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Abstract 

 

Antenna pattern measurements are usually carried out in an anechoic chamber. However, 

a good anechoic chamber is very expensive to construct. Previous research has attempted 

to compensate for the effects of extraneous fields measured in a non-anechoic environment 

to obtain a free space pattern that would be measured in an anechoic chamber. Existing 

compensation techniques are like the Test Zone Field compensation method, the 

Fast-Fourier-Transform-based method, the Matrix Pencil method, and the Antenna Pattern 

Comparison technique.  

This work illustrates and extends a deconvolution methodology which allows the 

antenna measurement under a non-anechoic test environment and retrieves the free space 

radiation pattern of an antenna through this measured data; this allows for easier and more 

affordable antenna measurements. 

In this work, we modeled the extraneous fields as the system impulse response of the 

test environment and utilized a reference antenna to extract the impulse response. Then, we 

used it to remove the extraneous fields for a desired antenna measured under the same 

environment and retrieved the ideal pattern. The advantage of this process is that it does not 

require calculating the time delay to gate out the reflections; therefore, it is independent of 

the bandwidth of the antenna, and there is no requirement for prior knowledge of the test 

environment. 

This work contributes to the field not by proposing a new methodology for pattern 

reconstruction but by showing that the deconvolution methodology can analytically 

remove the effects of extraneous fields in antenna pattern measurements and by extending 



 

this method to antenna pattern measurements under three-dimensional environments. Also, 

a discussion of the parameters that affect the deconvolution methodology is given in this 

work. Extensive simulation examples with different environmental settings and with 

different antennas are presented in this work to demonstrate the applicability of the 

deconvolution method.  
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Chapter 1  

Introduction 

 

Antennas are used in many ways, including in communication devices, radars, and 

satellites. For simple antennas, one can use analytical methods to analyze, synthesize, and 

design them. For many other antennas, due to their complex structures, they cannot be 

studied analytically. Thus, numerical computation methods like Method of Moments 

(MoM), Fast Multipole Method (FMM), Finite Element Method (FEM), and 

Finite-Difference Time-Domain (FDTD), have been developed in recent decades to 

numerically compute the radiation characteristics of such antennas.  

However, to complement numerical computational techniques antenna measurement 

is a necessary step for the testing of an antenna to characterize it or to ensure that an 

antenna meets certain design specifications. Researchers are usually interested in antenna 

gain, efficiency, radiation pattern, VSWR, polarization, beamwidth, and so on.  

A facility used to test and evaluate antennas is referred to as an antenna range. In 

general, there are two basic types of antenna ranges: the reflection range and the 

free-space range [1]. The reflection range is usually of an outdoor type where the ground 

is the reflection surface, while the free-space range is designed to minimize the 

reflections from the surrounding environment. It includes elevated ranges, slant ranges 

[2], anechoic chambers, compact ranges [3], and near-field ranges [4]. Each type of range 

has its own unique features and scope of applications. 
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For the anechoic chamber, the measurement is carried out inside the chamber, which 

is covered by RF absorbers. The RF absorbers will provide a reflection coefficient of −40 

dB for the incident wave and are used to approximate the free space environment. Inside 

the chamber, the test antenna is placed in the free space far-field region of a probe antenna. 

The far field (Fraunhofer) distance d of an antenna is commonly taken as
22 /D   where 

D is the maximum overall dimension of the antenna and   is the wavelength of operation 

[1]. For a large antenna, the far field distance d will be relatively large, and the size of the 

chamber required to carry out an indoor far-field range measurement will be large. Thus, 

near-field ranges were developed. The principle of near-field techniques is to use a probe 

to measure the field generated by an antenna at a short distance over a surface close to the 

antenna. Then analytical methods are used to calculate the far-field from the measured 

near-field. The measurement using the compact range will use a reflector to approximate 

an incident plane-wave field at a short distance. This is very useful when testing antenna 

systems at low frequencies (i.e., when the far field distance is too large) or when the 

antenna to be characterized is large.  

 

1.1  Problem Background 

 

The anechoic chamber is a commonly used facility for the antenna far-field pattern 

measurement, as it provides an indoor environment and an all-weather capability. First, 

let us look at the normal antenna measurement carried out in the anechoic chamber 

(shown in Figure 1.1). Inside the chamber, the AUT (antenna under test) is mounted on 

the AUT tower, which provides rotation along theta and phi directions, while a probe 
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antenna is placed at a distance away from the AUT. The walls and the floor of the room 

will be covered by RF absorbers to eliminate various reflected fields. Also, the 

mechanical devices present inside the chamber will be covered with RF absorbers to 

reduce the reflection and diffraction contributions and increase the measurement accuracy. 

The network analyzer is used to provide the RF signal and to measure the response 

received on the probe antenna. The positioner automatically controls the rotation of the 

AUT to generate a 3-dimentional radiation pattern.  

 

 

Figure 1.1 Antenna measurement carried out in an anechoic chamber.  

 

However, it is very expensive to construct an anechoic chamber. Further, to measure 

the radiation pattern of large antenna arrays mounted on their platforms (i.e., radar antenna 

array mounted on an aircraft), an indoor anechoic chamber with sufficient size would be 
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prohibitively expensive to build. The following questions arise: How is an accurate 

antenna measurement carried out without using an anechoic chamber? Is it possible that 

one can measure the radiation pattern of the AUT in a non-anechoic environment and 

then do some processing to remove the artifacts of the environment? In this work, we 

propose a methodology to generate a far-field pattern for the AUT that will be obtained in 

an anechoic environment using data measured for the AUT in a non-anechoic 

environment. 

A large amount of research has been done to address this problem. They have used 

various approaches to compensate for the reflections that will occur naturally in a 

non-anechoic environment and generate a pattern that will approximate the free space 

radiation pattern. The purpose of this work is to reconstruct the free space radiation pattern 

using the data measured in a non-anechoic environment so that antenna pattern 

measurements can be carried out in any environment. As a result, the cost of the 

measurement will be cheaper and the measurement will be easier. 

Note that, antenna measurement techniques include far-field techniques and near-field 

techniques and they perform the far-field and near-field measurement, respectively. In this 

work, we only consider the far-field measurement. And the word “pattern” within the work 

indicates the far-field radiation pattern of an antenna. 

 

1.2  Originality and Contribution 

 

The contribution of this work is not to propose a new methodology for pattern 

reconstruction, but to prove and to illustrate the deconvolution method can analytically 
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remove the effects of extraneous fields in antenna pattern measurements. And this method 

is extended to antenna pattern measurements under three-dimensional environments, 

which is not studied in any other work. Also, the limitations and effectiveness of the 

method are discussed and illustrated through numerical simulation examples within this 

work. Extensive simulation examples with different environmental settings and different 

antennas are presented in this work to demonstrate the applicability of the deconvolution 

method. 

 

 

1.3  Outlines 

 

This dissertation is presented in six chapters. The first chapter provides several basic 

concepts of antenna measurements, as well as the background and the motivation of this 

research. Concepts such as the anechoic chamber setup and the different types of antenna 

ranges for the measurement are introduced to help demonstrate the problem. The 

originality and contribution of this work is clearly stated within this chapter. 

Chapter 2 reviews in the literature the existing methodologies for solving the antenna 

pattern reconstruction problem, such as the Fast Fourier Transform (FFT)-based methods. 

Also, the disadvantages for those methodologies are given in this chapter. The 

deconvolution method that is to be presented in details does not have those 

disadvantages. 

Chapter 3 presents the deconvolution method in two dimensional (2D) environments 

and models the environmental effects as impulse responses of the test environment. It 
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first characterizes the environment using a reference antenna and then uses this signature 

to remove unwanted effects from a subsequent test for the AUT through a deconvolution 

processing. Numerical simulation examples are given to illustrate the performance of the 

method. 

Chapter 4 provides a discussion on the limitations of the deconvolution method and 

parameters that affect its performance. First, different probe antennas are chosen to 

change the antenna effect. Then, different sizes of antennas and a different simulation 

frequency are applied in the simulation model. Also, the test environment is changed by 

using different sizes of PEC plates. The deconvolution method is evaluated to reveal its 

limitations and effectiveness under different conditions. 

Chapter 5 describes the extension of the deconvolution method to three-dimensional 

(3D) environments and aims to extract the radiation pattern of the AUT under practical 

test environments with reflections from all spatial angles. Several simulation examples 

are given to illustrate the pattern reconstruction in a 3D environment. 

Chapter 6 summarizes the work and discusses directions for future work. 

The two appendixes at the end give detailed explanations for problems that one may 

run into during actual data processing using the deconvolution method. Appendix A 

explains why one needs to perform the data mapping for 3D pattern reconstruction. 

Appendix B explains how to remove the NA value when processing the data. 
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Chapter 2  

Literature Review of Pattern Reconstruction 

Methodologies 

 

2.1  Literature Review 

 

In the past, researchers have introduced methods for reducing the undesired reflection 

and diffraction of signals from the walls and objects located inside an anechoic chamber. 

This chapter first gives a general review of previous works on antenna pattern 

reconstruction. Then, the FFT-based method is introduced with more details to follow for 

the purposes of generating a better understanding of the problem and for comparison with 

the deconvolution method. 

Most of the existing pattern reconstruction methods can be divided into three 

categories based on the information that is used [6]. In the first category, the technique is 

to use the test-zone field for pattern correction, while in the second category the 

technique is to use time or frequency responses for correction. The third category’s 

technique is to use the spatial response of the test antenna.  

The Test Zone Field (TZF) compensation method [7]-[12] and the deconvolution 

method [13]-[16] are techniques of the first category. For the TZF compensation method, 

the test zone field is measured over a spherical surface encompassing the test zone using 
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a TZF probe. But this field is distorted due to extraneous fields, which are caused by 

reflection and diffraction responses and by the leakage of the range probe. This method 

provides a way to analytically remove the effect of extraneous fields in antenna pattern 

measurements. A spherical mode expansion (SME) of the measured test zone field is 

used in antenna measurements to compensate for the effects of the extraneous fields. 

This method basically consists of two steps. The first step is to measure the response 

of a reference antenna (with known radiation characteristics) in the test zone, and expand 

the measured TZF into spherical modes. This step is to use the measured results to 

calculate the coefficients for the test zone incident fields. Then in the second step, one 

replaces the reference antenna as the AUT and carries out the measurement again. By 

utilizing the measurement data and the calculated coefficients of the TZF, the radiation 

pattern of the AUT can be calculated. Several papers have been presented for this method, 

applying a matrix inversion or the FFT (Fast Fourier Transform) technique to calculate 

the unknown coefficients. 

The deconvolution method also uses the test-zone field information and the first 

work was presented in 1976, but no detail information was found in the work. In [14], a 

primary source was used to illuminate the AUT, and several secondary sources were used 

to imitate the environmental effects. The convolution relation between the far-field 

response of the AUT and the source distribution were given but without any proof. The 

method was verified through numerical simulations and a pilot experiment. In [15], the 

method was illustrated for correcting antenna measurement errors in compact antenna test 

ranges. The reaction theorem was applied to the AUT and the compact range antenna 

system to deduce the convolution equation. Measurement results of a standard horn were 
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presented to illustrate the method. In [16], the deconvolution method was derived from 

the time domain convolution, and transited into the angular domain convolution by 

introducing the concept of the impulse response of the test environment. Numerical 

simulation results were presented and compared with results of the FFT-based method. 

All the previous work on the deconvolution method was limited to the two-dimensional 

case. In this work, derivation of the deconvolution method in the three-dimensional case 

will be given along with numerical simulation examples. 

As the time and frequency responses of the test antenna contain similar information, 

different techniques utilizing either the time or the frequency domain data fall into the 

second category. Typical methods include the FFT-based method, the Matrix Pencil 

method, and equalization methods. 

The FFT-based method generates the time domain response of a non-anechoic 

environment from its frequency response by applying the Inverse Fourier Transform 

[17]-[18]. In the time domain, the direct signal from the transmitting antenna is detected 

and gated to eliminate undesired late-time echoes which are reflection and diffraction 

components. Then, apply the Fourier Transform to this truncated time domain response 

and one can obtain a cleaned radiation pattern containing only the direct signal at the 

desired frequency. This method can also be used to characterize the level of reflections of 

the anechoic chamber [19]-[20], due to the fact that the RF absorbers can reduce but not 

remove the reflections or diffractions. 

However, a major disadvantage of this methodology is that we need to determine the 

time taken by the fields to travel along a line-of-sight path (direct path) from the AUT to 

the probe antenna and the shortest time needed for the fields to travel through other paths 
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besides the direct one. This can be difficult especially when the measurement site has 

multiple objects that are close to the direct path. Also, to have sufficient time domain 

resolution to perform the time gating, a large bandwidth of the measurement data is 

required in the frequency domain. 

Another method that also applies the idea of time gating is to directly measure the 

far-field antenna pattern in the time domain [21]. By using the data from a single 

measurement in the time domain, range evaluation, pattern reconstruction and pattern 

error correction can be performed. However, it is difficult to carry out measurements in 

the time domain as a large bandwidth of the signal is required. 

The Matrix Pencil method and the Oversampled Gabor Transform (OGT) essentially 

achieve similar goals as the FFT-based method but they require less bandwidth [22]-[25]. 

These two methods are based on the matrix-pencil or the oversampled Gabor-transform 

and decompose the measured frequency response into several propagation components in 

the form of complex exponential functions over selected frequency intervals. By 

extracting the component contributed from the direct path of propagation and by 

suppressing other components, the approximated free space radiation pattern can be 

obtained.  

