Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science
Projects

1993

Fast Mapping And Remapping Algorithms For Irregular And
Adaptive Problems

Chao Wei Ou
Syracuse University

Sanjay Ranka
Syracuse University

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

b Part of the Computer Sciences Commons

Recommended Citation

Ou, Chao Wei; Ranka, Sanjay; and Fox, Geoffrey C., "Fast Mapping And Remapping Algorithms For Irregular
And Adaptive Problems" (1993). College of Engineering and Computer Science - Former Departments,
Centers, Institutes and Projects. 8.

https://surface.syr.edu/lcsmith_other/8

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/8?utm_source=surface.syr.edu%2Flcsmith_other%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Fast Mapping And Remapping Algorithms For Irregular And
Adaptive Problems*

Chao-Wei Ou, Sanjay Ranka and Geoffrey Fox
School of Computer and Information Science
Syracuse University

Syracuse, NY 13244

Abstract

This paper describes the performance of locality-
based mapping and remapping partitioners for un-
structured grids. We show that the algorithm produces
good mappings at a relatively low cost and can be eas-
tly parallelized. Further, the algorithm can provide
remapping for incremental problems at a fraction of
the total cost.

1 Introduction

Load-balancing and reduction of communication
are two important issues for achieving good perfor-
mance distributed-memory parallel computers. It is
important to map the program such that the total ex-
ecution time is minimized; the mapping can typically
be performed statically or dynamically.

For a large class of scientific problems that are ir-
regular in nature, achieving a good mapping is diffi-
cult [1]. The nature of the irregularities is unknown
at the time of compilation and can be derived only
at runtime. The handling of such irregular problems
requires runtime information in order to partition the
computation in such a fashion that each processor re-
ceives an approximately equal amount of computation
and to minimized communication.

Partitioning for dynamic problems requires opti-
mization methods that quickly and reliably produce
reasonable, but not exact results. Partitioning such
applications can be posed as a graph-partitioning
problem necessarily based on the computational graph
for each phase. The partitioning problem is in the
class of NP-complete problems; hence exact solutions
are computationally intractable for large problems.

*This work was supported in part by NSEF under CCR-
9110812 and in part by DARPA under contract #DABT63-
91-C-0028. The contents do not necessarily reflect the position
or the policy of the United States government and no official
endorsement should be inferred.

|
]
PG
Po || P2 P4 |
T |
|]]
P1|| |P3 P5 || PP7

Figure 1: The partitioning of irregular mesh

However, we emphasize that good suboptimal solu-
tions are sufficient for effective parallelization of a
large class of irregular problems.

There are a large number of partitioning algorithms
available in the literature [2], [6], [9]. Depending on
the requirement application, one may be more useful
than the other. The following are some important fea-
tures of a partitioning algorithm.

1. Cost of partitioning vs. quality: For a given ap-
plication, a cheaper algorithm generating a solution of
reasonable quality may be preferable to an expensive
one that yields a solution of very good quality.

2. Direct vs. iterative: In iterative methods (e.g., ge-
netic algorithms) the quality of partitioning improves
with the number of iterations, and thus the user can
optimize between the cost vs quality of the mapping.
3. Parallelizability: Some methods, such as genetic
algorithm-based partitioners, are inherently parallel.
On the other hand, methods based on recursive spec-
tral bisection are difficult to parallelize.

4. Incremental updates: For many applications, the
computational structure changes from one phase to
another in an incremental fashion. Thus, partitioning

of the previous phase can be used to partition the next
phase at a fraction of the cost.

5. Use of information about physical domain: Co-
ordinate information can be used if the computational
graph represents a physical domain.

In this paper we present the quality of mapping
produced by an index-based mapping scheme for parti-
tioning two and three-dimensional irregular and adap-
tive grids on parallel machines. We show these meth-
ods to be extremely fast, easy to parallelize, that
they produce good mappings, and are incremental in
nature. Thus, we believe they should be useful for
a large variety of irregular and adaptive problems.
Index-based mapping has been used for sorting on a
two-dimensional mesh [7], parallelizing quadtrees and
sparse images [4] [5], and for n-body simulations on
parallel machines [8].

The quality of the mappings produced by our algo-
rithms is comparable to co-ordinate recursive bisection
[6]. Although the algorithm does not perform as well
as spectral bisection methods, it is easily paralleliz-
able and should be useful for parallelizing problems
that are adaptive in nature.

