneken [27] and
Diekmannet al. [6], �(Tj) is smoothed out in order to avoid any dependencies of the temperature
decrement on large changes in the standard deviation�. We used the following standard method to
provide a smoothed standard deviation��:��(Tj+1) = (1� !)�(Tj+1) + !�(Tj)Tj+1Tj (13)

and set! to 0:95. This smoothing function is used because it follows (from the form of the
Boltzmann distribution, see [32, 36]) that it preserves thekey relationship:ddT C(T) = ��2(T)T 2 = CH (14)

Note that reheating can be used in conjunction with any cooling schedule. We have used it with
adaptive cooling.

12

5.3 The Choice of Moves

The performance of any application of simulated annealing is highly dependent on the method used
to select a new trial configuration of the system for the Metropolis update. In order for the annealing
algorithm to work well, it must be able to effectively samplethe parameter space, which can only
be done with efficient moves.

The simplest method for choosing a move is to swap the rooms ortimeslots of two randomly
selected classes. However this is extremely inefficient, since most of the time random swapping
of classes will increase the overall cost, especially if we are already close to obtaining a valid
solution (i.e. at low temperature), and will likely be rejected in the Metropolis procedure. This low
acceptance of the moves means this simple method is very inefficient, since a lot of computation is
required to compute the change in cost and do the Metropolis step, only to reject the move.

What is needed is a strategy for choosing moves that are more likely to be accepted. A simple
example is in the choice of room. If we randomly choose a new room from the list of all rooms,
it will most likely be rejected, since it may be too small for the class, or an auditorium when, for
example, a laboratory is needed. One possibility is to create a subset of all the rooms which fulfill
the hard constraints on the room for that particular class, such as the size and type of room. Now
we just make a random selection for a room for that class only from this subset of feasible rooms,
with an acceptance probability that is sure to be much higher. In addition, each class in our data set
comes with a “type-of-space-needed” tag which is used alongwith other information to assign the
class to the right room. This effectively separates the updates into independent sets based on room
type, so for example, laboratories are scheduled separately from lectures. In our method we carry
out the scheduling of lectures first, followed by schedulingof laboratories making sure that during
the course of this process no lecture and its associated laboratory are scheduled in the same time
period.

In effect, we have embedded a simple expert system into the annealing algorithm in order to
improve the choice of moves, as well as using a more complex expert system as a preprocessor
for the annealing step. When used to choose the moves for annealing, the main function of the
rule-based system is to ensure that all the trial moves satisfy the hard constraints. Many of the rules
dealing with the medium and soft constraints are softened oreliminated, since reducing the cost of
these constraints is done using the Metropolis update in theannealing algorithm.

Another of the modifications to the rule-based system is thatwhile the version used in the
preprocessor is completely deterministic, the version used in choosing the moves for annealing
selects at random from multiple possibilities that satisfythe rules equally well. This extra freedom in
choosing new schedules, plus the extra degree of randomnessinherent in the annealing update, helps
prevent the system from getting trapped in a local minimum before it can reach a valid schedule,
which is the problem with the standard deterministic rule-based system.

To improve further on the move strategy, we can take the subset of possible move choices that
we have created for each class, and choose from them probabilistically rather than randomly. There
may be certain kinds of moves that are more likely to be effective, so our move strategy is to select
these moves with a higher probability. For example, swapping a higher level class (e.g. graduate)
with a lower level class (e.g. a first or a second year type) generally has a higher acceptance, since
there is little overlap between students taking these classes. Furthermore, we have experimented
with two kinds of swaps, those that only involve classes offered by the same department or college
and the second, swaps between classes of different departments and colleges.

13

Generally, the swap methods we have taken here can be considered as heuristics for pruning the
neighborhood or narrowing the search space, which providesmuch more efficient moves and in turn
an overall improvement in the results.

6 Experimental Results

Our computations were done with a number of goals in mind. Themain objective was to provide a
schedule which satisfied all hard constraints and minimizedthe cost of medium and soft constraints,
using real-life data sets for a large university. We also aimed to find an acceptable set of annealing
parameters and move strategies for general timetabling problems of this kind, and to study the effect
of using a preprocessor to provide the annealing program with a good starting point. Finally, we
wanted to make a comparison of the performance of the three different cooling schedules, geometric
cooling, adaptive cooling, and reheating based on cost.