P. S. H. Leather and D. Parson present an equalization technique to correct the effects 

of unwanted signals. A special measurement is carried out for the non-anechoic 

environment where an antenna is to be tested to determine the parameters of the equalizer 

[26]-[31]. By applying the idea of a matched filter, they used the adaptive equalizer to 

calculate the actual channel characteristics and to adjust its coefficients appropriately to 

approximate the free space condition. This method needs to have a training procedure 
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that transmits the ideal signal to the environment, collects the responses, and records 

differences between the ideal signal and the received responses to calculate the 

coefficients. These coefficients can then be used to cancel the effects of the environment 

on the desired AUT. 

Techniques of the third category include methods like the antenna pattern 

comparison (APC), novel antenna pattern comparison (NAPC) [33], and adaptive array 

strategies [34]. The APC technique was designed for measuring the reflectivity level in 

an anechoic chamber [32], but it can also be used to correct the measured pattern of an 

antenna. This technique measures the pattern of an antenna several times at different sites 

inside a room. Then, the recorded patterns are adjusted and superimposed so that the 

main-lobes cover each other and the corrected antenna pattern is obtained by taking the 

average of the measured patterns. The NAPC technique requires measuring the antenna 

pattern twice at two different locations in the test zone. During one pattern measurement, 

the antenna location is fixed in the target zone; during the second pattern measurement, 

the antenna is moved as a function of the pattern angle and the corrected pattern is given 

by the average of the two responses. As for the adaptive array strategy, those spurious 

signals are considered as the interference signals and the direction of arrival (DOA) 

algorithm is applied to identify and remove them. 

Also, several other techniques are developed and are considered suitable in a 

hologram based compact antenna test range (CATR) at sub-millimeter wavelengths (e.g., 

the feed scanning APC technique, the feed scanning APC technique [35], the frequency 

shift technique [36], and the correction technique based on an adaptive array algorithm 

[37]). 
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The purpose of this paper is to present a deconvolution-based technique and to 

extend the method to be used in three-dimensional environments. Part of the work is from 

the previously published paper [16] and is presented in Chapter 3. 

 

 

2.2  FFT-Based Method 

 

As previously mentioned, the FFT-based method is used to eliminate the reflections and 

diffractions existing in a measurement chamber. The idea of this method is 

straightforward. The measurement data from the AUT is taken in the frequency domain 

over a range of frequencies and can be transformed to the time domain data through FFT. 

Since RF absorbers cannot absorb the wave completely, the received responses at the 

probe would be a combination of the direct path signal as well as the reflection and 

diffraction contributions from walls and mechanical devices in the room. The direct path 

signal and the reflection signals would travel along different paths. The direct path signal 

is the dominant signal and travels along the direct path between the AUT and the probe, 

thus arriving at the probe first, while other reflection signals arrive later. Those late signals 

are called late-time echoes in the time domain. Based on prior knowledge of the test 

environment, one can calculate the time taken by the signal travelling on a direct path and 

also the time taken by the signal traveling on the shortest reflection path (paths besides the 

direct path). By eliminating late time echoes in the time domain and transforming the 

truncated data to the frequency domain, researchers can obtain a clean radiation pattern 

approximating the free space radiation pattern. 
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In an anechoic environment, the direct path signal between the AUT and the probe is 

the only measured signal. The channel in the frequency domain is then characterized by a 

constant amplitude response, independent of the frequency and with a linear phase. 

However, in a non-anechoic environment, the above is not true when reflected and 

diffracted fields are present due to the environment. And the influences of the reflection 

and diffraction contributions exist in both amplitude and phase of the antenna responses. 

The main idea of the FFT-based method is that after a certain time period there should 

not be any desired direct path signal. This time period can be calculated based on the 

knowledge of the measurement environment, specifically, the distance between the AUT 

and the probe. This has been described in detail in [17]-[18].  

The diagram of an antenna measurement system in an anechoic chamber is shown in 

Figure 2.1. It contains one probe antenna and one AUT with a finite distance in between. 

A metal plate is placed as a reflector at one side of the antennas. The direct path between 

the AUT and the probe is the straight line connecting two antennas, and the shortest path 

to the reflector can be obtained by drawing the image of the probe and by connecting it 

with the AUT. During the simulation or measurement, the AUT will act as the transmitter 

(port 1), and it will rotate along the axis of itself in an azimuth angle  , while the probe 

will be the receiver (port 2). And the 21( , )S f  parameter is recorded to generate the 

radiation pattern of the AUT. Typical far-field antenna measurements are performed with 

the AUT operating in the receiving mode, excited by an incident plane wave. Reciprocity 

implies that the AUT works equally well as transmitters or receivers [5]. In this work, we 

rotate the AUT and operate it as a transmitter. And the 21( , )S f  parameter is recorded 

to form the radiation pattern 
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Figure 2.1 The radiation pattern measurement system. 

 

Here, we summarize the steps of the FFT-based method: 

(1). Measure the response (both amplitude and phase) in the frequency domain covering 

the bandwidth from, for example, 6 GHz to 12 GHz. In other words, 

measure 21( , )S f between the two antennas in the presence of the metal plate as 

shown in Figure 2.1.  

(2). Apply the Inverse Fourier Transforms (IFFT) to 21( , )S f
 
in the frequency domain 

to obtain the time domain response 21( , )S t . 

(3). Once in the time domain, the signal is truncated and the direct ray contribution 

between the transmitting antenna and the receiving antenna should be approximately 

retained. By estimating the time delay between the direct path contribution and the 

shortest reflected path contribution, the minimal bandwidth for measurement can be 

calculated so as to have sufficient resolution in the time domain and to perform the 

time gating.  

(4). Then, the truncated time domain data is transformed to the frequency domain by 

applying the FFT to obtain the processed frequency domain data 21( , )S f .  
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To illustrate the performance of the FFT-based method, one simulation example is 

presented here, and this example can also be found in previous paper [16]. The setup of 

the model is shown in Figure 2.2 and the far field condition is satisfied. The rotation (in 

azimuth plane) angle   of the AUT changes from −90° to 90° with a 2° step. A powerful 

full-wave EM simulation software HOBBIES (Method of Moments based) [38] is used to 

simulate all the electromagnetic effects in the model. The frequency of operation is 

changed from 6 GHz to 12 GHz, in a step of 0.05 GHz, to characterize the non-anechoic 

environment. This can be calculated through the time delay. The time delay is the time 

difference between the direct path signal and the shortest reflection path signal and can be 

easily calculated to be 7.45t ns  for this simulation example. So the minimum 

bandwidth needed for the frequency sweep can be obtained as the reciprocal of the time 

delay (i.e., 1/BW t  ). However, to achieve a better truncation precision in time, a 

higher bandwidth is recommended to obtain a higher resolution in the time domain. For 

that, it is necessary to use 5/BW t  . Therefore, we choose the frequency sweep from 

6 GHz to 12 GHz. 

A metal plate sized 0.5 m × 0.2 m was used in the far-field of the measurement 

environment. The AUT is a helical antenna whose dimensions are shown in Figure 2.3. 

The helical antenna is fed at the junction of the wire helix and the circular PEC backplane. 

The diameter of the wire is 0.5 mm. A standard gain horn antenna is used as the probe 

antenna, whose dimensions are shown in Figure 2.4. A monopole with the length of 9.5 mm 

and the diameter of 0.5 mm is used to feed the horn and is located at a distance of 7.5 mm 

away from the end of the horn. 
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Figure 2.2 The radiation pattern measurement model with one PEC plate as the reflector. 

 (the AUT is a helical antenna; the probe antenna is a horn antenna) 
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Figure 2.3 Dimensions of the helical antenna model with a reflecting plate (AUT). 
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Figure 2.4 Dimensions of the horn antenna model (Probe). 

 

In the simulation model, the AUT is rotated along the azimuth angle   from −90° to 

90° with a 2° step in the frequency range of 6 to 12 GHz. For each azimuth angle and each 

frequency point, the simulated 21( , )S f  data is collected and the amplitude response, 

which is in the frequency domain for various rotation angles, is shown in Figure 2.5. It is 

seen that the various reflected and diffracted fields from the reflector are primarily 

located in the region covering azimuth angles ranging from 20° ~ 40°, which is the region 

where the main beam of the AUT is reflected by the metal plate.  

 

Figure 2.5 Amplitude pattern of 21( , )S f between the helical antenna and the probe. 



18 

Then, the Inverse FFT is applied to this data and the corresponding time domain data 

is shown in Figure 2.6. From Figure 2.2, it is easy to realize that the shortest time for the 

fields to propagate from the AUT to the probe is about 7.45 ns. Any received signal 

beyond that would be the reflections and diffractions of the radiated fields and should be 

removed.  

 

Figure 2.6 Time domain response corresponding to Figure 2.5. 

 

As mentioned above, we need to truncate the data beyond 7.45 ns. As the minimum 

time interval is 1/6 ns under the current bandwidth setting, we will truncate the data 

towards the closest data point, which is 7.5 ns (as shown in Figure 2.7). After truncating 

the time domain signal from 7.5 ns, the processed signal is transformed back to the 

frequency domain by applying the FFT. The cleaned pattern in the frequency domain is 

shown in Figure 2.8. It is observed that most of the reflected and diffracted fields in the 

angular range of 20° ~ 40° have been reduced. To see the performance of the FFT-based 

method more clearly, a comparison is made for the helical antenna among the ideal 
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pattern, the FFT-based pattern and the reflected pattern (pattern with reflection 

contributions), for the patterns at 7.6 GHz and 8.8 GHz, shown in Figures 2.9 and 2.10, 

respectively.  

 

Figure 2.7 Truncated time domain response. 

 

 

Figure 2.8 Cleaned pattern of the helical antenna by taking FFT of the truncated time 

domain response. 
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Figure 2.9 Amplitude pattern comparison for the helical antenna at 7.6 GHz. 

 

 

Figure 2.10 Amplitude pattern comparison for the helical antenna at 8.8 GHz. 
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The black line termed reflected pattern is the result of the reflection contributions, 

while the reconstructed pattern is indicated by the blue line termed FFT-based pattern. The 

red line termed ideal pattern is the reference pattern. One can observe that after the 

truncation process the processed patterns give acceptable results compared with the ideal 

patterns. And the FFT-based method has removed a major part of the reflection 

contributions.  

A problem with the FFT-based method is that one needs to determine the time delay 

between the time take by the direct path and the time taken by the shortest reflection path. 

This is not an easy task especially when multiple paths are present.  
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Chapter 3   

Deconvolution Method for Radiation Pattern 

Reconstruction 

 

 

Considerable developments have taken place in the area of antenna measurements during 

recent years. And the accuracy of the measurement results is affected by factors like the 

Signal to Noise Ratio (SNR) of the measured data, the data processing algorithms, the 

precision of the test equipments and also the quality of the measurement environment. 

Large efforts have been made to improve the measurement facility but it is usually 

limited by the available budget. For example, use of high quality absorbing materials in 

the anechoic chamber is costly. This work is focused on antenna pattern reconstruction 

through deconvolution method. 

The concept of the deconvolution method and some results have been reported in 

[13]-[15]. In this work, we will present and prove the method from a different point of 

view, followed by the governing equations to implement this method and numerical 

examples to illustrate the process. Note that in this chapter the deconvolution method is 

applied in 2D test environment
1
. Extensions of the method to 3D test environment will be 

given in chapter 5.  

                                                 

1 
Part of this chapter previously appeared in: Jinhwan Koh, De, A., T. K. Sarkar, Hongsik Moon, Weixin 

Zhao, M. Salazar-Palma, “Free Space Radiation Pattern Reconstruction from Non-Anechoic Measurements 

Using an Impulse Response of the Environment,” IEEE Transactions on Antennas and Propagation, vol.60, 

no.2, pp.821-831, Feb. 2012 [16]. 
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3.1  Equations and Derivation 

 

Consider making antenna measurement inside a regular room instead of an anechoic 

chamber. The received signal at the probe is affected by the environment (walls, floor, 

ceiling, and so on) and we call this as the environmental effects. As shown in Figure 3.1, 

the AUT and the probe work as the transmitting and receiving antenna, respectively. The 

distance between two antennas satisfies the far field condition since the far-field pattern 

of an AUT is considered. The AUT will rotate during the measurement and 21( , )S f   

will be measured at a fixed frequency f for each rotating angle   ( will be the azimuth 

angle since the AUT rotates along the azimuth plane). The radiation pattern of the AUT is 

proportional to 21( , )S f  , as a function of the AUT rotation angle. Here, 21( , )S f   

contains information for both the antenna far-field pattern and the environmental effects. 

 

 
(a) 

 

 (b) 

Figure 3.1 Radiation pattern measurement system diagram. 
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Many physical processes can be represented by, and successfully analyzed assuming 

linear time-invariant (LTI) systems as models [39]. And from the time domain 

point-of-view, the output of the system is simply the convolution of the system input and 

the impulse response of the system. When the transmitter in a room generates a signal 

( )x t , it will be affected by the room and received by the receiver as ( )y t . Suppose the 

impulse response of the room system is ( )h t , then we know that:  

( ) ( )* ( ),                    (3.1)y t x t h t  

where * represents a convolution in the time domain, and in the frequency domain it will 

be:  

( ) ( ) ( ),             (3.2)Y f X f H f   

where ( )Y f , ( )X f  and ( )H f  are the Fourier transforms of ( )y t , ( )x t  and ( )h t , 

respectively. Thus, for antenna measurement inside a room, the received signal at the 

probe will be a convolution of the transmitted signal (from the AUT) with the room 

impulse response. Note that, this relationship is between the time domain and the 

frequency domain; moreover, both the AUT and the probe are fixed in the spatial domain. 