2 The Mapping Problem

We are given a graph G = (V, E), where V rep-
resents a set of vertices, and F represents a set of
edges. The number of vertices is given by n =| V' |,
and the number of edges is given by m =| F |. For
a graph representing the computational structure of
physical domain, each vertex v; € V, 1 < i < m cor-
responds to a physical coordinate in a d-dimensional
space (&4, iy, - ., ¥,). Fach edge is an ordered pair
(vs,,vi,). In graphs corresponding to computational
structure of physical domain, edges connect physically
proximate vertices.

The graph-partitioning problem can be defined as
an assignment scheme M : V — P that maps ver-
tices to partitions. We denote by B(g) the set of ver-
tices assigned to a partition ¢. Thus B(q) = {v € V :
M(v) = q}. The weight w; corresponds to the compu-
tation cost (or weight) of the vertex v;. The cost of an
edge we(v1,v2) is given by the amount of interaction
between vertices v; and vy, thus the weight of every
partition can be defined as

W(q) = Zv,EB(q) Wi..
The cost of all the outgoing edges from a partition rep-
resents the total amount of communication cost and
is given by
Clq) = ZU,EB(q), v;€B(q) we(vi, vj).
We would like to make an assignment such that the
time spent by every node is minimized, 1.e.,

01 2 3 4 5 6 7 0 1 4 516 17 20 21
8 910 11 12 13 14 15 2 3 6 718 19 22 23
16 17 18 19 20 21 22 23 8 9 12 13 24 25 28 29
24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31
32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53
40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55
48 49 50 51 52 53 54 55 40 41 44 45 56 57 60 61
56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63

(a) (b)

Figure 2: (a) Row-Major and (b) Shuffled Row-Major

Indexing for an 8 x 8 image

max, (W(g) + AC(g)).
where 8 represents the cost of unit computation/cost
of unit communication on a machine. It is more con-
venient to minimize
> Cla)

because: 1) The computational load is typically bal-
anced by most algorithms and thus the first term is
close to Zq W(q) / P for each partition and can be
factored out; 2) the max function is not differentiable;
most optimization methods are gradient descent meth-
ods and hence require minimization of a differentiable
function.

2.1 Incremental problems

An adaptive irregular computation consists of a
loosely synchronous computation executed repeatedly
in which the data access pattern changes between it-
erations [1]. The changes may be gradual, reflecting
adiabatic changes in the physical domain (e.g., molec-
ular dynamics), or large-scale reflecting additions to a
data structure (e.g., adaptive PDE solvers). The phys-
ical and numerical properties of these algorithms typ-
ically guarantee that large-scale restructuring of data
is needed infrequently. Thus, from the perspective of
the incremental mapping problem, the following sce-
narios may arise:

1) All the coordinates may perturb.
2) New points may be added and/or old points deleted.
This paper is limited to the latter case.

3 The Mapping Scheme

Mapping is based on converting an n-dimensional
co-ordinate into a one-dimensional index such that
proximity in the multi-dimensional space 1s usually

Indexing(hash,d,n)
for j «—— 1 to d do
unit; — ((maxi_; v;) = (min7y ;,))/24
for i — 1 ton do
for j «—— 1 to d do
inder; «—— x,;/unit;
hash; «—— Interleave(index,d,l)

D Gk W

Figure 3: Indexing algorithm

maintained [8]. Consider a graph in which the set
of vertices are arranged an 8 x 8 grid. Row-major in-
dexing and shuffled row-major indexing are two of the
several ways to index pixels in a two-dimensional grid.
These two indexing schemes are shown in Figure 2.
Intuitively, one would expect that shuffled row-major
mapping maintains the two-dimensional proximity of
indices better than row-major indexing does. With no
loss of generality, we assume the vertices in the phys-
ical space are all mapped onto a logical grid of size
2l % 252 % 913 guch that 4 > [y > Is. The indexing
algorithm is given in Figure 3.
A simple example of interleaving indices is as follows.
Suppose

index, = 101 indexs = 01 indexs = 0.
The interleaved index would be 100110; this 1s done by
choosing bits (right to left) of each of the dimensions
one by one, starting from dimension 3 (the dimension
with the smallest number of bits). When the bits of
a particular dimension are no longer available, that
dimension is not considered.

The main purpose of a mapping algorithm is to de-
termine the partitions by dividing the sorted index list.
The algorithm assumes the input is a d-dimensional
array. Once the index of every point is obtained, a
simple sorting algorithm can be employed to provide
the required mapping. We have used a sample-based
sorting algorithm for our implementation (it is omit-
ted in this paper due to space limitations).

For the incremental problem, all index values of in-
cremental points are inserted into the sorted list. A
simple merging algorithm can be used for repartition-
ing data when new nodes are added or deleted. This
problem can be described as merging m numbers (no
ordering between them) with a sorted list of n numbers
to give another sorted list. The sequential complexity
of this algorithm is O(mlogm + n).

