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Abstract

In this study we have tackled the NP-hard problem of academic class sclg@uliimetabling)
at the university level. We have investigated a variety of approaches basgdwated anneal-
ing, including mean-field annealing, simulated annealing with three difteooling schedules,
and the use of a rule-based preprocessor to provide a good initiglcsofar annealing. The
best results were obtained using simulated annealing with adaptive g@olth reheating as
a function of cost, and a rule-based preprocessor. This approach enabledhtaitovalid
schedules for the timetabling problem for a large university, usiograplex cost function that
includes student preferences. None of the other methods were able tdgpaosomplete valid
schedule.

*Current address.



1 Introduction

The primary objective of this study is to derive an approxensolution to the problem of university
class scheduling, or timetabling, which can be summarizddibws: given data sets of classes and
their days, enrollments, and instructors; rooms and thegiacities, types, and locations; distances
between buildings; priorities of each building for diffatelepartments; and students and their class
preferences; the problem is to construct a feasible cldssdsde satisfying all the hard constraints
and minimizing the medium and soft constraints. Hard caitsis are space and time constraints
that must be satisfied, such as scheduling only one classiateafdr any teacher, student, or
classroom. Medium and soft constraints are student andeeaceferences that should be satisfied
if possible.

The timetabling problem (TTP) is a high-dimensional, narcli€lean, multi-constraint combi-
natorial optimization problem, and is consequently vefidalilt to solve. This problem has been
tackled by many researchers, mostly in the field of operati@msearch. A number of different
heuristics have been tried on different instances of thdlpm, from high school to university
course scheduling (see the reviews by de Werra [5] and Sk2@jrfand the papers collected in
Ref. [4]). For small to medium size problems, such as exareduding, high school scheduling,
or course scheduling for a university department, many e$¢hmethods work well. However no
particular method has yet been shown to produce good rdsulteal-world problems on a much
larger scale, such as scheduling all courses for a largeersiy, which we address in this paper.
Also, we are not aware of any large scale study that takesaietount constraints due to student
preferences, as we have done.

We have used data for classes at Syracuse University. Glyrthis problem is handled by the
university scheduling department in a semi-automatedidashA scheduling program is used to
find a partial solution, and substantial manual effort isurezg to iterate towards a final solution.
Also, when scheduling a certain semester (e.g. fall 199&nplate of a previous semester (e.qg.
fall 1995) is used as part of the input data.

We have applied the following optimization techniques ie iroblem:

. Arule-based expert system.
. Mean-field annealing.
. Simulated annealing with geometric cooling.
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4. Simulated annealing with adaptive cooling.

5. Simulated annealing with adaptive cooling and reheaisg function of cost.
6

. Simulated annealing (using each of the three differentimg schedules) with a rule-based
preprocessor to provide a good initial solution.

The best results were obtained using simulated annealitigagiaptive cooling and reheating
as a function of cost, and with a rule-based preprocessorotide a good initial solution. Using
this method, and with careful selection of parameters amthigomoves, we were able to generate
solutions to the class scheduling problem using real data farge university. None of the other
methods were able to provide a complete valid solution.



2 TheTimetabling Problem

Timetabling is the assignment of time slots to a set of eyenibject to constraints on these as-
signments. The NP-complepeofessors and classéisnetabling problem [7, 13, 14] is a constraint
satisfaction problem that can be briefly stated as follows:

For a certain school witlV, professors N, classesN, classrooms and lecture halls, ang
students, it is required to schedud professor-class pairs within a time limit é¥; time slots
producing a legal schedule. A legal schedule needs to bedfeuoh that no professor, class, or
student is in more than one place at a time, and no room is &egheaccommodate more than one
lesson at a time or more students than its capacity.

The constraints for this problem can be hard, medium or 3d¢fe medium and soft constraints
have an associated cost (or penalty), and if they are nafiiggtj the goal is to minimize this cost.
Soft constraints have a lower priority (and thus lower cdésgn medium constraints. The hard
constraints must be satisfied, so their associated costlmusduced to zero. A feasible schedule
is one that satisfies all the hard constraints.

Hard constraints are usually constraints that physically cannot be violatEkis includes events
that must not overlap in time, such as:

e classes taught by the same professor,

e classes held in the same room,

e aclass and a recitation or a lab of the same class.
Another examples are space or room constraints:

e A class cannot be assigned to a particular room unless tlaitgpf the room is greater than
or equal to the class enrollment.

e Some classes, such as laboratories, require a certain typero.

Medium constraints are usually considered to be those constraints that falltimé gray area be-
tween the hard and soft constraints [9]. In our implemeatatwe define medium constraints to be
constraints such as time and space conflicts which, like tamdtraints, cannot physically be vio-
lated (for example, it is not possible for one person to bevim different classes at the same time).
However we consider these constraints to be medium ratherttard if they can be avoided by mak-
ing adjustments to the specification of the problem. The arynexample is student preferences.
We cannot expect to be able to satisfy all student classnerefes, in some cases, certain students
will have to adjust their preferences since certain classkslash, or will be oversubscribed.