Now, let’s analyze the situation when the AUT rotates during the measurement. The 

reflections from the room may be strong at some angles, and weak for some other angles. 

For each rotation angle  , the AUT transmits signal along all directions and the probe 

also receives signal from all directions (assume that there are n directions for one cut in the 

plane). The signal which is transmitted along direction i travels along a certain path and is 

received from direction j. We define this path as ji. And the corresponding environmental 

effect along this path is defined as hji. So the total signals received at the probe along 

direction 1 will be a summation of the signals from the transmitter radiating in all 
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directions and through paths 11 12 1,  ,...,  nh h h . Then, we will have: 

1 1 2

11 12 1 1... ... ,             (3.3)i n

x x x i x n xR h T h T h T h T       

where 1

xR  is the signal received at the probe along direction 1 

i

xT  is the signal transmitted at the AUT along direction i 

1ih  is the environmental effect along the path 1i  

n is the number of directions that are considered  

  

Similarly, there will be a signal received at the probe from direction 2, 3, until n. And 

there will be corresponding equations for 2

xR , 3

xR ,…, n

xR . 

1 1 2

11 12 1 1

2 1 2

21 22 2 2

1 2

1 2

... ...

... ...

 

... ...

i n

x x x i x n x

i n

x x x i x n x

n i n

x n x n x ni x nn x

R h T h T h T h T

R h T h T h T h T

R h T h T h T h T

     

     

     


    (3.4) 

and we can write them in the matrix form as:  

1 1

11 1

1

x n x

n n

x n nn x

R h h T

R h h T

    
    

     
        



    


     (3.5) 

where
 

1  n

x xR R stand for the signals received at the receiver from all n directions; 

1 n

x xT T  stand for the signals sent by the transmitter along all n directions; 
jih  stands for 

the environmental effect for the path that the signal is transmitted along direction i and is 

received along direction j.  

So for each azimuth (rotation) angle 1 , 21 1( )S 
 
is a summation of the received 
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signals as 1 2  n

x x xR R R   (at 1 ). By using h1 to represent the summation of h11, h21, 

until hn1, and also other hji terms, we can write 21 1( )S   as a summation of 

1 2

1 2

n

x x x nT h T h T h   :  

 (3.6) 

where,       

1 11 21 1

2 12 22 2

1 2

n

n

n n n nn

h h h h

h h h h

h h h h

   

   

   









        (3.7) 

 

Then, we rotate the AUT every 1 degree, the angle   changes from 1  to 2 . The 

corresponding field component transmitted along direction 1 will then be transmitted along 

direction 2. And we can get a similar equation for 21 2( )S 
 
as presented earlier:  

             

1 2 1

1 2 1 3 1 1 1

1 2 1

2 2 2 3 2 2 1

2 1 2

1 2 1

2 3 1

...

...
( )

                          

...

n n

x x n x x

n n

x x n x x

n n

n x n x nn x n x

h T h T h T h T

h T h T h T h T
S sum

h T h T h T h T









    


   
 


    

     (3.8) 

 1 2

2 3 1    n

x x xT h T h T h     

similarly, we can get such expressions for every single    and write them in the matrix 

form as:  
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1 2 1

21 1

2 3 1 1 2

1 2

21

1 1

( )

( ,  ,  , ) ( ,  ,  , )          (3.9)

( )

n

x

n

n x x x

n

n x

n n

h h h
S T

h h h
h h h T T T

S T
h h h








 
    
           
       

 




   

 



 

It is easy to observe that the [h] matrix is shifted by one element for each row in Eq. 

(3.9). So the multiplication of matrix [h] and vector of [
xT ] will be a convolution of two 

vectors. As we know, 1 2( ,  ,  , )n

x x xT T T , which is the signal transmitted by the AUT, 

forms the free space radiation pattern of the AUT; while 21 1 21 2 21( ( ),  ( ),  ,  ( ))nS S S   , 

which is the actual signal received by the probe in the presence of the environment, forms 

the non-ideal radiation pattern. We can then conclude that the measured non-ideal signal 

can be represented as an angular convolution between the ideal signal and the 

environmental responses at the frequency f, as shown in Eq. (3.10), where   represents 

a convolution in the angular domain. 

 

     , , ,non ideal AUT ideal AUTP f P f A f        (3.10) 

 

The above derivation of equation (3.10) is not very rigorous while the following 

derivation is more rigorous, and it also can be found in previous paper [16]. We first 

assume an AUT can generate an ideal pencil beam pattern (the radiated signal will be 

along one direction in the far field). As shown in Figure 3.2, the signal which is 

transmitted along   experiences multiple reflections from Object 1 and Object 2 in the 

azimuth plane. Note that we assume that the objects do not change size or positions in 

time (time invariant). The received time domain signal at the probe, when the AUT is 

rotated through  , is unique with respect to other angles. Therefore the time domain 
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response along angle   can be described as an impulse response along   or a spatial 

signature of  . The reason we have the pencil beam assumption here is that the 

environment affects the radiated signal differently along different angles, and we first 

consider the environmental effects in one direction only. 

 

 

Figure 3.2 Multiple reflections exist between the AUT and the probe within the azimuth 

plane. 

 

The measured signal at the probe, which contains various reflections, can be 

represented as a time convolution of the ideal signal (without any reflection) and the 

impulse response along L , which can be written as: 

     , , ,                   (3.11)non ideal L ideal L LP t P t A t      

or 

     , , ,                 (3.12)non ideal L ideal L LP f P f A f      

 

where   denotes a time convolution, and 

 ,non ideal LP t  is the non-ideal time domain signal at the probe in the presence of the 

reflections for the angle L ; 
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 ,non ideal LP f  is the non-ideal frequency domain signal at the probe in the presence of 

the reflections for the angle L ; 

 ,ideal LP t
   

is the ideal time domain signal without any reflection for the angle L ; 

 ,ideal LP f
  

is the ideal frequency domain signal without any reflection for the angle 

L ; 

( , )LA t
       

is the impulse response of the environment with objects present when the 

AUT has a pencil beam pointing along the angle L ; 

( , )LA f      is the frequency domain response of the environment with objects 

present when the AUT has a pencil beam pointing along the angle L . 

Note that ( , )LA t
 
represents the contribution of various reflections from the 

environment along the angle L  
and is independent of the particular AUT. 

In a real situation, the AUT will radiate towards every direction in the spatial domain 

and cannot have an ideal pencil beam pattern. We define the impulse response of the 

environment along the rotation angle L  
as ˆ( , )LA f  when the AUT does not have an 

ideal pencil beam pattern. Then, using (3.12) we have: 

     ˆ, , ,                  (3.13)non ideal L ideal L LP f P f A f      

here, ˆ( , )LA f  is the frequency domain impulse response along the angle of L  
when the 

AUT does not have an ideal pencil beam pattern, which is more practical. 

Now, ˆ( , )LA f  contains information of the beam pattern of the AUT as well as the 

environmental effects at L . However, we need the true impulse response ( , )LA f  or 
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( , )LA t , which is independent of the beam pattern of the AUT. Then ˆ( , )LA f  can be 

considered as a convolution in the angular domain of the normalized beam pattern and 

the true impulse response. That is, 

 
 

 
 

,ˆ , ,
, L

ideal

L

ideal L

P f
A f A f

P f
  


 


     (3.14) 

Here,  ,idealP f  is the ideal pattern of an antenna without any reflection from the 

environment at the frequency f, and   is the convolution operator in the angular 

domain. When the AUT doesn’t have an ideal pencil beam pattern, it radiates the wave 

towards different directions, and be affected differently by the environment. And the 

combination of such effects is equal to the term  ˆ ,LA f . By substituting (3.14) into 

(3.13) we have, 

     , , ,
L

non ideal L idealP f P f A f  
   

    (3.15) 

For a general angle of  , we have: 

     , , ,non ideal idealP f P f A f         (3.16) 

which leads to the same conclusion as (3.10).  

Therefore, the beam pattern of the AUT in the presence of reflections can be 

considered as a convolution in the angular domain between the ideal beam pattern of the 

AUT and the impulse response of the environment. And we know that taking FFT will 

transform the convolution in the angular domain to the multiplication in the other domain, 

which we can name as the angle-frequency domain. Thus the impulse response  ,A f  

can easily be calculated by taking the IFFT of (3.16) using the measurement data of a 
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reference antenna whose ideal pattern is known. Once  ,A f  is calculated, the ideal 

pattern  ,idealP f  of the AUT can be obtained for any antenna measured in the same 

environment through (3.16). This requires two assumptions: First, the environment is 

unchanged during measurements for the reference antenna and the AUT. Second, because 

both the probe and the AUT are considered as part of the environment, sizes of the 

reference antenna and the AUT need to be similar. In this way, the change of antenna will 

not cause a sudden change of the environment. 

Also, one condition needs to be mentioned is the AUT inside the environment should 

radiate as if it is located in the free space, and in other words, the current distribution on 

the AUT should remain close to the ideal one. The reason is that we are reconstructing 

the radiation pattern of the AUT to approximate the free space radiation pattern. If the 

current distribution on the antenna has been dramatically changed by the environment, 

then the radiation pattern will also be changed. And after the reconstruction, the 

reconstructed pattern will be a pattern that has been affected by the environment. To 

satisfy this condition, the AUT should be positioned with a “safe” distance away from the 

environment, to minimize the changes in the current on the AUT due to the environment. 

A reference for this “safe” distance can be the free space far-field distance, which is 

commonly taken as
22 /D  , where D is the maximum overall dimension of the antenna 

and   is the wavelength of operation [1]. 
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3.2  Steps Summarized for the Methodology 

 

After getting Eq. 3.16, we designed a procedure to demonstrate this procedure through 

simulation. We will use HOBBIES [38] as the EM simulation tool for all examples 

presented in this work. In the software, we constituted the radiation pattern measurement 

model containing an AUT, a probe antenna, and PEC plates which serve as the 

environment. We first carried out the simulation in a non-anechoic environment using 

two reference (standard) antennas, whose ideal patterns are known, and performed a 

deconvolution to compute the environmental response A. Then, we carried out the 

simulation for the AUT in the same environment and estimated its free space radiation 

pattern through the environmental response A that we extracted from the reference 

antenna. The entire procedure can be summarized into 4 steps:  

1) At a fixed frequency, measure the reference (standard) antenna response 

 ,non idealP f  in a non-anechoic environment. Also the reference antenna response 

 ,idealP f is known. 

2) Calculate  ,A f  using the equation      , , ,non ideal idealP f P f A f     . 

3) At the same frequency, replace the reference antenna with the AUT and keep the rest 

of the environment unchanged, measure the AUT in the same way as in step (1), and 

let  ,non ideal AUTP f  be the result. 

4) Obtain the ideal response of the AUT,  ,ideal AUTP f , through deconvolution using: 

     , , ,non ideal AUT ideal AUTP f P f A f      
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From the above procedures, we can see that the deconvolution method only requires a 

single frequency measurement, and it is independent of the bandwidth of the antenna; 

while the FFT based approach require broadband characteristics for the antenna. And the 

deconvolution method requires no prior knowledge of the system or the test environment. 

Most importantly, it doesn’t require the antenna radiation pattern measurement to be 

carried out in an anechoic chamber. 

 

3.3  Processing of the Data 

 

Specifically, the following procedures are the rules of thumb for setting up simulation 

models and processing the simulated data generated through numerical electromagnetics 

code: 

1. In this work, all simulation examples will be carried out using HOBBIES to perform 

the full wave EM simulation. First, build the simulation model for the antenna 

radiation pattern measurement system which consists of an AUT (transmitting 

antenna), a probe (receiving antenna) and reflectors. The reflectors will reflect the 

radiated fields from the AUT and can be modeled by the PEC plates around the 

antennas.  

2. In HOBBIES, set the operation mode as “ANTENNA (one generator at a time)”, and 

set an excitation port for both the AUT and the probe. During the simulation, the 

AUT and the probe will be the transmitter and the receiver, respectively. To simulate 

the antenna measurement process, the AUT rotates along itself in the azimuth plane 

for a step of 1º, and for each rotation angle the model is simulated and the S21 data is 

collected. 
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3. The S21 data along each azimuth angle   forms the radiation pattern of the AUT. 

When the AUT rotates one loop in the azimuth plane, there will be 360 data points, 

i.e. –180º, –179º,–178º,…, 179º. and then the measured data will repeat this 

sequence. Therefore, the ideal pattern  ,idealP f and the non-ideal pattern 

 ,non idealP f as well as the environmental effects  ,A f ,
 

are all periodic 

sequences of period 360 in   angle domain. Note that if the model is symmetrical 

(both the environment and the antennas are symmetrical) in the azimuth plane, we 

can then reduce the number of simulation points by half.  

4. As described in Section 3.2, we first use a reference antenna as the AUT and 

simulate the antenna within a non-anechoic environment to obtain the non-ideal 

radiation pattern of the reference antenna  Ref ,non idealP f  . Also, we can obtain 

the ideal radiation pattern of the reference antenna  Ref ,idealP f  by simulating the 

model without the environment (the antenna would be like in the free space without 

the non-anechoic environment). In reality, we can obtain the ideal pattern of the 

reference antenna through its datasheet. Similarly, by replacing the reference antenna 

with the desired AUT and carry out the simulation, we can obtain the ideal pattern 

 AUT ,idealP f  and the non-ideal pattern  AUT ,non idealP f   
for the desired AUT. 

The ideal pattern  AUT ,idealP f  
will be the goal of the reconstructed pattern. 