We spent quite some time finding optimal values for the various parameters for the annealing
schedule, such as the initial temperature, the parameters controlling the rate of cooling (� for ge-
ometric cooling,a for adaptive cooling) and reheating (K), and the number of iterations at each
temperature (for more details, see Ref. [11]). Johnsonet al. [21] noted in their SA implementation
for the traveling salesman problem (TSP) that the number of steps at each temperature (or the size
of the Markov chain) needed to be at least proportional to the“neighborhood” size in order to main-
tain a high-quality result. From our experiments we found the same to be true for the scheduling
problem, even though it is very different from the TSP. Furthermore, in a few tests for one semester
we fixed the number of classes and professors but varied the number of rooms and time slots, and
found that the final result improves as the number of iterations in the Markov chain becomes pro-
portional to a combination of the number of classes, rooms and time slots. We also observed the
same behavior when we fixed the number of rooms and time slots but varied number of classes.

Our study case involved real scheduling data covering threesemesters at Syracuse University.
The size and type of the three-semester data is shown in Table1. Nine types of rooms were used:
auditoriums, classrooms, computer clusters, conference rooms, seminar rooms, studios, laborato-
ries, theaters, and unspecified types. Staff and teaching assistants are considered part of the set of
professors. Third semester (summer) data was much smaller than other semesters, however, there
were additional space and time constraints and fewer available rooms. Our data was quite large in
comparison to data used by other researchers. For example, high school data used by Peterson and
colleagues [13, 14] consists of approximately 1000 students, 20 different possible majors, and an
overall periodic school schedule (over weeks). In the case of Abramsonet al. [2], their data set was
created randomly and was relatively small, and they stated that problems involving more than 300
tuples were very difficult to solve.

Table 1 lists all major components of the data we have used. Timetabling problems can be
characterized by theirsparseness. After the required number of lessonsNl have been scheduled,
there will beNsp = (NxNt�Nl) spare space-time slots, hence, the sparseness ratio of the problem
is defined as the ratioNsp=(NxNt). The denser the problem, the lower the sparseness ratio, and
the harder the problem is to solve. Also, for dense problems,there is an additional correlation
involving the problem size. Table 2 shows the sparseness of the three-semester data. For university
scheduling, the sparseness ratio generally decreases as the data size (particularly the number of
classes) increases, so the problem becomes harder to solve.Including student preferences makes

14

the problem much harder, but these are viewed as medium constraints and thus are not necessarily
satisfied in a valid solution.

Our overall results are shown in Tables 3 and 4. These tables show the percentage of classes
that could be scheduled in accordance with the hard constraints. In each case (apart from the ex-
pert system, which is purely deterministic), we have done 10runs (with the same parameters, just
different random numbers), and the tables show the average of the 10 runs, as well as the best and
worst results. The MFA results are different only due to having different initial conditions. Each
simulated annealing run takes about 10 to 20 hours on a Unix workstation, while a single MFA run
takes approximately an hour and an expert system run takes close to two hours.

As expected, each of the methods did much better for the third(summer) semester data, which
has a higher sparseness ratio. Our results also confirm what we expected for the different cooling
schedules for simulated annealing, in that adaptive cooling performs better than geometric cooling,
and reheating improves the result even further.

When a random initial configuration is used, simulated annealing performs very poorly, even
worse than the expert system (ES). However, there is a dramatic improvement in performance when
a preprocessor is used to provide a good starting point for the annealing. In that case, using the best
cooling schedule of adaptive cooling with reheating as a function of cost, we are able to find a valid
class schedule every time.

In the case of mean-field annealing, the overall results are generally below those of SA and ES.
In addition, we have found in the implementation of this method that the results were quite sensitive
to the size of the data as well the type of constraints involved. If we confine ourselves to the set
of hard constraints, the results are as good as or even betterthan the other methods. However if
we take into account the medium and soft constraints, that is, the overall cost function, this method
does not perform as well.