Medium constraints have a high penalty attached to thehmuadgh not as high as that associated
with the hard constraints. In the final schedule the penditiigse constraints should be minimized
and preferably reduced to zero. Some examples of mediuntragrts are:

¢ Avoid time conflicts for classes with students in common.
e Eligibility criteria for the class must be met.

¢ Do not enroll athletes in classes that conflict with theirrspoactice time (of course, depend-
ing on the sport).



Soft congtraints are preferences that do not deal with time conflicts, and hdegver penalty (or
cost) associated with them. We aim to minimize the cost, butat expect to be able to reduce it to
zero. Some examples are:

e For each student, balance the three-ddwri, Wed, Frj as well as the two-dayT(e, Thi
schedules.

e Balance or spread out the lectures over the week.

e Classes may request contiguous time slots.

e Balance enrollment in multi-section classes.

¢ Lunch and other break times may be specified.

¢ Professors may request periods in which their classes ateunght.

e Professors may have preferences for specific rooms or tyfpesms.

¢ Minimize the distance between the room where the classiigressand the building housing
its home department.

Some soft constraints may have higher priority (and thubdvigost) than others. For example,
preferences involving teachers will have higher priorttgn the preferences of students.

The cost function measures the quality of the current schedule and generallyivies the
weighted sum of penalties associated with different tygesoostraint violations. The aim of the
optimization technique is to minimize the cost function.

3 Mean-Field Annealing

One of the potential drawbacks of using simulated anne&tingard optimization problems is that
finding a good solution can often take an unacceptably lamg.ti Mean-field annealing (MFA)
attempts to avoid this problem by using a deterministic apipnation to simulated annealing, by
attempting to average over the statistics of the annealiogass. The result is improved execution
speed at the expense of solution quality. Although notttraccontinuous descent technique, MFA
is closely related to the Hopfield neural network [15, 17].

Mean-field annealing has been successfully applied to ligba class scheduling [14]. For
scheduling, it is advantageous to use a Potts neural ergctmlspecify discrete neural variables (or
neurons) for the problem. This is defined in its simplest fag@m mapping of events onto space-time
slots, for example an eveitin this case a professor-class paird), is mapped onto a space-time
slot a, in this case a classroom-timeslot pait {). Now, the Potts neuronS;, are defined to bé
if event; takes place in space-time skgtand0 otherwise. In this way, the constraints involved can
be embedded in the neural net in terms of the weightsof the neural network, which encode a
Potts normalization condition such a3, S;, = 1.

For a full derivation of the mean-field annealing algorithron its roots in statistical physics,
see Hertzt al. [15] or Petersoret al.[29]. Here we will just give a brief overview of the method.
The basic idea is that it is possible to approximate the &ctst or energy functior, which is a
function of discrete neural variable,, by an effective energy functiof’ that can be represented



in terms of continuous variablds;,, andV;,. These are known as mean field variables, sirigas
an approximation to the average valuef at a given temperaturé.
This approach effectively smooths out the energy functiod makes it easier to find the min-

imum value, which is obtained by solving the saddle pomtaﬂqus = 0 and 5’5 = 0,
which generate a set of self-consistent mean field theoryT()\eEuatlons in terms of the mean field
variablesU andV:

1 OF

Uia = *f oV (1)
oUia

Vo = e @

The MFA algorithm involves solving equations 1 and 2 at aesedf progressively lower tem-
peraturesT': this process is known as temperature annealing. Thealrtéenperatureél., which
sets the scale df, is estimated by expanding equation 2 around the trivialdfipeint [13, 14]
V,E,“) ~— WhereN, is the number of possible states of each of the network nsuréor exam-
ple, for the events deflned by professor-class p@airg) mapped onto classroom-timesldts, ¢),

we haveN, N, neurons, each of which haé, V; possible states, in which cahfé;m = ﬁ

Equations 1 and 2 can be solved iteratively using eithertagmous or serial updz;ting. The
iterative dynamics to evolve the mean field variables toveesdlf-consistent solution is explained in
detail by Petersoat al.[28]. The solutions correspond to stable states of the Hiopfietwork [17].
Observe from equation 2 that any solution to the MF equatiesgects a continuous version of the
Potts condition

> Vie=1 Vi. (3)

3.1 TheMean-Field Annealing Algorithm

The generic MFA algorithm appears in Figure 1. At high terapgnesT’, the mean-field solutions
will be states near the fixed-point symmetrical maximumarstateV;, = 1/N,. At low tem-
peratures, finding a mean-field solution will be equivalenusing the Hopfield model, which is
highly sensitive to the initial conditions and known to beffective for hard problems [17]. MFA
improves over the Hopfield model by using annealing to sloddgrease the temperature in order
to sidestep these problems.