5. Now we need to apply (3.16) to reconstruct the radiation pattern of the AUT. 

According to Section 3.2.4 of [40], the convolution of two periodic sequences is the 

multiplication of the corresponding discrete Fourier series. Let 1( )x n and 2 ( )x n  be 

the two periodic sequences of period N with the discrete Fourier series denoted by 
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1( )X k  and 
2 ( )X k , respectively. It can be written as: 

1

3 1 2

0

( ) ( ) ( )
N

m

x n x m x n m




   
     

(3.17) 

3 1 2( ) ( ) ( )X k X k X k          (3.18) 

6. From (3.16) we have the following equations:   

     Ref Ref, , ,non ideal idealP f P f A f     
   

(3.19) 

     AUT AUT, , ,non ideal idealP f P f A f     
  

(3.20) 

Therefore, by taking the FFT of both sides of (3.19), the angular convolution 

operator will become the multiplication operator. We can derive the environment 

effects  ,A f  as: 

 
 

 
Ref

Ref

( , )
,

( , )

non ideal

ideal

fft P f
A f ifft

fft P f






 



 
   

 
    

(3.21)
 

7. Take the FFT of both sides of (3.20) and substitute the environment effects  ,A f  

into the equation, we get: 

 
 

 
AUT

AUT

( , )
,

( , )

non ideal

ideal

fft P f
P f ifft

fft A f






 



 
   

 

 

   

 
AUT Ref

Ref

( , ) ( , )

( , )

non ideal ideal

non ideal

fft P f fft P f
ifft

fft P f

 



  

 

 
   

 
   (3.22) 

Note that the division and multiplication in (3.21) and (3.22) are element by element 

operations on vectors. All data processing can be performed off-line using a 

commercial software package (MATLAB 7, The MathWorks Inc., Natick, MA, 

2000). In MATLAB, the function Y=fft(X) returns the Discrete Fourier Transform 
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(DFT) of vector X, computed with a Fast Fourier Transform (FFT) algorithm. 

Similarly, the function Y=ifft(X) returns the Inverse Discrete Fourier Transform 

(IDFT) of vector X. 

8. Compare the reconstructed pattern of the AUT from (3.22) with the simulated result 

 AUT ,idealP f . 

 

3.4  Simulation Examples 

3.4.1 Example I: One PEC Plate Serve as a Reflector 

 

To verify the idea, numerical examples were simulated using different antennas, a horn 

antenna, a helical antenna, and a Yagi antenna. The horn antenna is set to be the reference 

antenna and the probe antenna for all the examples. It is interesting to observe that in this 

methodology the probe antenna need not be small. The goal is to remove the effects of the 

extraneous fields due to the presence of PEC reflectors and retrieve the free space radiation 

pattern of the helical antenna and the Yagi antenna. For all the examples, we assume that 

the environment does not vary with time. 

The simulation model, shown in Figure 3.3, is a model similar to the first example 

shown in Figure 2.2. The model includes two antennas; on the right side is a horn antenna 

as the probe, while on the left side is the AUT. There are two different AUTs, Figures 2.3 

and 3.4 give dimensions of the helical antenna and the 6-element yagi antenna. And 

Figure 2.4 shows the dimensions of the horn antenna (reference antenna and the probe 

antenna). The PEC plate serves as the reflector, and is 1.25 meter away from the two 

antennas. As mentioned in Section 3.1, one condition needs to be satisfied is that the 
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current distribution on the feed dipole should remain close to the ideal one. And an 

approximation for the “safe” distance would be the free space far-field distance 
22 /D  , 

which is 1.12 meter (D is 0.155 meter as the largest diagonal size of the antennas). So we 

designed the distance between the PEC plate and the antenna to be 1.25 meter. Figure 3.5 

gives the real and imaginary part of the current distribution on the feed dipole of the 

helical antenna, and it shows that they are not affected by the PEC plate (the current 

distribution on the other antenna is omitted due to limited space).  

 

 

Figure 3.3 Model of the measurement system with one PEC plate as the reflector. 

 

 

Figure 3.4 Dimensions of the 6-element yagi antenna model (AUT). 
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Figure 3.5 Current distribution on the feed dipole of the helical antenna with one PEC 

plate. 

 

The numerical simulations and the simulation data processing followed the 

procedures as described in Section 3.3. The azimuth angle   of the AUT was varied from 

−180° to 179° with a 1° step. The S21 data was collected at each azimuth angle   to form 

the plot of the radiation pattern. Equation 3.22 was used to calculate the reconstructed 

pattern for the AUT. And the reconstructed results were compared with the simulated ideal 

pattern of the AUT to illustrate the performance of the deconvolution method. 

Note that using the PEC plate instead of a dielectric plate as the reflector is to 

increase the level of reflections and make the environmental effects as strong as possible. 

Therefore the presence of PEC plates will greatly distort the radiation pattern of the AUT 

and the performance of the deconvolution method on pattern reconstruction can be 

demonstrated more clearly.  
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Figure 3.6 shows the comparison of the amplitude pattern for the horn antenna with 

and without the PEC reflector at 7 GHz; while Figure 3.7 shows the phase component of 

the radiation pattern. The blue dashed line termed non-ideal is the result in the presence of 

the PEC reflector, while the black line is for the free space radiation pattern. It is easy to 

observe the difference of the two curves due to the reflection between the azimuth angles 

–40° and –130°, where the main beam of the horn antenna is pointing at the PEC plate. The 

environmental response  ,A f  extracted from the model is shown in Figure 3.8. 

 

 

Figure 3.6 Amplitude pattern for the horn antenna with one PEC plate as the reflector. 
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Figure 3.7 Phase pattern for the horn antenna with one PEC plate as the reflector. 

 

 

 

Figure 3.8 Amplitude of the environmental effects when one PEC plate is used as the 

reflector.  
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Figure 3.9 shows the comparison of the amplitude pattern for the helical antenna with 

and without the PEC reflector at 7 GHz; while Figure 3.10 shows the phase component. 

The blue dashed line termed non-ideal is the result in the presence of the PEC reflector 

while the reconstructed pattern is indicated by the red line termed reconstructed. We want 

to reconstruct the pattern from this non-ideal data, and by substituting the environmental 

response data, we can obtain a clean pattern for the helical antenna. We can see that the 

reconstructed pattern is very close to the ideal pattern of the helical antenna. Therefore, it 

indicates that the reflections and diffractions caused by the PEC plate have been extracted 

out by using the deconvolution method. Compared with the result of FFT-based method 

shown in Figure 2.9 and Figure 2.10, the deconvolution method generates better results.  

Similarly, we can also apply the deconvolution method to reconstruct a clean radiation 

pattern for the 6-element yagi antenna using data measured in a non-anechoic 

environment. For the same environment, we replace the helical antenna with the 6-element 

yagi antenna. And by substituting the environmental response data, we can similarly obtain 

a clean pattern for the yagi. Figure 3.11 shows the comparison of the amplitude pattern for 

the yagi antenna with and without the PEC reflector at 7 GHz; while Figure 3.12 shows the 

phase component. Again, we can observe that the reconstructed pattern has greatly 

reduced the presence of the undesired reflections from the plates in the measurements, 

and the processed result is very close to the ideal pattern of the yagi antenna. 
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Figure 3.9 Amplitude pattern for the helical antenna with one PEC plate as the reflector. 

 

 

 

Figure 3.10 Phase pattern for the helical antenna with one PEC plate as the reflector 
 



43 

 

Figure 3.11 Amplitude pattern for the yagi antenna with one PEC plate as the reflector 
 

 

 

Figure 3.12 Phase pattern for the yagi antenna with one PEC plate as the reflector 
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3.4.2 Example II: Two PEC Plates Serve as Reflectors 

 

The previous example has shown the pattern reconstruction for the helical antenna and the 

6-element yagi antenna using the data generated in a non-anechoic environment. That 

example presents a simple case with the presence of only one PEC plate, which is a very 

simple environment. To evaluate the deconvolution method using more complicated cases, 

we present the second example with two PEC plates as reflectors. Figure 3.13 shows the 

schematic diagram of the model, two PEC plates have the same size and are located at 

symmetric positions towards the antennas (the symmetry is applied to reduce the number 

of simulation points by half). The same procedure is applied as in Section 3.4.1 to 

reconstruct the radiation pattern for the helical antenna and the 6-element yagi antenna. 

Again, we need to check the current distribution on the feed dipole of the helical antenna. 

Figure 3.14 indicates that the current distribution is not affected by the PEC plates. 

 

 

Figure 3.13 Model of the measurement system with two PEC plates as the reflector. 
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Figure 3.14 Current distribution on the feed dipole of the helical antenna with two PEC 

plates. 
 

Figure 3.15 shows the comparison of the amplitude pattern for the horn antenna with 

and without the PEC reflector at 7 GHz; while Figure 3.16 shows the phase component of 

the pattern. The blue dashed line indicates the result in the presence of the PEC reflectors. 

It is easy to observe that there are large reflections between the azimuth angles range [–40°, 

–130°] and [40°, 130°], where the main beam of the horn antenna is pointing at the PEC 

plates. The environmental response  ,A f  extracted from the model is shown in Figure 

3.17. 

Figure 3.18 shows the comparison of the amplitude pattern for the helical antenna with 

and without the PEC reflector at 7 GHz; while Figure 3.19 shows the phase component of 

the pattern. The blue dashed line termed non-ideal indicates the result in the presence of the 

PEC reflector, the reconstructed pattern is indicated by the red line termed reconstructed. 
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Compared with the example in Section 3.4.1, the reflected response for this example is 

stronger. Still, we see that the reconstructed pattern is very close to the ideal pattern. This 

indicates that the echoes caused by the PEC plates have been successfully compensated by 

using the deconvolution method.  

Similarly, we also applied the deconvolution method to reconstruct a clean radiation 

pattern for the 6-element yagi antenna. Figure 3.20 shows the comparison of the amplitude 

pattern for the yagi antenna with and without the PEC reflector at 7 GHz; while Figure 3.21 

shows the phase component of the pattern. Again, we can observe that the reconstructed 

pattern is very close to the ideal pattern of the yagi antenna. 

 

 

 

Figure 3.15 Amplitude pattern for the horn antenna with two PEC plates as the reflector. 
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Figure 3.16 Phase pattern for the horn antenna with two PEC plates as the reflector. 

 

 

Figure 3.17 Amplitude of the environmental effects when two PEC plates are used as the 

reflector. 
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Figure 3.18 Amplitude pattern for the helical antenna with two PEC plates as the 

reflector. 

 

 

 

Figure 3.19 Phase pattern for the helical antenna with two PEC plates as the reflector. 
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Figure 3.20 Amplitude pattern for the yagi antenna with two PEC plates as the reflector. 
 

 

 

Figure 3.21 Phase pattern for the yagi antenna with two PEC plates as the reflector. 
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3.4.3 Example III: Four Connected PEC Plates Serve as Reflectors 

 

This third example presents a more complicated case, to fully evaluate the deconvolution 

method for the pattern reconstruction from the data measured in a non-anechoic 

environment. This example uses four connected PEC plates as the reflectors around the 

antenna, as shown in Figure 3.22. Four PEC plates form a rectangular contour enclosing 

the AUT and the probe antenna. The entire model is 4.5 m long and 2.5 m wide. Similarly, 

we need to check the current distribution on the feed dipole of the helical antenna. Figure 

3.23 shows that the current distribution is slightly affected by the PEC plates. 

 

 

Figure 3.22 Model of the measurement system with four PEC plates as the reflector. 
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Figure 3.23 Current distribution on the feed dipole of the helical antenna with four PEC 

plates. 
 

The same procedure was carried out to reconstruct the radiation pattern for the helical 

antenna and the 6-element yagi antenna. Figure 3.24 shows the comparison of the 

amplitude pattern for the horn antenna with and without the PEC reflector at 7 GHz; while 

Figure 3.25 shows the phase component of the pattern. The blue dashed line termed 

non-ideal is the result in the presence of the PEC reflectors. It is easy to observe that the 

reflection responses affect the radiation pattern of the antenna for all azimuth angles; 

especially the back lobe level of the pattern has been greatly increased due to the PEC 

plates. The environmental response  ,A f  extracted from the model is shown in Figure 

3.26. 
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Figure 3.24 Amplitude pattern for the horn antenna with four PEC plates as the reflector. 

 

 

Figure 3.25 Phase pattern for the horn antenna with four PEC plates as the reflector. 



53 

 

Figure 3.26 Amplitude of the environmental effects when four PEC plates are used as the 

reflector.  

 

 

The reconstructed pattern for the helical antenna is given in Figures 3.27 and 3.28. 

Figure 3.27 shows the comparison of the amplitude pattern with and without the PEC 

reflectors at 7 GHz; while Figure 3.28 shows the phase component. The blue dashed line 

termed non-ideal is the result in the presence of the PEC reflector, while the reconstructed 

pattern is indicated by the red line termed reconstructed. Compared with the example in 

Section 3.4.2, the reflected responses from the PEC plates for this example are much 

stronger for the back lobe level. However, deconvolution method still obtains a very good 

reconstructed pattern which is close to the ideal pattern of the helical antenna. This 

indicates that the reflection and diffraction contributions caused by the PEC plates have 

been successfully compensated by using the deconvolution method. 
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Figure 3.27 Amplitude pattern for the helical antenna with four PEC plates as the 

reflector. 
 