The parallel merging algorithm applies the index-
ing algorithm to the new vertices and moves them to
processors, based on the previous boundaries. A se-
quential merge algorithm in each processor forms a
sorted list of size % + m; where m; 1s the number of

/* Sorted array A is distributed using block distribution */
/* Unsorted array B is distributed using block distribution */
/* Bound[i] is the largest key of A stored in processor i */
For each processor ¢ do in parallel
Step 1 : VAL := Global_concatenate(Bound[i])
Step 2: Fork — 1 top do

SEND _LIST[k] := nil
Step 3: Fork — 1 tom,; do

proc := Binary_search(m;, VAL)

Add B[k] to SEND_LIST[proc]
Step 4 : All-to-Many communication using SEND_LIST
Step 5 : Sort all the points received in Step 4 and call it C
Step 6 : Merge list A and C
Step 7: Fork — 1 top do

Rejined Bound[k] := Hrtm)
Step 8 : Perform a locality-maintaining Load_Balance
according to Refined_-Bound[k]

Figure 4: Parallel Merging Algorithm

vertices to be inserted in the processor ¢. One can use
a parallel prefix algorithm to find the new (refined)
boundaries. This is followed by a locality-maintaining
Load Balance algorithm [3] that balances the load.
It can be shown that the worst case complexity of the
merging algorithm is O(mlogm + %)

4 Experimental Results

The results presented in Table 1 were obtained by
applying the index-based mapping algorithm to a large
number of meshes. We can make the following obser-
vations about the index-based mapping: 1) The qual-
ity of partitioning for a small number of partitions
is not very good. 2) The quality of partitioning de-
grades if the mesh is highly irregular. 3) For large
meshes the quality of mapping is comparable/better
than co-ordinate recursive bisection. 4) The time re-
quired for partitioning is independent of the number
of partitions. 5) For large mesh sizes with a reason-
able number of partitions, the algorithm gives better
performance than CRB at less then half the cost. 6)
The quality of partitioning is always worse than SRB.
However, the time required is two to three magnitudes
better.

We thus see that this algorithm is compara-
ble/better than CRB for large meshes and a reason-
able number of partitions. Clearly, the performance is
always inferior to that of SRB, but at a much lower
cost.

To study the time for parallelization for different
values of NV, the co-ordinate data was generated ran-
domly. The algorithm was implemented on a CM-5.
Figure 5 shows the timing on 4, 8, 16, and 32 nodes.
For 128,000 vertices, the time taken is of the order of
0.69 seconds on a 32-node CM-5. The time taken for

[V = 2800, | E |= 17377

Partition | Partitioner Time Cutset
SORT .399960 4785
16 CRB 329967 4501
SRB 43.696 3421
SORT .399960 8172
64 CRB 479952 8563
SRB 56.154 6385
SORT .389961 12226
256 CRB 669933 13078
SRB 64.194 10566
| V |=2851,| E |= 15093
Partition | Partitioner Time Cutset
SORT 379962 2840
16 CRB .309969 2176
SRB 72.213 1455
SORT .389961 5918
64 CRB 439965 4806
SRB 82.272 3395
SORT 379962 10108
256 CRB 659934 8452
SRB 91.081 7238
| V |= 9428, | E |= 59863
Partition | Partitioner Time Cutset
SORT 1.32987 10936
16 CRB 1.14988 9731
SRB 203.820 7236
SORT 1.29987 19165
64 CRB 1.71983 20147
SRB 247.695 14310
SORT 1.33987 | 30799
256 CRB 2.27977 | 37272
SRB 280.712 25073
| V |=53961,| F |= 353476
Partition | Partitioner Time Cutset
SORT 7.76922 36128
16 CRB 7.22928 31753
SRB 1719.768 | 49374
SORT 7.74923 65958
64 CRB 10.9389 77313
SRB 2234.786 | 66596
SORT 7.84921 | 108692
256 CRB 14.4486 | 151359
SRB 2523.358 | 95612

Table 1: Comparison of SORT, CRB, SRB algorithms

(time is in seconds)