These characteristics are similar to those of simulate@aimy, which is no surprise since both
it and the mean-field method compute thermal averages owrsGiistributions of discrete states,
the former stochastically and the latter through a deteistimapproximation. It is therefore natural
to couple the mean-field method with the concept of anne&lorg high to low temperatures.

In addition to the structure of the energy function, there three major interdependent issues
which arise in completely specifying a mean-field anneaditygprithm for a timetabling problem:

¢ The values of the coefficients of terms in the energy function

e The types of dynamics used to find solutions of the MFT equoatai eachi".



1. Choose a problem and encode the constraints into wefghis.
2. Find the approximate phase transition temperature leatining equation (2).

3. Add a self-couplings-term if necessary. In a neural net, this corresponds to dbfeek
connection from a neuron to itself.

4. Initialize the neurond/;, to high temperature valuej%; plus a small random term such as
rand[—1,1] x 0.001; and setl’(0) = T..

5. Until (X > 0.99) do:

e AteachT(n), update allU;, andV;, by iterating to a solution of the mean field equa-
tions.

e T'(n+1) = aT(n), we chosex = 0.9

6. The discrete values§;, that specify the schedule are obtained by rounding the me#h fi
valuesVj, to the nearest integer (0 or 1).

7. Performgreedy heuristic# needed to account for possible imbalances or rule viotesti

Figure 1: The Generic Mean-Field Annealing Algorithm

e The annealing schedule details, i.e. the initial tempeedtf0), the rules for deciding when
to reduceT and by how much, and the termination criteria.

Petersoret al.[14] introduced a quantity callesaturation X, defined as
1
Y=Y V2 4
W, 2 Vi (@)

where N; is the number of events (in this case the number of profedases pairs). This charac-
terizes the degree of clustering of events in time and/ocesp8,,;, = N% corresponds to high
temperature, whereas,,,, = 1 means that all th&;, have converged to 0 or 1 values, indicating
that each event has been assigned to a space-time slot.

The first step of Figure 1 is to map the constraints of the @obihto the neural net connection
weights. In our implementation, at ea@h the MFA algorithm (Figure 1) performs one update
per neural variable (defined as one sweep) with sequentiitiny using equations 1 and 2. After
reaching a saturation value close to 1 (we chose 0.99) we check whether the obtained solutions
are valid, i.e.E,,,.q4 = 0. If this is not the case the network is re-initialized andlisveed to resettle.
We repeat this procedure a number of times until the bestisnlis found. A similar procedure
was carried out on high school scheduling by Peteetad. [14].

The MFA implementation was a little more complicated thaa ithplementation of simulated
annealing and the expert system, since it had many more p&eesrio handle, and it was often
more difficult to find optimal values for these parametersr &ample, one complication is the
computation of the critical temperatuf®, which involved an iterative procedure of a linearized



dynamic system. On the other hand, we observed that the igeamee time was indeed much less
than any of the convergence times of the simulated anneabimyg the three annealing schedules
studied. For more details on our MFA implementation, see Ré4.

4 The Rule-Based System

We have implemented a fairly complex rule-based experegydor solving the timetabling prob-
lem, for three reasons. Firstly, it gives us a benchmark dsote well other methods do in com-
parison to this standard technique. Secondly, a simplifedion of the rule-based system is used
to provide sensible choices for moves in the simulated dimgealgorithm, rather than choosing
swaps completely at random, and this greatly improves tbpgstion of moves that are accepted.
Thirdly, we have used this system as a preprocessor for atedilannealing, in order to provide a
good initial solution.

Simulated annealing is a very time-consuming, computatiprintensive procedure. Using an
expert system as a preprocessor is a way of quickly providiggod starting point for the annealing
algorithm, which reduces the time taken in the annealinggutare, and improves the quality of the
result. Our results clearly support this rationale for taseof academic scheduling.

The rule-based expert system consists of a number of rutekefaristics) and conventional
recursion to assist in carrying out class assignments. Wi theveloped this system specifically for
the problem of academic scheduling. The basic data stexturcomponents of the system are:

1. Distance matrix of values between each academic depatrand every other building under
use for scheduling.

2. Class data structure of each class scheduled anywheamious. These structures are capable
of linking with each other.

3. Room data structure of each room (regardless of type)vedoin the scheduling process.
Like classes, room structures are also linked with eachr.othe

4. Data structures for time periods to keep track of whichrlauime slot was occupied and
which was not.

5. Department inclusion data structure giving departmecdusion within other larger depart-
ments or colleges.

6. Students structures indicating classes of various degfreequirements and preferences for
each student.

The basic function of the system is as follows: given data fiteclasses, rooms and buildings,
department-to-building distance matrix, students datd,the inclusion data, using the abovemen-
tioned data structures, the system builds an internal datatwhich in turn is used in carrying out
the scheduling process. This process involves a numbesehgal sub-processes such as checking
the distances between buildings, checking building, rogpe and hours occupied, checking and
comparing time slots for any conflicts, checking rooms foy apace conflict, and keeping track of
and updating the hours already scheduled.