 

Figure 3.28 Phase pattern for the helical antenna with four PEC plates as the reflector. 
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Similarly, we also applied the deconvolution method to reconstruct the pattern for the 

6-element yagi antenna from its non-anechoic measured data. Figure 3.29 shows the 

comparison of the amplitude pattern for the yagi antenna with and without the PEC 

reflectors at 7 GHz; while Figure 3.30 shows the phase component of the pattern. Again, it 

is seen that the reconstructed pattern is very good. 

 

 

Figure 3.29 Amplitude pattern for the yagi antenna with four PEC plates as the reflector. 
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Figure 3.30 Phase pattern for the yagi antenna with four PEC plates as the reflector. 

 

3.4.4 Example IV: Use of a Parabolic Reflector Antenna as the AUT 

 

Previous examples have shown the deconvolution method working under three different 

environmental settings to reconstruct the pattern of a helical antenna and a yagi antenna. 

To better illustrate the applicability of the deconvolution method, we’d like to introduce a 

parabolic reflector antenna to be the AUT as an example for the pattern reconstruction. 

Figure 3.31 shows the model of a parabolic reflector antenna with its feeding component. 

The dish diameter D was first designed to be 0.16 m, while the depth d was 0.04 m, so the 

focal length f was calculated as 
2 /16 0.04 f D d m  . The feeding element is a dipole 

antenna positioned at the focal point inside a waveguide.  

By replacing the AUT as the parabolic reflector antenna, we carried out the same 
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reconstruction procedure to retrieve the radiation pattern of the AUT. Figure 3.32 shows 

the comparison of the amplitude pattern for the parabolic reflector antenna with and 

without the PEC plates at 7 GHz; while Figure 3.33 shows the phase component of the 

radiation pattern. The blue dashed line termed non-ideal is the result in the presence of 

PEC plates, the reconstructed pattern is indicated by the red line termed reconstructed. It is 

seen that the reconstructed pattern using the deconvolution method is close to the ideal 

pattern for the main lobe but does not fit well for the side lobes and the back lobe.  

To find out the reason, we first look at the far-field distance for this parabolic reflector 

antenna which is 
22 /D   = 1.20 meter (D is 0.16 meter as the diagonal size of the 

antenna). And the distance between the reflector and PEC plates is 1.25 – 0.16/2 = 1.17 m, 

which is smaller than the free space far-field distance in this model. This means the PEC 

plates are not in the free space far-field region of the parabolic reflector antenna, and this 

may distort the radiation pattern.  

 

 

Figure 3.31 Model of a parabolic reflector antenna with its feeding component. 
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Figure 3.32 Amplitude pattern for the parabolic reflector antenna. 
 

 

Figure 3.33 Phase pattern for the parabolic reflector antenna. 
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Thus, the parabolic reflector antenna was re-designed and reduced in size to be of 

diameter D = 0.12 m, depth d = 0.03 m, and focal length as 0.03 m. so that the free space 

far-field distance is reduced to be 
22 /D   = 0.67 meter (D is 0.12 meter as the diagonal 

size of the antenna). Then, the distance between the reflector antenna and PEC plates is 

1.25 – 0.12/2 = 1.19 m, which is larger than the free space far-field distance in the new 

model.  

The same pattern reconstruction procedure was carried out for the new parabolic 

reflector antenna. Figure 3.34 shows the comparison of the amplitude pattern for the new 

parabolic reflector antenna with and without the PEC plates at 7 GHz; while Figure 3.35 

shows the phase component of the radiation pattern. The blue dashed line termed non-ideal 

is the result in the presence of PEC plates, the reconstructed pattern is indicated by the red 

line termed reconstructed. We can observe that the reconstructed pattern using the 

deconvolution method has been greatly improved for both the side lobes and the back lobe 

when compared with the previous parabolic reflector antenna model.  
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Figure 3.34 Amplitude pattern for the new parabolic reflector antenna. 
 

 

Figure 3.35 Phase Amplitude pattern for the new parabolic reflector antenna. 
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Chapter 4  

Discussion on the Deconvolution Method for 

Radiation Pattern Reconstruction 

 

 

The previous chapter has introduced the deconvolution method to reconstruct the free 

space radiation pattern of an antenna using data measured in a non-anechoic environment. 

Numerical examples have been presented to show that under different environmental setup, 

the deconvolution method has successfully reconstructed the radiation pattern for a helical 

antenna, a 6-element yagi antenna, and a parabolic reflector antenna. Those examples 

demonstrate the general idea of the deconvolution method and give us the confidence to 

carry out more comprehensive analysis on it. 

The deconvolution method is a general methodology for pattern reconstruction. In 

this chapter, we will present more examples to analyze the applicability of the method 

and find out what factors would limit its performance. We will first discuss the effect of 

different probe antennas, and then we will use different sizes of antennas to evaluate the 

method. After that, we will change the environmental effects by changing the size of PEC 

plates and compare the reconstructed results.  
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4.1  Effect of Different Probe Antennas 

 

Previously, we have presented numerical examples with different AUTs to test the 

deconvolution method. For all those examples, we have used a standard gain horn 

antenna as the probe. Here, we will choose different probe antennas to change the effect 

of the probe and repeat the simulation examples to verify this method. 

 

4.1.1 Example I: Use of a Yagi Antenna as the Probe 

For this example, we will keep the environmental setting as 4 PEC plates, the same as that 

in the example of Section 3.4.3, but replace the probe antenna with the yagi antenna, as 

shown in Figure 4.1. The reconstruction procedure is the same as before. We first used a 

standard gain horn as the AUT. With the presence of four PEC plates, we obtained a 

distorted radiation pattern of the horn in the simulation and can therefore extract the 

environmental effects based on its ideal pattern. Then, we replaced the horn with the 

helical/yagi antenna as the AUT, and we got the distorted radiation pattern of the 

helical/yagi antenna. By substituting the environmental effects, we can derive the free 

space radiation pattern of the helical/yagi antenna. The size for the yagi and the helical 

antenna are the same as in previous examples, as shown in Figures 3.4 and 2.3, 

respectively (for simplicity, we use the same yagi antenna as the probe and the AUT). 

Figures 4.2 and 4.3 present the received pattern for the horn antenna. Figure 4.2 shows 

the comparison of the amplitude pattern for the horn antenna with and without the four 

PEC plates; while Figure 4.3 shows the phase component. The reconstructed results for the 

helical antenna are shown in Figures 4.4 and 4.5. Figure 4.4 shows the comparison of the 
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amplitude pattern; while Figure 4.5 shows the phase component.  

Similarly, we also applied the deconvolution method to reconstruct a clean radiation 

pattern for the yagi antenna. The comparison of the amplitude pattern for the yagi antenna 

with and without the PEC plates is given in Figure 4.6; while Figure 4.7 shows the phase 

component.  

When compared with examples in Section 3.4.3, where the horn antenna is used as the 

probe, the reconstructed results by using the yagi antenna as the probe also obtain a pattern 

well approximated to the ideal pattern of the AUT.  

 

 

Figure 4.1 Model of the measurement system with a yagi as the probe. 
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Figure 4.2 Amplitude pattern for the horn antenna system with a yagi as the probe. 

 

 

 

Figure 4.3 Phase pattern for the horn antenna system with a yagi as the probe. 
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Figure 4.4 Amplitude pattern for the helical antenna with a yagi as the probe. 
 

 

 

Figure 4.5 Phase pattern for the helical antenna with a yagi as the probe. 
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Figure 4.6 Amplitude pattern for the yagi antenna with a yagi as the probe. 

 

 

 

Figure 4.7 Phase pattern for the yagi antenna with a yagi as the probe. 
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4.1.2 Example II: Use of a Parabolic Reflector Antenna as the Probe 

 

The previous example has shown that choosing the yagi antenna as the probe does not 

affect the reconstructed results. For this example, we’d like to use a parabolic reflector 

antenna as the probe, and observe if this would make any difference for the 

deconvolution method. The size of the parabolic reflector antenna is just the same as in 

previous examples, as shown in Figure 3.31. The model for the simulation is shown in 

Figure 4.8. And the AUT for this example is also a parabolic reflector antenna with the 

same size as the probe, for simplicity. 

The same procedure was applied to reconstruct the radiation pattern for the parabolic 

reflector antenna. Since we have illustrated the procedures before, we will only present 

the reconstructed result for the parabolic reflector antenna (AUT). The received responses 

at the probe are shown in Figures 4.9 and 4.10. The reconstructed results for the parabolic 

reflector antenna are shown in Figures 4.11 and 4.12 for the amplitude and the phase 

component of the radiation pattern, respectively. From those figures, we can observe that 

when the parabolic reflector antenna is used as the probe, the reconstructed pattern is still 

well approximated to the ideal pattern.  

 

 

Figure 4.8 Model of the measurement system with a parabolic reflector as the probe. 
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Figure 4.9 Amplitude pattern for the horn antenna with a parabolic reflector as the probe. 

 

 

 

Figure 4.10 Phase pattern for the horn antenna with a parabolic reflector as the probe. 
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Figure 4.11 Amplitude pattern for the parabolic reflector antenna with a parabolic 

reflector as the probe. 
 

 

Figure 4.12 Phase pattern for the parabolic reflector antenna with a parabolic reflector as 

the probe. 
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4.1.3 Example III: Use of a Dipole Antenna as the Probe 

 

The previous two examples have well supported the deconvolution method for pattern 

reconstruction. However, not all types of antennas may be suitable for the probe antenna.  

For this example, we’d like to use a dipole antenna as the probe, and observe the 

reconstructed results. The simulation model is shown in Figure 4.13. The dipole antenna 

is a half-wave dipole with the length of 2 cm (simulation frequency is 7 GHz) and the 

radius of 0.18 mm. The AUTs of this example are the same helical antenna and the yagi 

antenna as used in previous examples. The standard gain horn antenna is used as the 

reference antenna to derive the environmental effects. The reconstruction procedure is the 

same as described in the previous examples. 

Figure 4.14 shows the comparison of the amplitude pattern for the horn antenna with 

and without the four PEC plates; while Figure 4.15 shows the phase component. The 

reconstructed results for the helical antenna and the yagi antenna are shown in Figures 

4.16 ~ 4.19. The comparison of the amplitude pattern for the helical / yagi antenna is 

shown in Figure 4.16 / 4.18; while Figure 4.17 / 4.19 shows the phase component.  

 

 

Figure 4.13 Model of the measurement system with a dipole as the probe. 
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Figure 4.14 Amplitude pattern for the horn antenna with a dipole as the probe. 

 

 

Figure 4.15 Phase pattern for the horn antenna with a dipole as the probe. 
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Figure 4.16 Amplitude pattern for the helical antenna with a dipole as the probe. 
 

 

 

Figure 4.17 Phase pattern for the helical antenna with a dipole as the probe. 
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Figure 4.18 Amplitude pattern for the yagi antenna with a dipole as the probe. 
 

 

 

Figure 4.19 Phase pattern for the yagi antenna with a dipole as the probe. 
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From those figures, we can observe that the distorted patterns are totally different 

from the free space radiation patterns. The reconstructed results are not as good as 

previous two examples, and only the main lobe of the pattern is well reconstructed. We 

realize that when a dipole is used as the probe, due to its omni-directional property along 

the plane, it receives responses from the environment and the AUT equally. When the 

reflection responses are large enough, the direct response from the AUT will be 

overwhelmed by the reflection responses, and thus generating distorted reconstructed 

results. Therefore, the probe antenna required for the pattern reconstruction needs to be 

an antenna with a proper front-to-back ratio. 

The two examples in Section 4.1.1 and Section 4.1.2 show that with a different probe 

the effect of the probe antenna to the received signal is different. As shown in Figure 4.2 

and Figure 4.9, under the same environment but with a different probe the received 

non-ideal signals are different due to the probe effect. However, this effect will be 

cancelled and will not affect the reconstructed result. The deconvolution method requires 

one to perform two tests, one for a reference antenna and the other for the AUT. During 

the two tests, the same probe will be used to collect the signal, thus resulting in the same 

probe effect for two tests, and this effect can be cancelled out. 

Note that the reference antenna used for extracting the environmental effects should 

not be any omni-directional antenna either. If the reference antenna generates an 

omni-directional radiation pattern, the received signal at the probe will be a constant 

value when the reference antenna rotates in the azimuth plane. No matter how the 

environment changes, the received pattern will not reveal the change of the environment. 
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4.2  Effect of Different Antenna Size 

 

In this Section, we’d like to show examples for different simulation frequencies, and 

using different electrical sizes for the antennas to show that the deconvolution method is 

a general method and works for different sizes of antennas. Previous examples are all 

under the operating frequency of 7 GHz, the current example will change the frequency 

to be 1.5 GHz. And we re-designed all antennas used in the simulation to let them work 

at this new frequency.  

The new model for the measurement system also has four PEC plates as the reflectors 

around the antenna, which is shown in Figure 4.20. Four PEC plates form a rectangular 

contour enclosing the probe and the AUT. A horn antenna is still used as the probe, and the 

AUTs are a 6-element yagi and a helical antenna with a back plate. New models of the horn, 

helix, and the yagi antenna are shown in Figures 4.21, 4.22, and 4.23, respectively. For the 

operation frequency of 1.5 GHz, those antennas now have different electrical sizes. In 

previous examples, the horn, the helix, and the yagi antenna models have the largest 

electrical sizes as 3.6 λ, 2.7 λ, and 1.3 λ, respectively; while new models now have the 

largest electrical sizes as 1.5 λ, 1.6 λ, and 1.3 λ, respectively. And their radiation properties 

are different from the previous models (except the yagi, whose electrical size is almost the 

same). In the model, both antennas are kept under a 2 meter distance, which is 10 λ, away 

from the four PEC plates; while in the old model, the distance is 29 λ.  
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Figure 4.20 The new model of the measurement system with four PEC plates. 
 