Student preferences are included only as medium constraints in our implementation, meaning
that these do not have to be satisfied for a valid solution, butthey have a high priority. For the valid
schedules we have produced, approximately75% of the student preferences were satisfied. This is
reasonably good (particularly since other approaches do not deal with student preferences at all),
but we are working to improve upon this result.

7 Conclusions

We have successfully applied simulated annealing to the difficult problem of academic schedul-
ing for a large university. Feasible schedules were obtained for real data sets, including student
preferences, without requiring enormous computational effort.

Mean-field annealing works well for small scheduling problems, but does not appear to scale
well to large problems with many complex constraints. For this problem, both simulated annealing
and the rule-based system were more effective than MFA. It ismore difficult to tune the parameters
for MFA than for simulated annealing, and because of the complexity and size of the Potts neural
encoding, there seems to be no clear way of preserving the state of a good initial configuration
provided by a preprocessor when using MFA.

Using a preprocessor to provide a good initial state greatlyimproved the quality of the results
for simulated annealing. In theory, using a good initial state should not be necessary, and any initial
state should give a good result, however in practice, we do not have an ideal cooling schedule for

15

annealing, or an ideal method for choosing trial moves and efficiently exploring the search space,
and there are restrictions on how long the simulation can take. In general, for very hard problems
with large parameter spaces that can be difficult to search efficiently, and for which very slow
cooling would be much too time-consuming, we might expect that a good initial solution would
be helpful. We used a fairly complex rule-based expert system for the preprocessor, however the
type of preprocessor may not be crucial. Other fast heuristics could possibly be used, for example
a graph coloring approach [25], or it may be possible to just utilize the schedule from the same
semester for the previous year. A modified version of the rule-based system was used to choose the
trial moves for the simulated annealing, and the high acceptance rate provided by this system was
crucial to obtaining good results.

As expected, for the simulated annealing, adaptive coolingperformed better than geometric
cooling, and using reheating improved the results even further. The best results were obtained using
simulated annealing with adaptive cooling and reheating asa function of cost, and with a rule-based
preprocessor to provide a good initial solution. Using thismethod, and with careful selection of
parameters and update steps, we were able to generate solutions to the class scheduling problem
using real data for a large university. None of the other methods were able to provide a complete
solution.

Our main conclusion from this work is that simulated annealing, with a good cooling sched-
ule, optimized parameters, carefully selected update moves, and a good initial solution provided
by a preprocessor, can be used to solve the academic scheduling problem at a large university, in-
cluding student preferences. Similar approaches should prove fruitful for other difficult scheduling
problems.

Acknowledgments

The first author is very grateful for the valuable discussionand help of Robert Irwin in converting
and formatting the registration data prior to the scheduling process. We also would like to thank
Andrew Gee and Martin Simmen for the useful comments and suggestions, and Carsten Peterson
for the pointers and comments about his papers. Many thanks go to Karen Bedard for providing
us with the data and answering so many questions we had about it, Meg Cortese for providing us
with a set of building constraints for various departments,and Prof. Ben Ware, Vice President for
Research and Computing at Syracuse University, for his support and encouragement.

16

Table 1: Size of the data set for each of the three semesters.

First Semester Second SemesterThird Semester

Rooms 509 509 120

Classes 3839 3590 687

Professors 1190 1200 334

Students 13653 13653 2600

Buildings 43 43 11

Schools and/or Colleges 20 21 17

Departments or 143 141 108
Course Prefixes

Areas of Study (majors) 200 200 200

Table 2: The sparseness ratios of the problem for the data sets for each of the three semesters. Lower
values indicate a harder problem.

Academic Sparseness

Time Period ratio

First Semester 0.50

Second Semester 0.53

Third Semester 0.62

17

Table 3: Percentage of classes scheduled using the different methods. The averages and highest and
lowest values were obtained using 10 independent runs for simulated annealing (SA) and mean-field
annealing (MFA). The expert system (ES) is deterministic sothe results are from a single run.No
preprocessor was used with the three methods.