The rule-based system uses an iterative approach. Theprasiedure for each iteration is as
follows. The scheduling of classes is done by departmergash iteration consists of a loop over all



departments. The departments are chosen in order of sitetheise having the most classes being
scheduled first. The system first loops over all the currentigcheduled classes, and attempts
to assign them to the first unoccupied room and timeslot thiggfees all the rules governing the
constraints. Since constraints involving capacity of reare very difficult to satisfy, larger classes
are scheduled first, to try to avoid not having large enougim®later for those class sections with
large enrollments.

In some cases the only rooms and timeslots that satisfyeafitles will already be occupied by
previously scheduled classes. In that case, the systemmgiéo move one of these classes into a
free room and timeslot, to allow the unscheduled class tecbeduled.

Next, the system searches through all the scheduled claas#selects those that have a high
cost, by checking the medium and soft constraints such asclasely the room size matches the
class size, how many students have time conflicts, whetleecltss is in a preferred time period
or a preferred building, and so on. Selecting threshold ealfior defining what is considered a
“high” cost in each case is a subjective procedure, but itreEghtforward to choose reasonable
values. When a poorly scheduled class is identified, thesysearches for a class to swap it with,
so that the hard constraints are still satisfied, but theateost of the medium and soft constraints
is reduced.

This process of swapping rooms continues provided all thesrare satisfied and no “cycling”
(swapping of the same classes) occurs. Once all the depagrhave been considered, this com-
pletes one iteration. The system continues to follow tlEsiive procedure until a complete itera-
tion produces no changes to the schedule.

There are many rules dealing with space and hours, type afiraad priority of room. Many
are quite complex, but some of the basic rules, such as thgslernenting the hard constraints,
can be quite straightforward — for example, the followinghis basic rule for dealing with time and
space conflicts for a room:

IF [room(capacity)> class(space-requested)] and [no time conflict in this roGMHEN assign
the room to the class.

When the rule-based system is used as a preprocessor, ligeod partial schedule as an output,
since it is usually unable to assign all of the given classaedms and times slots. The output is
divided into two parts: the first consists of classes, withirtiassociated professors and students,
assigned to various rooms; and the second is a list of claes¢sould not be assigned due to
constraint conflicts.

5 Simulated Annealing

Simulated annealing (SA) has been widely used for tackliffgrént combinatorial optimization
problems, particularly academic scheduling [35, 7, 8]. basic algorithm is described in Figure 2.
The results obtained depend heavily on the cooling scheddd. We initially used the most com-
monly known and used schedule, which is the geometric apobat later tried adaptive cooling,
as well as the method of geometric reheating based on cost [3]

A comprehensive discussion of the theoretical and prddiegils of SA is given in [1, 27, 32,
34]. It suffices here to say that the elementary operatiohenMetropolis method for a combina-
torial problem such as scheduling is the generation of somaeaandidate configuration, which is
then automatically accepted if it lowers the cas)),(or accepted with probabilityxp(—AC/T),



Generate an initial schedule
Set the initial best schedui¢ = s.
Compute cost of : C(s).
Compute initial temperaturg,.

Set the temperatufé = T.

S T S

While stop criterionis not satisfied do:

(a) RepeaMarkov chain length{M) times:
i. Select a random neighber to the current schedulés ¢ ;) .

!

ii. SetA(C)=C(s)—0C(s).
jii. If (A(C) <0 {downhill movée):
e Sets =5 .
o If C(s) < C(s*) then sets* = s.
iv. If (A(C) > 0 {uphill move}):
e Choose a random numbewuniformly from [0, 1].
o If r < e 2T thensets =s'.

(b) Reduce (or update) temperatdre

7. Return the schedul€'.

Figure 2: The Simulated Annealing Algorithm

whereT is the temperature, if it would increase the costhyC'). Also, in Figure 2 is the current
schedule and’ is a neighboring schedule obtained from the current neigtdmml spaceX/;) by
swapping two classes in time and/or space.

Thus the technique is essentially a generalization of thal loptimization strategy, where, at
non-zero temperatures, thermal excitations can fa@ligscape from local minima.

The SA algorithm has advantages and disadvantages compamter global optimization
techniques. Among its advantages are the relative easepténmentation, the applicability to al-
most any combinatorial optimization problem, the abilibyprovide reasonably good solutions for
most problems (depending on the cooling schedule and upttates used), and the ease with which
it can be combined with other heuristics, such as experesystforming quite useful hybrid meth-
ods for tackling a range of complex problems. SA is a robudtrigue, however, it does have some
drawbacks. To obtain good results the update moves and tireisaunable parameters used (such
as the cooling rate) need to be carefully chosen, the ruesa ofiquire a great deal of computer time,
and many runs may be required.

Depending on the problem to which it is applied, SA appeanspaiitive with many of the best
heuristics, as shown in the work of Johnsziral. [21].