 

Figure 4.21 Dimensions of a new horn antenna model (Probe). 
 

 

Figure 4.22 Dimensions of a new helical antenna model with a reflecting plate (AUT).  
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Figure 4.23 Dimensions of a new 6-element yagi antenna model (AUT). 

 

For this new model of the measurement system, it also needs to satisfy the condition 

that the current distribution on the feed dipole of the AUT should not change dramatically 

with the environment. Figure 4.24 shows that the current distribution on the feed dipole of 

the helical antenna is barely affected by the PEC plates (the current distribution on other 

antennas is omitted). 

The same pattern reconstruction procedure was carried out for this example. Figure 

4.25 shows the comparison of the amplitude pattern for the horn antenna with and without 

the PEC reflector at 1.5 GHz; while Figure 4.26 shows the phase component of the 

radiation pattern. The extracted environmental response  ,A f  is shown in Figure 4.27. 



78 

 

Figure 4.24 Current distribution on the feed dipole of the helical antenna. 
 

 

 

 

Figure 4.25 Amplitude pattern for the horn antenna with the new model.   
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Figure 4.26 Phase pattern for the horn antenna with the new model.   
 

 

 

Figure 4.27 Amplitude of the environmental effects with the new model.   
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The reconstructed results are shown through the following figures. Figure 4.28 gives 

the comparison of the amplitude pattern for the helical antenna; while Figure 4.29 shows 

the phase component of the radiation pattern. The comparison of the amplitude pattern for 

the yagi antenna is shown in Figure 4.30; while the phase component is given in Figure 

4.31. When compared with the examples in the previous chapter, under this new 

environment, the reconstructed patterns using the deconvolution method are still well 

approximated to the ideal patterns of the AUTs. This example indicates that the 

deconvolution method can successfully reconstruct the radiation pattern for different 

electrical sizes of antennas operating at different frequencies.  

 

 

Figure 4.28 Amplitude pattern for the helical antenna with the new model. 
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Figure 4.29 Phase pattern for the helical antenna with the new model. 
 

 

 

Figure 4.30 Amplitude pattern for the yagi antenna with the new model. 
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Figure 4.31 Phase pattern for the yagi antenna with the new model. 

 

 

 

 

4.3  Effect of Different Sizes of PEC Plates  

 

The purpose of the deconvolution method is to retrieve the ideal radiation pattern using 

the data measured in a non-anechoic environment. An important question would be: How 

would the environment itself affect the performance of the pattern reconstruction? 

In previous examples, we started from the simplest example with only one PEC plate, and 

increased to two plates, and to four plates. During this process, the applicability of the 

deconvolution method on pattern reconstruction regarding the effect of different 

environments has been shown. Figures 4.32 and 4.33 give comparisons of the 

reconstructed results for the helical antenna and the yagi antenna when the number of the 
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PEC plates increase. The left side show the amplitude patterns while the right side show 

the phase patterns. The units and axes are the same as in the previous examples. Note that 

these two figures are results summarized from previous examples in Chapter 3.  

 

 

Figure 4.32 Comparison of the reconstructed patterns for the helical antenna under 

different number of PEC plates. 
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Figure 4.33 Comparison of the reconstructed patterns for the Yagi antenna under 

different number of PEC plates. 
 

It is shown that when there is only one PEC plate, the reconstructed results are always 

the best for both AUTs; while the reconstructed results are always the worst when there are 
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four PEC plates. It indicates that when the number of PEC plates increase, the environment 

gets more complicated, there are more reflections and diffractions, and the reconstructed 

results will get worse. 

To look deeper into the question that how different environments affect the pattern 

reconstruction quality, we need to further change the environmental effects. One way is to 

add more PEC objects between the antennas and the PEC plates. However, if the object is 

set too close to the antennas, this may change the current distribution on the AUT and 

affect the reconstructed results. Another way is to increase the width of the PEC plates and 

generate stronger reflections.  

The following example is to illustrate how the pattern reconstruction is affected by the 

width of the PEC plates. For comparison purposes, we will use the model in Section 4.2 

and use that result as a reference. In Section 4.2, the AUTs and the probe antenna are newly 

designed and the simulation frequency is 1.5 GHz. Four PEC plates form a contour around 

the AUT and the probe. The helical antenna and the yagi antenna are the AUTs; while the 

horn antenna is the probe. We will keep those settings in the following example, but change 

the width of the PEC plates from 0.3 m to be 0.1 m and 0.5 m, respectively. Figure 4.34 

shows the model using different widths of PEC plates. It is seen that when the plate width 

is 0.1 m, it is of a relatively narrow strip compared to the antenna size; when the width is 

0.5 m, it is relatively wide.  

 

 

(a) 
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(b) 

Figure 4.34 Comparison of the models with different PEC plate widths. 
 

 

The pattern reconstruction procedure is the same as described in the previous 

examples. And the reconstructed results are shown in Figures 4.35 and 4.36. The two 

figures list the comparisons of the reconstructed results under different width settings when 

the AUTs are the helical antenna and the yagi antenna, respectively. And they clearly show 

that the reflections gets stronger and the reconstructed results get worse when the PEC 

plate width gets increased. We also calculated and compared the error between the ideal 

pattern and the reconstructed pattern with respect to the rotation angle   under the three 

width settings. And the error is defined as:  

21 21( ) | ( ) ( ) |                      (4.1)error S S     

where 21( )S   is the ideal pattern of the AUT and 21( )S   is the reconstructed pattern of 
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the AUT. The results for the helical antenna and the yagi antenna are shown in Table 4.1 

and Table 4.2, respectively. The Mean / STD / Maximum values of the error term represent 

for the average / standard deviation / largest values of error with respect to angle  . And 

the values in the tables have an order of 410 .  

 

Figure 4.35 Comparison of the reconstructed patterns for the helical antenna under three 

PEC plate width settings. 
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Figure 4.36 Comparison of the reconstructed patterns for the yagi antenna under three 

PEC plate width settings. 
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Table 4.1 Reconstruction error for the helical antenna in the angular domain at 1.5 GHz 

Error (e
–04

) Width = 0.1m Width = 0.3m Width = 0.5m 

Mean Error level 1.06 3.82 6.55 

STD Error level 0.68 2.91 4.80 

Maximum Error level 2.55 10.26 18.92 

 

 

Table 4.2 Reconstruction error for the yagi antenna in the angular domain at 1.5 GHz 

Error (e
–04

) Width = 0.1m Width = 0.3m Width = 0.5m 

Mean Error level 1.59 5.45 8.99 

STD Error level 0.97 3.48 7.07 

Maximum Error level 4.28 12.35 31.21 

 

 

Based on the above examples, we can conclude that when the number of PEC plates 

increases or the width of the PEC plates gets larger, the environment becomes more 

complicated and there will be stronger reflections, and the reconstructed results get worse. 

We can claim that the effectiveness of the pattern reconstruction is inversely proportional 

to the complexity of the environment.  
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Chapter 5  

Extension of the Deconvolution Method to 

Three-Dimensional Pattern Reconstruction 

 

 

 

In the last chapter, models of different sizes are simulated and discussed. Examples in 

Section 4.3 show that reconstructed results of the model with the plate width of 0.5 m are 

not as good as for the other examples. And we conclude that the effectiveness of the 

pattern reconstruction is inversely proportional to the complexity of the environment. So 

the question comes to our mind naturally: how would the deconvolution method handle 

the case when the plate width is much larger than the antenna size?  

For all previous examples, we constitute the environment such that the PEC plates 

are around the probe and the AUT. And the PEC plates, whether they have one or two or 

four plates, whether they are wide or narrow, are always located at the azimuth plane of 

the antennas. But this would not be the practical case in a real measurement environment. 

If the measurement is carried out inside a room, there would be concrete plates around 

the room, the floor, and the ceiling. Therefore, there would be much more reflections 

from all directions inside the room compared with the examples in Chapter 4. And it 

would have more practical meaning if the deconvolution method can address this case. 

This chapter presents the theoretical derivation and numerical examples for a realistic 

environment. 
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5.1  Equation and Derivation 

 

In Section 3.1, we start by considering an AUT which can generate an ideal pencil beam 

pattern. As shown in Figure 3.2, the AUT, the probe and two objects are on the same 

plane, and the received response at the probe is a function of the rotation angle  . So the 

time domain response along angle   can be described as an impulse response along   

or a spatial signature of  . And the equation (3.16),  

     , , ,non ideal AUT ideal AUTP f P f A f    
 

reveals that the measured non-ideal signal can be represented as an angular convolution 

between the ideal signal and the environmental responses. The convolution is in the 

azimuth angle   domain, while the pattern measurements are considered in 2D (along 

the azimuth angle only), even through the numerical simulations are carried out in 3D.  

In a complicated environment, when objects and antennas are not in the same plane, 

the impulse response of the environment is not only related to the azimuth angle, but also 

related to the elevation angle. Similarly, we first assume an AUT generates an ideal pencil 

beam pattern (the radiated signal will be along one direction in the far field). As shown in 

Figure 5.1, the gray plane is the azimuth plane where the AUT, the probe and Object 1 

are located; while Object 2 is above the plane. It is easy to know that reflections occur in 

both 
 
and   angles. The received time domain signal at the probe, when the AUT is at 

the rotation angles ( ) , , is unique with respect to other angles and will not be related to 

the response of the AUT along other angles. Therefore, the received response at the probe 

will be a function of both the azimuth angle 
 
and the elevation angle  . 
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Figure 5.1 Multiple reflections exist in the whole spatial domain. 

 

The measured signal at the probe, which contains various reflections, can be 

represented as a convolution in time by the ideal signal (without any reflection) and the 

impulse response of the environment along the rotation angle ( )L I , . It can be written as 

(similar to previous case): 

     , , , , , ,                  (5.1)non ideal L I ideal L I L IP t P t A t         

or 

     , , , , , ,                (5.2)non ideal L I ideal L I L IP f P f A f         

 

where   denotes a time convolution, and 

 , ,non ideal L IP t    is the non-ideal time domain signal at the probe in the presence of the 

reflections for the rotation angle ( , )L I  ; 

 , ,non ideal L IP f   is the non-ideal frequency domain signal at the probe in the presence of 

the reflections for the rotation angle ( , )L I  ; 

 , ,ideal L IP t 
  

is the ideal time domain signal without any reflection for the rotation 

angle ( , )L I  ; 
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 , ,ideal L IP f 
  

is the ideal frequency domain signal without any reflection for the 

rotation angle ( , )L I  ; 

( , , )L IA t 
  

is the impulse response of the environment when the AUT has a ideal 

pencil beam pattern pointing along the angle ( , )L I  ; 

( , , )L IA f    is the frequency domain response of the environment when the AUT 

has a ideal pencil beam pattern pointing along the angle ( , )L I  . 

Note that ( , , )L IA t 
 
represents the reflection contributions from the environment at 

the rotation angle ( , )L I 
 
and is independent of the particular AUT. It is the spatial 

signature of the environment. 

 

In a real situation, the AUT will radiate towards every direction in the spatial domain 

and cannot have an ideal pencil beam pattern. We define the impulse response of the 

environment along the angle ( , )L I 
 
as ˆ( , , )L IA f   when the AUT does not have an 

ideal pencil beam pattern. Then, by using (5.2) we have: 

     ˆ, , , , , ,non ideal L I ideal L I L IP f P f A f                (5.3) 

here, ˆ( , , )L IA f   is the impulse response of the environment along the angle ( , )L I 
 

when the AUT does not have a ideal pencil beam pattern. It is not the true impulse 

response of the environment but also contains the pattern information of the AUT. For the 

deconvolution method, we need to know the true impulse response ( , , )L IA f   of the 

test environment. Then ˆ( , )LA f  can be considered as a convolution in the angular 

domain of the normalized beam pattern and the true impulse response. That is, 
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 
 

 
 , ,

, ,ˆ , , , ,
, , L I

ideal

L I

ideal L I

P f
A f A f

P f
     

 
   

 
     (5.4) 

Here,  , ,idealP f   is the ideal pattern without any reflection from the environment 

at the frequency f. And 
,   is the 2D convolution operator for both the azimuth angle 


 
and the elevation angle  , in other words, this operator is a two-dimensional operator 

works on each row and column of the matrix. By substituting (5.4) into (5.3), we have:  

     , ,, , , , , ,
L Inon ideal L I idealP f P f A f                (5.5) 

For a general angle of ( , )  , we have: 

     
     ,, , , , , ,non ideal idealP f P f A f            (5.6) 

which is an extension of the equation (3.16). Therefore, the radiation pattern of the AUT 

in the presence of reflections can be considered as two-dimensional convolution in the 

angular domain between the ideal pattern of the AUT and the impulse response of the 

environment. Note that the convolution is now carried out in both the azimuth angle   

domain and the elevation angle   domain, thus the 3D pattern measurements (in both 

azimuth angle and elevation angle) are carried out to form the matrix of  , ,non idealP f  , 

 , ,idealP f   and  , ,A f  . And we know that taking the FFT will transform the 

convolution in the angular domain to the multiplication in the other domain. Thus the 

impulse response of the environment  , ,A f   can be extracted by taking the Inverse 

Fourier Transform of (5.6) after a reference antenna is measured in the environment. And 

the ideal radiation pattern of the AUT  , ,idealP f   can then be obtained for any AUT 

measured in the same environment using (5.6).  
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5.2  Steps Summarized for the Methodology 

 

The procedure to carry out the deconvolution method in 3D environments is very similar to 

the procedure described in Section 3.2. We first carry out the measurement in a 3D 

non-anechoic environment using two reference antennas, whose ideal patterns are known, 

and perform a deconvolution to estimate the environmental responses A. Then, we use the 

AUT as the transmitter and carry out the measurement in the same environment and 

estimate the ideal radiation pattern of the AUT. The entire procedure consists of 4 steps:  

1) At a fixed frequency, measure the reference antenna in a non-anechoic environment 

and obtain the received response  , ,non idealP f  . Also the ideal response for the 

reference antenna  , ,idealP f 
 
is known. 