Academic Algorithm Scheduled Highest Lowest

Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 65.00 67.50 56.80
SA (adaptive) 67.80 70.15 61.20
SA (cost-based) 70.20 72.28 68.80
ES 76.65 76.65 76.65
MFA 65.60 71.00 61.00

Second SemesterSA (geometric) 65.65 68.00 57.10
SA (adaptive) 68.50 70.10 60.77
SA (cost-based) 75.14 77.68 70.82
ES 79.00 79.00 79.00
MFA 67.20 75.00 65.00

Third Semester SA (geometric) 83.10 86.44 68.50
SA (adaptive) 85.80 89.00 70.75
SA (cost-based) 91.20 95.18 85.00
ES 96.80 96.80 96.80
MFA 88.00 95.00 82.00

Table 4: Percentage of scheduled classes, averaged over 10 runs of the same initial temperature and
other parameters, for three terms using simulated annealing with an expert system as preprocessor.

Academic Algorithm Scheduled Highest Lowest
Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 93.90 95.12 85.20
SA (adaptive) 98.80 99.20 95.00
SA (cost-based) 100.0 100.0 100.0

Second SemesterSA (geometric) 95.00 98.95 89.40
SA (adaptive) 99.00 99.50 98.50
SA (cost-based) 100.0 100.0 100.0

Third Semester SA (geometric) 97.60 98.88 90.90
SA (adaptive) 100.0 100.0 100.0
SA (cost-based) 100.0 100.0 100.0

18

References

[1] Aarts, E. H., J. Korst, and P. J. van Laarhoven, “Simulated annealing,” inLocal Search in
Combinatorial Optimization, E. H. Aarts and J. K. Lenstra (eds.), John Wiley and Sons, 1997.

[2] Abramson, D., “Constructing school timetables using simulated annealing: sequential and
parallel algorithms,”Management Science37(1), 98-113, 1991.

[3] Abramson, D., H. Dang, and M. Krishnamoorthy, “An Empirical Study of Simulated Anneal-
ing Cooling Schedules,” Griffith Univ. report, Nathan, Qld,Aus. 1994; “Simulated Annealing
Cooling Schedules for the School Timetabling Problem,” submitted to Asia Pacific Journal of
Operations Research, 1996.

[4] Burke, E., and P. Ross, eds.,Practice and Theory of Automated Timetabling, First Interna-
tional Conference, Edinburgh, 1995 : Selected Papers, Lecture Notes in Computer Science
no. 1153, Springer, New York, 1996.

[5] de Werra, D., “An introduction to timetabling,”European Journal of Operational Research19,
151-162, 1985.

[6] Diekmann, R., R. Lüling, and J. Simon, “Problem independent distributed simulated anneal-
ing and its applications,” inApplied Simulated Annealing, R. V. Vidal ed., Lecture Notes in
Economics and Mathematical Systems, Springer 1993.

[7] Dowsland, K., “Using Simulated Annealing for Efficient Allocation of Students to Practical
Classes”, Working Paper, Statistics and OR Group, EuropeanBusiness Management School,
University College of Swansea, UK, 1994.

[8] Dowsland, K. and J. Thompson, “Variants of Simulated Annealing for the Examination
Timetabling Problem,” Working Paper, Statistics and OR Group, European Business Man-
agement School, University College of Swansea, UK, 1994.

[9] Eiselt H. A., and G. Laporte, “Combinatorial Optimization Problems with Soft and Hard Re-
quirements,”J. Operational Research Society, vol. 38, No. 9, pp. 785-795, 1987.

[10] Elmohamed, S., G. C. Fox, P. Coddington, “Course Scheduling using Mean-Field Anneal-
ing, Part I: algorithm and Part II: implementation,” Northeast Parallel Architectures Center
technical report SCCS-782, Syracuse University, Syracuse, NY, 1996.

[11] Elmohamed, S., P. Coddington, G.C. Fox, “Academic Scheduling using Simulated Anneal-
ing with a Rule-Based Preprocessor”, Northeast Parallel Architectures Center technical report
SCCS-781, Syracuse University, Syracuse, NY, 1997.

[12] Gee, Andrew, private communication.

[13] Gislén, L., B. Söderberg, C. Peterson, “Teachers andClasses with Neural Nets,”International
Journal of Neural Systems1, 167 (1989).