5.1 Timetabling Using the Annealing Algorithm

The most obvious mapping of the timetabling problem into$kealgorithm involves the following

constructs:

1. astateis a timetable containing the following sets:

P: a set of professors.
C'": a set of classes.

S: a set of students.

R: a set of classrooms.
I: a set of time intervals.

2. acost or “energy” E@, C, S, R, I) such that:

E(P): is the cost of assigning more than maximum number of altbslassesV/, to
the same professor, plus scheduling one or more classesahaé a conflict in the
professor’s schedule.

E(C): is the cost of scheduling certain classes at/within tineestime period in violation
of the exclusion constraint, for example.

E(S): is the cost of having two or more classes conflict in timasplost of having in the
schedule one or more classes that really don’'t meet thergtadirajor, class requested,
or class requirements; plus the cost of not having the cdasgenly spread out over the
week, etc.

E(R): is the cost resulting from assigning room(s) of the wroizg @ind/or type to a
certain class.

E(Z): is the cost of having more or less time periods than requipus cost of an
imbalanced class assignments (a certain period will have itlasses assigned to than
others, etc.).

3. Aswap (or a move) is the exchange of one or more of the followingsstawith classc; in
the setC with respect to time periods and;, and/or with respect to classrooR} and R,
respectively. Generally, this step is referred to as clasgpping.

Along with all of the necessary constraints, the simulatatkaling algorithm also takes as input
data the following: the preprocessor output in the form sfsliof scheduled and non-scheduled
classes and their associated professors and room types,cd tboms provided by the registrar’s
office, a department to building distance matrix, a list ofients and their class preferences, and a
list of classes that are not allowed to be scheduled simedtasly.

To use simulated annealing effectively, it is crucial to aggood cooling schedule, and a good
method for choosing new trial schedules, in order to effityesample the search space. We have
experimented with both these areas, which are discusséa iimllowing sections.
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5.2 The Annealing Schedules

Three annealing schedules have been used in our experitoamntslate the temperature of the SA
algorithm in Figure 2: geometric cooling, adaptive coolinagd adaptive reheating as a function of
cost.

The first schedule we have usedgeometric cooling, where the new temperaturé’() of the
SA algorithm is computed using

T =aT , (5)
wherea (0 < a < 1) denotes the cooling factor. Typically the valuenos chosen in the rande90
t00.99. This cooling schedule has the advantage of being well siaisd, having a solid theoretical
foundation, and being the most widely used annealing s¢beddur results obtained from using
this standard cooling schedule will be used as a baselineofoparison with those using the other
two schedules, which allow the rate of cooling to be varied.

The second annealing schedule we used is the methatiedting asa function of cost (RFC),
which was used for timetabling by Abramsetal.[3], but the ideas behind it are due to Kirkpatrick
et al. [22, 23] and White [36]. Before introducing this schedule fivet summarize a few relevant
points on the concept of specific he@tf). Specific heat is a measure of the variance of the cost (or
energy) values of states at a given temperature. The higkerariance, the longer it presumably
takes to reach equilibrium, and so the longer one shoulddspethe temperature, or alternatively,
the slower one should lower the temperature.

Generally, in combinatorial optimization problems, ph#asasitions [16, 26] can be observed
as sub-parts of the problem are resolved. In some of the wesilkird) with the traveling salesman
problem using annealing [24], the authors often observetkigaresolution of the overall structure
of the solution occurs at high temperatures, and at low teatpes the fine details of the solution
are resolved. As reported in [3], applying a reheating typmc@dure, depending on the phase,
would allow the algorithm to spend more time in the low tenapere phases, thus reducing the total
amount of time required to solve a given problem.

In order to calculate the temperature at which a phase tramgiccurs, it is necessary to com-
pute the specific heat of the system. A phase transition s@tua temperaturé(C7**) when the
specific heat is maximal({j}**), and this triggers the change in the state ordering. If & bo-
lution found to date has a high energy or cost then the supgrtsre may require re-arrangement.
This can be done by raising the temperature to a level whidtigiser than the phase transition
temperaturd’(C};"). Generally, the higher the current best cost, the higheteimperature which
is required to escape the local minimum. To compute the afergioned maximum specific heat,
we employ the following steps [3, 34, 27].

At each temperaturd’, the annealing algorithm generates a set of configuratiffiy. Let
C; denote the cost of configurationC(7T') is the average cost at temperatreando(7') is the
standard deviation of the costAt

At temperaturel’, the probability distribution for configurations is:

P(T) = ——- (6)

The average cost is computed as:
< C(T) >=) _GP(T). 7
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Therefore, the average square cost is:

< CT) >=Y_ CIP(T). ()
ieC
The variance of the cost is:
o?(T) =< C*(T) > — < C(T) >* . (9)
Now, the specific heat is defined as:
Cuir) - =0 (10)

The temperaturd’(C7}**) at which the maximum specific heat occurs, or at which theesyst
undergoes a phase transition, can thus be found.
Reheating sets the new temperature to be

T =K Cy+T(CH), (11)

where K is a tunable parameter arigj is the current best cost. Reheating is done when the tem-
perature drops below the phase transition (the point of mari specific heat) and there has been
no decrease in cost for a specified number of iterations the.system gets stuck in a local min-
imum. Reheating increases the temperature above the phaséion (see equation 11), in order
to produce enough of a change in the configuration to allow @xplore other minima when the
temperature is reduced again.