2) Calculate the environmental effects  , ,A f   using the equation: 

     ,, , , , , ,non ideal idealP f P f A f        
 

3) At the same frequency, use the AUT as the transmitter at the same position and 

measure the AUT in the same non-anechoic environment as described in step (1), 

and let  , ,non ideal AUTP f   be the result. 

4) By substituting the environmental effects  , ,A f 
 
into the equation one can 

obtain the ideal response of the AUT  , ,ideal AUTP f   through deconvolution: 

     ,, , , , , ,non ideal AUT ideal AUTP f P f A f          

Again, we can see that the deconvolution method only requires a single frequency 

measurement, and does not need any prior knowledge of the test environment. 
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5.3  Processing of the Data 

 

Section 3.3 gives the data processing procedures for 2D radiation pattern reconstruction. 

This section gives the following procedures for processing the simulated data for 3D 

radiation pattern reconstruction. The procedures will be similar to that for 2D pattern 

reconstruction but rotate the AUT three-dimensionally.  

1. First, create the simulation model for the 3D pattern measurement system. For both 

the reference antenna and the AUT, each antenna needs to have two simulation 

models. One model only have antennas (the probe and the AUT), and there is no 

PEC plates as reflectors. Such model is to simulate the free space condition to obtain 

the ideal pattern of the antenna. The other model has both antennas and PEC plates, 

and is to simulate the non-anechoic environment to obtain the non-ideal pattern of 

the antenna. 

2. For each model, rotate the AUT along itself for a step of 10º for both the azimuth 

angle and the elevation angle ( , )  , and for each rotation angle the model is 

simulated and the S21 data is collected. The S21 data along each spatial angle ( , )   

forms the radiation pattern of the AUT. There are 36 data points along the elevation 

angle  , i.e. 0º, 10º,…, 350º. For each elevation angle, the AUT rotates one loop in 

the azimuth plane and there will be 36 data points in one loop, i.e. –180º, –170º,…, 

170º. One can imagine this as the AUT rotates in a step of 10º in the azimuth plane 

and changes the elevation angle in a step of 10º. In total, there will be 36*36 data 

points forming a period in the angular domain ( , )  , i.e. (0º, –180º), (0º, –170º),…, 

(0º,170º), (10º, –180º), (10º, –170º),…, (350º,160º), (350º,170º) in a two dimensional 
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matrix form, and then the data will repeat this sequence. The data at the spatial angle 

of (360º,180º) is equal to that of (0º, –180º) and belongs to the next period. Therefore, 

the non-ideal pattern  AUT , ,non idealP f   , the ideal pattern  AUT , ,idealP f   and 

the environmental effects  , ,A f 
 
all are two-dimensional periodic sequences in 

the angular domain  ,  . Note that in the normal Spherical coordinate system, the 

elevation angle   varies between [0º, 180º]. Here, the   angle will change its 

value between [0º, 360º] to form a period in the spatial angular domain. However, 

we only need to simulate the model when   varies between [0º, 180º], from which 

the data set of   between [180º, 360º] can be derived. Since there is no explicit 

definition for the data set of   between [180º, 360º] in the normal spherical 

coordinate system, we need to derive that data through using the conversion between 

the spherical coordinate system and the Cartesian coordinate system, as shown in the 

Appendix A. Then, both  ,   change its value within 2  range and form a 

periodic 2D matrix.  

3. Simulate the model for the reference antenna in the free space and the desired 

non-anechoic environment to obtain the ideal and non-ideal patterns of the reference 

antenna  Ref , ,idealP f   and  Ref , ,non idealP f   , respectively. Similarly, by 

replacing the reference antenna with the desired AUT and carry out the simulation, 

we can obtain the ideal pattern  AUT , ,idealP f   and the non-ideal pattern 

 AUT , ,non idealP f    
for the desired AUT. The ideal pattern of the AUT 

 AUT , ,idealP f   
will be the goal of the reconstructed pattern. 

4. Now we need to apply (5.6) to reconstruct the 3D radiation pattern of the AUT. 
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According to Section 3.9 of [40], the convolution of two 2D periodic sequences is 

the multiplication of the corresponding 2D matrix of discrete Fourier series. Let 

1( , )x m n
 
and 2 ( , )x m n  be two periodic sequences of period N*M with the 2D 

discrete Fourier series denoted by 
1( , )X k l  and 

2 ( , )X k l , respectively. It can be 

written as: 

1 1

3 1 2

0 0

( , ) ( , ) ( , )
M N

q r

x m n x q r x m q n r
 

 

        (5.7) 

3 1 2( , ) ( , ) ( , )X k l X k l X k l          (5.8) 

5. From (5.6) we have the following equations:   

     Ref Ref ,, , , , , ,non ideal idealP f P f A f         
   

(5.9) 

     AUT AUT ,, , , , , ,non ideal idealP f P f A f         
  

(5.10) 

Therefore, by taking the 2D-FFT of both sides of (5.9), the angular convolution 

operator will become the multiplication operator. We can derive the environment 

effects  ,A f  as: 

 
 

 
2 Ref

2

2 Ref

( , , )
, ,

( , , )

non ideal

ideal

fft P f
A f ifft

fft P f

 
 

 

 



 
   

 
 
    (5.11)

 

where 2fft  and 2ifft  denote the 2D-FFT and 2D-IFFT operator, respectively.  

6. Take the 2D-FFT of both sides of (5.10) and substitute the environment effects 

 , ,A f   into the equation, we get: 
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 
 

 

   

 

2 AUT

AUT 2

2

2 AUT 2 Ref

2

2 Ref

( , , )
, ,

( , , )

( , , ) ( , , )
                          

( , , )

non ideal

ideal

non ideal ideal

non ideal

fft P f
P f ifft

fft A f

fft P f fft P f
ifft

fft P f

 
 

 

   

 

 



  

 

 
   

 

 
   

 

 (5.12) 

Note that the division and multiplication in (5.11) and (5.12) are element by element 

operations on 2D matrices. All data processing will be performed off-line using a 

commercial software package (MATLAB 7, The MathWorks Inc., Natick, MA, 

2000). In MATLAB, the function Y=fft2(X) returns the two-dimensional Discrete 

Fourier Transform of matrix X, computed with a Fast Fourier Transform algorithm. 

Similarly, the function Y=ifft2(X) returns the two-dimensional Inverse Discrete 

Fourier Transform of matrix X. All the data used in (5.12) need to be processed 

through step 2 first. Note that when the environment setting is symmetrical along the 

elevation angle o90  , some elements of the 2D-FFT of the 2D matrices generate 

zero values, so in (5.12) there exists 0 (0 / 0)  value, which should be zero. However, 

N/A value was generated in MATLAB due to the numerical error. To conduct the 

2D-IFFT of the matrix, we manually set those N/A values to be zero, which they 

should be, as shown in Appendix B. 

7. Compare the reconstructed pattern of the AUT from (5.12) with the simulated result 

 AUT , ,idealP f  . 

 

 

5.4  Simulation Examples 

 

In this section, we will show examples of the 3D pattern reconstruction under five different 

environmental settings by using the yagi antenna and the parabolic reflector antenna as the 
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AUT. The five environmental settings include: four wide PEC plates around the antennas 

(shown in Section 5.4.1), four PEC plates as well as the PEC ground (shown in Section 

5.4.2), six PEC plates form an unclosed contour around the antennas (shown in Section 

5.4.3), six PEC plates forming a closed contour (shown in Section 5.4.4), and six dielectric 

plates forming a closed contour (shown in Section 5.4.5). Those five environmental 

settings present a full picture of how the deconvolution method extracts the ideal pattern 

from the non-ideal signal under 3D environments. For the examples shown below, a 

6-element yagi antenna and a new parabolic reflector antenna will be the AUTs. Again, a 

horn antenna is set to be both the reference antenna and the probe. Dimensions of the horn 

antenna and the yagi antenna are given in Figures 4.21 and 4.23, respectively. 

Dimensions of the new parabolic reflector antenna are shown in Figure 5.2. The numerical 

simulations and the processing of the simulation data will follow the procedures as 

described in Section 5.3. 

 

 

Figure 5.2 Model of a new parabolic reflector antenna with its feeding component. 
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5.4.1 Example I: Four Wide PEC Plates Serve as Reflectors 

 

 

The simulation model in this example is similar to the one shown in Figure 4.34. The 

difference is that the PEC plates have a width of 2 m and are 2 m away from the antennas 

in this example, as shown in Figure 5.3. 

The S21 data was collected at each spatial angle ( , )   to form the 3D radiation pattern 

figure. Equation 5.12 was used to calculate the reconstructed 3D pattern for the AUT. And 

the reconstructed results were compared with the simulated ideal pattern of the AUT to 

illustrate the performance of the deconvolution method. HOBBIES was used to perform 

the full wave EM simulation and the operation frequency was 1.5 GHz. 

 

 

Figure 5.3 Model of the measurement system with four very wide PEC plates. 
 

The ideal (free space) and non-ideal (under the presence of the PEC plates) radiation 

patterns of the horn, the yagi, and the parabolic reflector antenna in 3D plot are shown in 
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Figures 5.4, 5.5 and 5.6, respectively. The vertical axis is the amplitude of S21 in dB scale. 

It is easy to observe the differences between the ideal patterns and the non-ideal patterns. 

The back lobes in all three figures have been greatly increased due to the reflections from 

the PEC plates. Note that at the rotation angle ( , )=(90 ,0 )    , the AUT faces toward the 

probe; while at ( , )=(90 ,180 )    , the AUT rotates 180º in the azimuth plane and faces 

back to the probe. And the back lobe is located around the angle of 180   . 

 

 

 

Figure 5.4 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

horn antenna. 
 

 

Figure 5.5 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

yagi antenna.  
 



103 

 

Figure 5.6 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

parabolic reflector antenna.  
 

 

As mentioned in Section 3.1, one condition needs to be satisfied is that the current 

distribution on the feed dipole of the AUT should remain close to the ideal one. Figures 

5.7 and 5.8 give both the real and imaginary part of the current distribution on the feed 

dipole of the two AUTs, the yagi antenna and the parabolic reflector antenna, respectively. 

It shows that the current distribution on the feed dipole of the parabolic reflector is slightly 

changed (since the feed dipole is located inside the waveguide); while the current 

distribution of the yagi has been partly affected by the PEC plates. To mitigate this change 

of the current distribution due to the PEC plates, we need to increase the distance between 

the plates and the AUT. However, this will dramatically increase the computational size of 

the problem and make the simulation an infeasible task. Therefore, we will keep the current 

model settings, but we should expect some level of differences between the ideal pattern 

and the reconstructed results. 
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Figure 5.7 Current distribution on the feed dipole of the yagi antenna with four very wide 

PEC plates.  

 

 

Figure 5.8 Current distribution on the feed dipole of the parabolic reflector antenna with 

four wide PEC plates as the reflector.  
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The pattern reconstruction procedure in 3D environment follows the steps as 

described in Section 5.2. The 3D reconstructed pattern of the yagi antenna is shown in 

Figure 5.9. To better illustrate the reconstructed pattern along different spatial angles, the 

2D cuts of different phi angles and theta angles are shown in Figures 5.11 and 5.12, 

respectively. The reconstructed pattern is indicated by the red line while the ideal pattern is 

indicated by the black line. The blue dash line is for the non-ideal pattern. In Figure 5.11 

the x-axis is the elevation angle  , and the y-axis is the amplitude of S21 in dB scale. In 

Figure 5.12 the x-axis is the azimuth angle  , and the y-axis is the amplitude of S21 in dB 

scale. Note that the 2D cuts at phi = 0º and theta = 90º give the patterns of the principal 

planes for the AUT, and they are more representative in illustrating the performance of 

the 3D pattern reconstruction. 

Similarly, for the pattern reconstruction of the parabolic reflector antenna, the 3D 

reconstructed pattern is shown in Figure 5.10; while the 2D cuts of different phi angles 

and theta angles are shown in Figures 5.13 and 5.14, respectively. 
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Figure 5.9 Three-dimensional plot of the reconstructed pattern for the yagi antenna. 

 

 

 

 

Figure 5.10 Three-dimensional plot of the reconstructed pattern for the parabolic 

reflector antenna. 
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Figure 5.11 Comparison of the reconstructed patterns for the yagi antenna along different 

phi angles with four wide PEC plates as the reflector. 
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Figure 5.12 Comparison of the reconstructed patterns for the yagi antenna along different 

theta angles with four wide PEC plates as the reflector.  
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Figure 5.13 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different phi angles with four wide PEC plates as the reflector. 
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Figure 5.14 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different theta angles with four wide PEC plates as the reflector. 
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As shown in the figures, the results of the 3D pattern reconstruction for the parabolic 

reflector antenna are of engineering accuracy. The reconstructed pattern is very close to 

the ideal pattern. While for the yagi antenna the results are not as good as previous 2D 

reconstruction examples. The pattern shapes at some 2D cuts are a little different from 

the ideal ones. But the reconstructed pattern basically follows the trend of the ideal 

pattern and the undesired reflections have been greatly compensated by using the 

deconvolution method. One reason for the difference of patterns would be the current 

distribution on the feed dipole of the AUT has been changed and this leads to the change 

of the free space radiation pattern of the AUT.  