[14] Gislén, L., B. Söderberg, C. Peterson, “Complex scheduling with Potts neural networks,”Neu-
ral Computation, 4, 805-831, 1992.

19

[15] Hertz, J., A. Krogh and R. Palmer,Introduction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, CA, 1991.

[16] Hogg, T., B. Huberman, and C. Williams (editors), Artificial Intelligence, special issue on
Phase transitions and the search space, p. 81, 1996.

[17] Hopfield, J. J., and D. W. Tank, “Neural Computation of Decisions in Optimization Problems,”
Biological Cybernetics52, 141 (1985).

[18] Huang, M., F. Romeo, and A. Sangiovanni-Vincentelli, “An efficient general cooling schedule
for simulated annealing,”Proc. of the IEEE International Conf. on Computer Aided Design
(ICCAD), pp. 381-384, 1986.

[19] Johnson, D., C. Aragon, L. McGeoch, and C. Schevon, “Optimization by Simulated Anneal-
ing: an Experimental Evaluation, Part I (Graph Partitioning),” Operations Research37, 865-
892 (1989).

[20] Johnson, D., C. Aragon, L. McGeoch, and C. Schevon, “Optimization by Simulated Anneal-
ing: an Experimental Evaluation, Part II (Graph Coloring and number partitioning),”Opera-
tions Research39, No. 3, 865-892 (1991).

[21] Johnson, D., and L. McGeoch, “The Traveling Salesman Problem: A Case Study in Local
Optimization,” inLocal Search in Combinatorial Optimization, E. H. Aarts and J. K. Lenstra
(eds.), Wiley and Sons.

[22] Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science220, 671-680, (13 May 1983).

[23] Kirkpatrick, S., “Optimization by simulated annealing: Quantitative studies,”J. Stat. Physics
34, 976-986 (1984).

[24] Lister, R.,”Annealing Networks and Fractal Landscapes,” Proc. IEEE Int. Conf. on Neural
Nets, March 1993, Vol. I, pp 257-262.

[25] Miner, S., S. Elmohamed, and H. W. Yau, “Optimizing Timetabling Solutions Using Graph
Coloring,” 1995 NPAC REU program, NPAC, Syracuse University, Syracuse, NY, 1995.

[26] Mouritsen, O. G.,Computer Studies of Phase Transitions and Critical Phenomena, Springer-
Verlag, Berlin, 1984.

[27] Otten, R., and L. van Ginneken,The Annealing Algorithm, Kluwer Academic Publishers,
1989.

[28] Peterson, C., and B. Söderberg, “Artificial Neural Networks and Combinatorial Optimization
Problems,”Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra, eds.,
Wiley and Sons, 1997.

[29] Peterson, C., and B. Söderberg, “A New Method for Mapping Optimization Problems onto
Neural Nets”,Int. J. of Neural Systems1, 3 (1989).

20

[30] Schaerf, A., “A survey of automated timetabling,” Department of Software Technology, Report
CS-R9567, CWI, Amsterdam, The Netherlands.

[31] Simmen, Martin, Personal Communication.

[32] Sorkin, Gregory, Theory and Practice of Simulated Annealing on Special Energy Landscapes,
PhD. Thesis, Dept. of Electrical Engineering and Computer Science, University of California,
Berkeley, July 1991.

[33] Thompson, J., and K. Dowsland, “General Cooling Schedules for Simulated Annealing Based
Timetabling Systems,”Proceedings of the 1st International Conf. on the Practice and Theory
of Automated Timetabling, Napier Univ., Edinburgh 1995.

[34] van Laarhoven, P. J. and E. H. Aarts, Simulated Annealing: Theory and Applications. D.
Reidel, Dordrecht (1987).

[35] Vidal, R. V. ed.,Applied Simulated Annealing, Lecture Notes in Economics and Mathematical
Systems no. 396, Springer-Verlag, 1993.

[36] White, S. R., “Concepts of scale in simulated annealing,” Proceedings of the IEEE Int. Con-
ference on Circuit Design, pp 646-651, 1984.

	A Comparison of Annealing Techniques for Academic Course Scheduling
	Recommended Citation

	tmp.1285252205.pdf.V_EDl