The third cooling schedule we have triedagaptive cooling. In this case, a new temperature is
computed based on the specific heat, i.e. the standard idevidtall costs obtained at the current
T. The idea here is to keep the system close to equilibrium,oojirtg slower close to the phase
transition, where the specific heat is large. There are mifgyeht ways of implementing this idea,
we have chosen the approach taken by Huetngl. [18], which was shown to yield an efficient
cooling schedule. Let’; denote the current temperature, at steyf the annealing schedule. After
calculatings (7)) from equation 9, the new temperatufe, ; is computed as follows:

T
Tjgpr=Tj-e "7, (12)
wherea is a tunable parameter. Following suggestions by Otten amdGinneken [27] and
Diekmannet al. [6], o(T}) is smoothed out in order to avoid any dependencies of thedeahpe
decrement on large changes in the standard deviatidde used the following standard method to
provide a smoothed standard deviati@n
_ T
o(Tj11) = (1 —w)o(Tjt1) + WU(TJ’)T (13)
J
and setw to 0.95. This smoothing function is used because it follows (from thrm of the
Boltzmann distribution, see [32, 36]) that it preserveski relationship:
d 7%(T)
—C(T) =
dTC( ) T2
Note that reheating can be used in conjunction with any ngachedule. We have used it with
adaptive cooling.

=Cy (14)
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5.3 The Choice of Moves

The performance of any application of simulated anneabryghly dependent on the method used
to select a new trial configuration of the system for the Madifs update. In order for the annealing
algorithm to work well, it must be able to effectively samiie parameter space, which can only
be done with efficient moves.

The simplest method for choosing a move is to swap the roontisneslots of two randomly
selected classes. However this is extremely inefficiengesimost of the time random swapping
of classes will increase the overall cost, especially if we @ready close to obtaining a valid
solution (i.e. at low temperature), and will likely be rejed in the Metropolis procedure. This low
acceptance of the moves means this simple method is veficieat, since a lot of computation is
required to compute the change in cost and do the Metropelis enly to reject the move.

What is needed is a strategy for choosing moves that are nkeig to be accepted. A simple
example is in the choice of room. If we randomly choose a nemmrérom the list of all rooms,
it will most likely be rejected, since it may be too small ftvetclass, or an auditorium when, for
example, a laboratory is needed. One possibility is to eraaubset of all the rooms which fulfill
the hard constraints on the room for that particular classh s the size and type of room. Now
we just make a random selection for a room for that class aoiy fthis subset of feasible rooms,
with an acceptance probability that is sure to be much higheaddition, each class in our data set
comes with a “type-of-space-needed” tag which is used ahgtigother information to assign the
class to the right room. This effectively separates the tgedato independent sets based on room
type, so for example, laboratories are scheduled sepgriabeh lectures. In our method we carry
out the scheduling of lectures first, followed by schedulifigaboratories making sure that during
the course of this process no lecture and its associatedakaiop are scheduled in the same time
period.

In effect, we have embedded a simple expert system into theading algorithm in order to
improve the choice of moves, as well as using a more complprresystem as a preprocessor
for the annealing step. When used to choose the moves foammethe main function of the
rule-based system is to ensure that all the trial moveshgdiie hard constraints. Many of the rules
dealing with the medium and soft constraints are softenaaiminated, since reducing the cost of
these constraints is done using the Metropolis update iarthealing algorithm.

Another of the modifications to the rule-based system is Wiaite the version used in the
preprocessor is completely deterministic, the versiordusechoosing the moves for annealing
selects at random from multiple possibilities that satikfyrules equally well. This extra freedom in
choosing new schedules, plus the extra degree of randorimiesent in the annealing update, helps
prevent the system from getting trapped in a local minimuriodeeit can reach a valid schedule,
which is the problem with the standard deterministic ruesdx system.

To improve further on the move strategy, we can take the sutigmssible move choices that
we have created for each class, and choose from them pristiahily rather than randomly. There
may be certain kinds of moves that are more likely to be dffecso our move strategy is to select
these moves with a higher probability. For example, swappimigher level class (e.g. graduate)
with a lower level class (e.g. a first or a second year typeggidly has a higher acceptance, since
there is little overlap between students taking these etasEurthermore, we have experimented
with two kinds of swaps, those that only involve classesretidby the same department or college
and the second, swaps between classes of different depéstared colleges.
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Generally, the swap methods we have taken here can be catsaieheuristics for pruning the
neighborhood or narrowing the search space, which providesh more efficient moves and in turn
an overall improvement in the results.