4 nlodes <— l
8 nodes +—
16 nodes H—
32 nodes "X -

Time

5
5
4
5
3
(sec) 2'%
5
1
5
0

64000

Number of vertices

96000

Figure 5: Parallelization of mapping algorithm on 4,

8, 16, and 32 nodes

1.2 L
4 nodes- T ©— |

L'r 4 nodes-IT ~—]
) 0.8 F32 nodes- 1 B— o

'(I‘lm)e 0.6 |32 nodes-II -x- - s

sec L
04 >< .
0.2 - F % . |
(e = =)]
32000 64000 96000

Number of vertices

Figure 6: 10% incremental problem on 4, 8 16, 32
processors (I and IT represent cases 1 and 2, respec-
tively)

the algorithm on 4 nodes was 4.75 seconds. Thus, the
algorithm scales well.
For the incremental case, we generated two sets of
data for performing our experiments.
1. Each node generated an approximately equal num-
ber of random points such that the index values were
within the boundaries of each processor.
2. One node generated all the points (m) such that the
points were within the boundaries of a processor. This
case was followed by a load- balancing step in which
the data was distributed to all processors equally (%)
The results(Figure 6) show that for case 1 the al-
gorithm parallelizes very well. The cost on 32 nodes

in the incremental case of 10% new vertices is approx-
imately 0.03 second for 128,000 vertices. This shows

128000

128000

0.7 I e N
0.6 L inc. mapping —
0.5 mapping —+—
Time 0.4
(sec) 0.3 F
0.2
0.1 F

0o 2 4 6 8 10 12 14 16

Number of vertices (%)

Figure 7: Comparison between incremental mapping
and mapping algorithms on case 2 (| V' |= 64, 000 and
p=32)

that the incremental mapping algorithm can be used
to reduce the time for repartitioning (the correspond-
ing time for mapping 128,000 vertices on 32 nodes is
0.69). For case 2 result(Figure 6), the algorithm does
not scale very well with the number of processors un-
less the fraction is small and the number of vertices
are large (greater than 10,000). This is because a large
number of messages (p) are received by one processor.
Further, all the data is sorted in one processor in Step
5.

Figure 7 shows the comparison of incremental map-
ping (using the merging algorithm) with the mapping
algorithm (sorting algorithm) for 64,000 vertices for
the worst case data. This result shows that it is better
to perform incremental mapping rather than mapping
when the fraction is less than 9%.

5 Conclusions

In this paper we have described a simplex index-
based algorithm for graph partitioning. It is shown
that an index-based algorithm should be useful for
partitioning unstructured and adaptive problems for
the following reasons:

1. They provide good solutions with a relatively low
cost, which is a necessary requirement due to the adap-
tive nature of problems.

2. They can be parallelized.

3. They can be used for problems that are incremental
in nature.

The performance of our parallel incremental map-
ping depends on the type of data generated. There is
a big gap between the performance of the best case

and the worst case of our algorithm. We are currently
conducting further research in this area to improve the
worst case performance of the incremental algorithm.

References

[1] Alok Choudhary, Geoffrey C. Fox, Seema Hi-
ranandani, Ken Kennedy, Charles Koelbel, Sanjay
Ranka, and Joel Saltz. Software support for irreg-
ular and loosely synchronous problems. In Pro-
ceedings of the Conference on High Performance
Computing for Flight Vehicles, 1992. to appear.

[2] Nashat Mansour. Parallel Genetic Algorithms with
Application to Load Balancing for Parallel Com-
puting. PhD thesis, Syracuse University, Syracuse,
NY 13244, 1992.

[3] Kishan Mehrotra, Sanjay Ranka, and Jhy-Chun
Wang. A probabilistic analysis of a locality main-
taining load balancing algorithm. In 7th Inter-
national Parallel Processing Symposium, Newport

Beach, CA, Apnil 1993.

[4] R. Shankar and S. Ranka. Hypercube algorithms
for quadtree operations. Journal of Pattern Recog-
nition, September 1992.

[5] R. Shankar and S. Ranka. Computer vision al-
gorithms for sparse images. Journal of Paltern
Recognition, October 1993.

[6] H. Simon. Partitioning of unstructured mesh prob-
lems for parallel processing. In Proceedings of the
Conference on Parallel Methods on Large Scale
Structural Analysis and Physics Applications. Per-
magon Press, 1991.

[7] C.D. Thompson and H.T. Kung. Sorting on a
mesh-connected parallel computer. comm. ACM,

20:263-271, 1977.
[8] Michael S. Warren and John K. Salmon. Astro-

physical n-body simulations using hierarchical tree
data structure. In Proceedings Supercomputing 92,
Minneapolis, November 1992.

[9] R.D. Williams. Performance of dynamic load-
balancing algorithm for unstructured mesh calcu-
lations. Concurrency, 3:457-481, 1991.

	Fast Mapping And Remapping Algorithms For Irregular And Adaptive Problems
	Recommended Citation

	tmp.1286816405.pdf.W1wmh