6 Experimental Results

Our computations were done with a number of goals in mind. Mk objective was to provide a
schedule which satisfied all hard constraints and minimikzeatost of medium and soft constraints,
using real-life data sets for a large university. We alsoegirto find an acceptable set of annealing
parameters and move strategies for general timetabliriggmes of this kind, and to study the effect
of using a preprocessor to provide the annealing prograrm avigood starting point. Finally, we
wanted to make a comparison of the performance of the thfiseatit cooling schedules, geometric
cooling, adaptive cooling, and reheating based on cost.

We spent quite some time finding optimal values for the variparameters for the annealing
schedule, such as the initial temperature, the paramedetsoding the rate of coolingd{ for ge-
ometric cooling,a for adaptive cooling) and reheatind(§, and the number of iterations at each
temperature (for more details, see Ref. [11]). Johretaal. [21] noted in their SA implementation
for the traveling salesman problem (TSP) that the numbetepissat each temperature (or the size
of the Markov chain) needed to be at least proportional tdribeghborhood” size in order to main-
tain a high-quality result. From our experiments we founel $ame to be true for the scheduling
problem, even though it is very different from the TSP. Farthore, in a few tests for one semester
we fixed the number of classes and professors but varied tmbeuof rooms and time slots, and
found that the final result improves as the number of iteratim the Markov chain becomes pro-
portional to a combination of the number of classes, roontstamne slots. We also observed the
same behavior when we fixed the number of rooms and time slbtgbied number of classes.

Our study case involved real scheduling data covering themgesters at Syracuse University.
The size and type of the three-semester data is shown in Taléne types of rooms were used:
auditoriums, classrooms, computer clusters, conferenoms, seminar rooms, studios, laborato-
ries, theaters, and unspecified types. Staff and teachsigt@sts are considered part of the set of
professors. Third semester (summer) data was much smiadlerdther semesters, however, there
were additional space and time constraints and fewer d@lail@oms. Our data was quite large in
comparison to data used by other researchers. For exanighest¢hool data used by Peterson and
colleagues [13, 14] consists of approximately 1000 stigje2@ different possible majors, and an
overall periodic school schedule (over weeks). In the cigdmmsonet al.[2], their data set was
created randomly and was relatively small, and they stdtatipgroblems involving more than 300
tuples were very difficult to solve.

Table 1 lists all major components of the data we have usetheféibling problems can be
characterized by thesparsenessAfter the required number of lesso§ have been scheduled,
there will beN,, = (N, N; — N;) spare space-time slots, hence, the sparseness ratio abthlerm
is defined as the ratidVy,/(N,N;). The denser the problem, the lower the sparseness ratio, and
the harder the problem is to solve. Also, for dense probletmee is an additional correlation
involving the problem size. Table 2 shows the sparsenedtsedhtee-semester data. For university
scheduling, the sparseness ratio generally decrease® amath size (particularly the number of
classes) increases, so the problem becomes harder to $bheding student preferences makes



14

the problem much harder, but these are viewed as mediumraortistand thus are not necessarily
satisfied in a valid solution.

Our overall results are shown in Tables 3 and 4. These tahlas the percentage of classes
that could be scheduled in accordance with the hard conitrain each case (apart from the ex-
pert system, which is purely deterministic), we have doneut® (with the same parameters, just
different random numbers), and the tables show the averftpe d0 runs, as well as the best and
worst results. The MFA results are different only due to hgwiifferent initial conditions. Each
simulated annealing run takes about 10 to 20 hours on a Unikstation, while a single MFA run
takes approximately an hour and an expert system run taées tb two hours.

As expected, each of the methods did much better for the ¢hinhmer) semester data, which
has a higher sparseness ratio. Our results also confirm wiapected for the different cooling
schedules for simulated annealing, in that adaptive cogarforms better than geometric cooling,
and reheating improves the result even further.

When a random initial configuration is used, simulated alimggerforms very poorly, even
worse than the expert system (ES). However, there is a diaimgirovement in performance when
a preprocessor is used to provide a good starting point éoatimealing. In that case, using the best
cooling schedule of adaptive cooling with reheating as atfon of cost, we are able to find a valid
class schedule every time.

In the case of mean-field annealing, the overall results anelly below those of SA and ES.
In addition, we have found in the implementation of this noettthat the results were quite sensitive
to the size of the data as well the type of constraints invbIvé we confine ourselves to the set
of hard constraints, the results are as good as or even liettierthe other methods. However if
we take into account the medium and soft constraints, thétesoverall cost function, this method
does not perform as well.

Student preferences are included only as medium congrairdur implementation, meaning
that these do not have to be satisfied for a valid solutionthayt have a high priority. For the valid
schedules we have produced, approximatél of the student preferences were satisfied. This is
reasonably good (particularly since other approaches daea with student preferences at all),
but we are working to improve upon this result.

7 Conclusions

We have successfully applied simulated annealing to tHewdif problem of academic schedul-
ing for a large university. Feasible schedules were obthioe real data sets, including student
preferences, without requiring enormous computatiorfakref

Mean-field annealing works well for small scheduling proidg but does not appear to scale
well to large problems with many complex constraints. Fig firoblem, both simulated annealing
and the rule-based system were more effective than MFAnhioise difficult to tune the parameters
for MFA than for simulated annealing, and because of the d¢exitg and size of the Potts neural
encoding, there seems to be no clear way of preserving tie staa good initial configuration
provided by a preprocessor when using MFA.

Using a preprocessor to provide a good initial state graatfyroved the quality of the results
for simulated annealing. In theory, using a good initiatestehould not be necessary, and any initial
state should give a good result, however in practice, we ddvage an ideal cooling schedule for
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annealing, or an ideal method for choosing trial moves afidierfitly exploring the search space,
and there are restrictions on how long the simulation cae.ték general, for very hard problems
with large parameter spaces that can be difficult to searfitiezitly, and for which very slow
cooling would be much too time-consuming, we might expeat thgood initial solution would
be helpful. We used a fairly complex rule-based expert sydta the preprocessor, however the
type of preprocessor may not be crucial. Other fast heasistould possibly be used, for example
a graph coloring approach [25], or it may be possible to jusiza the schedule from the same
semester for the previous year. A modified version of the-balsed system was used to choose the
trial moves for the simulated annealing, and the high acecemgt rate provided by this system was
crucial to obtaining good results.

As expected, for the simulated annealing, adaptive cogdegormed better than geometric
cooling, and using reheating improved the results evehéurfThe best results were obtained using
simulated annealing with adaptive cooling and reheatirgyfasction of cost, and with a rule-based
preprocessor to provide a good initial solution. Using tmisthod, and with careful selection of
parameters and update steps, we were able to generatessltdi the class scheduling problem
using real data for a large university. None of the other m@shwere able to provide a complete
solution.

Our main conclusion from this work is that simulated anmegliwith a good cooling sched-
ule, optimized parameters, carefully selected update myawved a good initial solution provided
by a preprocessor, can be used to solve the academic seiegutiblem at a large university, in-
cluding student preferences. Similar approaches showlgefruitful for other difficult scheduling
problems.
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Table 1: Size of the data set for each of the three semesters.

H First SemestewL Second Semest#rThird SemesterH

Rooms 509 509 120
Classes 3839 3590 687
Professors 1190 1200 334
Students 13653 13653 2600
Buildings 43 43 11
Schools and/or Colleges 20 21 17
Departments or 143 141 108
Course Prefixes

Areas of Study (majors 200 200 200

Table 2: The sparseness ratios of the problem for the datdaeatach of the three semesters. Lower
values indicate a harder problem.

Academic Sparsenes§
Time Period ratio
First Semester 0.50

Second Semester 0.53
Third Semester 0.62




17

Table 3: Percentage of classes scheduled using the diffeethods. The averages and highest and
lowest values were obtained using 10 independent runsrfariated annealing (SA) and mean-field
annealing (MFA). The expert system (ES) is deterministithgoresults are from a single ruhlo
preprocessor was used with the three methods.

Academic Algorithm Scheduled Highest Lowest
Time Period (average) | Scheduled Scheduled
% % %
First Semester | SA (geometric) 65.00 67.50 56.80
SA (adaptive) 67.80 70.15 61.20
SA (cost-based 70.20 72.28 68.80
ES 76.65 76.65 76.65
MFA 65.60 71.00 61.00
Second SemesterSA (geometric) 65.65 68.00 57.10
SA (adaptive) 68.50 70.10 60.77
SA (cost-based 75.14 77.68 70.82
ES 79.00 79.00 79.00
MFA 67.20 75.00 65.00
Third Semester | SA (geometric) 83.10 86.44 68.50
SA (adaptive) 85.80 89.00 70.75
SA (cost-based 91.20 95.18 85.00
ES 96.80 96.80 96.80
MFA 88.00 95.00 82.00

Academic Algorithm Scheduled Highest Lowest
Time Period (average) | Scheduled Scheduled
% % %
First Semester | SA (geometric) 93.90 95.12 85.20
SA (adaptive) 98.80 99.20 95.00
SA (cost-based 100.0 100.0 100.0
Second SemesterSA (geometric) 95.00 98.95 89.40
SA (adaptive) 99.00 99.50 98.50
SA (cost-based 100.0 100.0 100.0
Third Semester | SA (geometric) 97.60 98.88 90.90
SA (adaptive) 100.0 100.0 100.0
SA (cost-based 100.0 100.0 100.0

Table 4: Percentage of scheduled classes, averaged owand 6frthe same initial temperature and
other parameters, for three terms using simulated anmpaiih an expert system as preprocessor.
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