The other possible reason may be due to the lack of the sample data in the angular 

domain. In previous examples, the 2D reconstruction takes 1º as a step in   angle; while 

the 3D reconstruction example takes 10º as a step in 
 
angle and   angle. Even 

though the total number of data points (equals 36*36) is much larger than that of the 2D 

examples, the density of data points in the angular domain is much lower. And this low 

rata of sample points may not sufficiently characterize the environmental effects, 

especially when the environments are complicated or the reflections are strong. 

 

 

5.4.2 Example II: Four PEC Plates and the Ground Serve as Reflectors 

 

The simulation model of this example includes the antenna, four PEC plates and the PEC 

ground, as shown in Figure 5.15. The PEC plates and the ground serve as the reflectors and 

reflect the fields from the AUT to all directions. Those four PEC plates all have the same 

size of 3 m by 4 m and are connected with the PEC ground plane (the blue plane in Figure 
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5.15), just like the four plates and the floor of a room. The AUT and the probe are 2.5 

meters away from the PEC ground. The PEC ground is modeled with an infinite large PEC 

plane. Due to the property of an infinite large PEC plane, the PEC ground can be 

substituted by adding the image of the model with respect to the PEC ground, as shown in 

the red circle in Figure 5.15. 

 

 

Figure 5.15 Model of the measurement system with four PEC plates and the ground as 

the reflector. 
 

The ideal and non-ideal (under the presence of PEC plates) radiation patterns of the 

horn antenna, the yagi antenna and the parabolic reflector antenna in 3D plot are shown in 

Figures 5.16, 5.17 and 5.18, respectively. The vertical axis is the amplitude of S21 in dB 

scale. It is easy to observe the differences between the ideal patterns and the non-ideal 

patterns. Especially the back lobes of all the three figures are much stronger due to the 

reflections from the PEC plates and the ground. 
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Figure 5.16 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

horn antenna.  
 

 

Figure 5.17 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

yagi antenna. 
 

 

Figure 5.18 Three-dimensional plot of the ideal and non-ideal radiation patterns of a 

parabolic reflector antenna. 
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Now let’s look at the current distribution on the feed dipole of the yagi antenna, which 

is shown in Figure 5.19. It shows that the real part of the current distribution on the yagi 

has been partly affected by the PEC plates, which means the reconstructed pattern in this 

environment will be somewhat different from the free space ideal pattern. And we should 

expect this in the reconstructed results. 

 

Figure 5.19 Current distribution on the feed dipole of the yagi antenna with four PEC 

plates and the ground as the reflector. 

 

The pattern reconstruction procedures follow the steps as described in Section 5.2. 

And the reconstructed 3D pattern for the yagi antenna is shown in Figure 5.20. To better 

display the reconstructed pattern along different spatial angles, Figures 5.22 and 5.23 

give the 2D cuts of different phi angles and theta angles, respectively. Since the model is 

not symmetrical in the theta angle domain, the theta cuts plot takes several cut planes 

around the principal plane (  = 90º). The reconstructed pattern is indicated by the red line 

while the ideal pattern is indicated by the black line. The blue dash line is for the non-ideal 

pattern. In Figure 5.22 the x-axis is the elevation angle  , the y-axis is the amplitude of 
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S21 in dB scale. In Figure 5.23 the x-axis is the azimuth angle  , the y-axis is the 

amplitude of S21 in dB scale.  

Similarly, for the pattern reconstruction of the parabolic reflector antenna, the 3D 

reconstructed pattern is shown in Figure 5.21; while the 2D cuts of different phi angles 

and theta angles are shown in Figures 5.24 and 5.25, respectively. 

 

 

Figure 5.20 Three-dimensional plot of the reconstructed pattern for the yagi antenna. 

 

 

Figure 5.21 Three-dimensional plot of the reconstructed pattern for the parabolic 

reflector antenna. 
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Figure 5.22 Comparison of the reconstructed patterns for the yagi antenna along different 

phi angles with four PEC plates and the ground as the reflector. 
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Figure 5.23 Comparison of the reconstructed patterns for the yagi antenna along different 

theta angles with four PEC plates and the ground as the reflector. 
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Figure 5.24 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different phi angles with four PEC plates and the ground as the reflector. 
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Figure 5.25 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different theta angles with four PEC plates and the ground as the reflector. 
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As shown in the figures, the reconstructed results for the yagi antenna are not as 

good as the results shown in Example I (Section 5.4.1). The phi-cuts plot shows that 

along theta equals 0º and 180º the reconstructed patterns have even stronger reflections 

than the non-ideal patterns. But the theta-cuts plot still shows that the reconstructed 

pattern is improved through the deconvolution method. For the parabolic reflector 

antenna, the reconstructed results are much better. Figures 5.24 and 5.25 clearly illustrate 

that reflections of the non-ideal patterns have been greatly compensated, and nulls of the 

reconstructed pattern have been shifted to the right positions.  

 

 

5.4.3 Example III: Six Plates Forming an Unclosed Contour Serve as 

Reflectors 

 

The simulation model with six PEC plates forming an unclosed contour is shown in Figure 

5.26, which gives a side view and a top-down view of the model. The PEC plates are set in 

a symmetrical way and have the same size for the four plates at the side. The PEC plates on 

the bottom and the top also have the same size. These six PEC plates will serve as the 

reflectors and reflect the fields of the AUT from all directions. The antenna measurement 

simulation is carried out inside the contour. 

The ideal and non-ideal (under the presence of PEC plates) radiation patterns of the 

horn antenna, the yagi antenna and the parabolic reflector antenna in 3D plot are shown in 

Figures 5.27, 5.28 and 5.29, respectively. The vertical axis is the amplitude of S21 in dB 

scale. It is clear to observe the differences between the ideal patterns and the non-ideal 

patterns. Especially the back lobes of all three figures are much stronger than the ideal ones 

due to the reflections from the PEC plates. 
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(a) 

 

 

 

(b) 

 

Figure 5.26 Model of the measurement system with six PEC plates forming an unclosed 

contour. 
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Figure 5.27 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

horn antenna. 
 

 

Figure 5.28 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

yagi antenna. 
 

 

Figure 5.29 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

parabolic reflector antenna.  
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Now let’s look at the current distribution on the feed dipole of the yagi antenna, which 

is shown in Figure 5.30. It shows that the current distribution on the yagi has been partly 

affected by the PEC plates.  

 

Figure 5.30 Current distribution on the feed dipole of the yagi antenna with six PEC 

plates as the reflector. 

 

The pattern reconstruction procedures in 3D environments follow the steps as 

described in Section 5.2. And the reconstructed 3D pattern for the yagi antenna is shown 

in Figure 5.31. To better demonstrate the reconstructed results along different spatial 

angles, Figures 5.33 and 5.34 give the 2D cuts of different phi angles and theta angles, 

respectively. The reconstructed pattern is indicated by the red line while the ideal pattern is 

indicated by the black line. The blue dash line is for the non-ideal pattern. In Figure 5.33 

the x-axis is the elevation angle  , the y-axis is the amplitude of S21 in dB scale. In Figure 

5.34 the x-axis is the azimuth angle  , the y-axis is the amplitude of S21 in dB scale.  
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Similarly, for the pattern reconstruction of the parabolic reflector antenna, the 3D 

reconstructed pattern is shown in Figure 5.32; while the 2D cuts of different phi angles 

and theta angles are shown in Figures 5.35 and 5.36, respectively. 

 

Figure 5.31 Three-dimensional plot of the reconstructed pattern for the yagi antenna. 

 

 

Figure 5.32 Three-dimensional plot of the reconstructed pattern for the parabolic 

reflector antenna. 
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Figure 5.33 Comparison of the reconstructed patterns for the yagi antenna along different 

phi angles with six PEC plates as the reflector. 
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Figure 5.34 Comparison of the reconstructed patterns for the yagi antenna along different 

theta angles with six PEC plates as the reflector. 
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Figure 5.35 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different phi angles with six PEC plates as the reflector. 
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Figure 5.36 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different theta angles with six PEC plates as the reflector. 
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As shown in the figures, the reconstructed results are not as good as the results 

shown in Example I in Section 5.4.1. The reconstructed pattern can basically follows the 

trend of the ideal pattern and compensate the reflections for the main lobe; but the 

reconstructed results for the side lobes are not good enough. Except the effect of the 

changes in current distribution shown in Figure 5.30, the two PEC plates at the top and 

the bottom of the antennas also add the complexity of reflections and thus distorting the 

reconstruction performance.  

 

5.4.4 Example IV: Antenna Measurement in a Closed PEC Box 

 

The previous three examples have shown the pattern reconstruction under the 

environments of unclosed PEC contour. This example is to illustrate the case that the 

antenna measurement is carried out in a closed PEC box, where the deconvolution 

method fails. 

The model of this example is shown in Figure 5.37 (displayed in the transparent 

mode). The PEC box has the size of 4 m by 4 m by 7 m; while the AUT and the probe 

antenna have a distance of 3 m between them and they are 2 m away from the 

surrounding PEC plates. Again, the 6-element yagi antenna and the parabolic reflector 

antenna are used as the AUT while the horn is used as the probe antenna. The sampling of 

data points in the angular domain is every 10 degree as a step in both 
 
angle and   

angle.  
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Figure 5.37 Model of the measurement system within a closed PEC box. 
 

 

The ideal and non-ideal (under the presence of PEC plates) radiation patterns of the 

horn antenna, the yagi antenna and the parabolic reflector antenna in 3D plot are shown in 

Figures 5.38, 5.39 and 5.40, respectively. The vertical axis is the amplitude of S21 in dB 

scale. It is seen that there are tremendous differences between the ideal patterns and the 

non-ideal patterns. The non-ideal patterns don’t have a regular shape of radiation patterns 

with the main lobe and the back lobe. They are more like random values. And the average 

level of the non-ideal patterns is much higher than the ideal patterns. This will be explained 

later. 

 

 

 

4 m 

4 m 
7 m 
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Figure 5.38 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

horn antenna (antenna in a closed PEC box). 
 

 

Figure 5.39 Three-dimensional plot of the ideal and non-ideal radiation patterns of the 

yagi antenna (antenna in a closed PEC box). 
 

 

Figure 5.40 Three-dimensional plot of the ideal and non-ideal radiation patterns of 

the parabolic reflector antenna (antenna in a closed PEC box). 
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Let’s first look at the current distribution on the feed dipole of the yagi antenna as 

shown in Figure 5.41. As shown in the figure, the imaginary part of the current distribution 

within the PEC box is much larger than the ideal one; while the real part of the current 

distribution within the PEC box is zero value. It is known that inside a closed PEC box, the 

energy generated by the AUT is pure imaginary, which is induced by the imaginary part of 

the current. So the field inside the closed PEC box would be near field only, and there 

would be no far field inside or outside the PEC box, which is why a PEC box is commonly 

used as the shield box. Therefore the measured pattern under such environment is not the 

far-field pattern. This also explains why the average level of the non-ideal radiation 

pattern is much larger than the ideal pattern in Figures 5.27 ~ 5.29. Because all the energy 

is conserved inside the PEC box as the near-field.    

 

 

Figure 5.41 Current distribution on the feed dipole of the yagi antenna.  

(antenna within a closed PEC box) 
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To illustrate the deconvolution method fails under such environment, we still tried to 

reconstruct the radiation pattern of the AUT. The pattern reconstruction procedures still 

follow the steps as described in Section 5.2. The reconstructed 3D pattern for the yagi 

antenna is shown in Figure 5.42. And the 2D cuts of different phi angles and theta angles 

are given in Figures 5.44 and 5.45, respectively. The reconstructed pattern is indicated by 

the red line while the ideal pattern is indicated by the black line. The blue dash line is for 

the non-ideal pattern. In Figure 5.44 the x-axis is the elevation angle  , the y-axis is the 

amplitude of S21 in dB scale. In Figure 5.45 the x-axis is the azimuth angle  , the y-axis is 

the amplitude of S21 in dB scale.  

Similarly, for the pattern reconstruction of the parabolic reflector antenna, the 3D 

reconstructed pattern is shown in Figure 5.43; while the 2D cuts of different phi angles 

and theta angles are shown in Figures 5.46 and 5.47, respectively. 

It is seen that the reconstructed results are much worse than the previous examples, 

and the reconstructed patterns are very different from the ideal ones. This is mainly due to 

the fact that the current distribution on the AUT has been greatly changed from the ideal 

one when the AUT radiates in the free space. And the probe is actually measuring within 

the near field of the AUT, which makes the radiation pattern reconstruction meaningless. 

Therefore, it is not surprising that the reconstructed patterns are not approximated to the 

ideal patterns. 

 



134 

 

Figure 5.42 Three-dimensional plot of the reconstructed pattern for the yagi antenna. 

 

 

 

Figure 5.43 Three-dimensional plot of the reconstructed pattern for the parabolic 

reflector antenna. 
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Figure 5.44 Comparison of the reconstructed patterns for the yagi antenna along different 

phi angles (antennas within a closed PEC box). 
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Figure 5.45 Comparison of the reconstructed patterns for the yagi antenna along different 

theta angles (antennas within a closed PEC box). 
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Figure 5.46 Comparison of the reconstructed patterns for the parabolic reflector 

antenna along different phi angles (antennas within a closed PEC box). 
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Figure 5.47 Comparison of the reconstructed patterns for the parabolic reflector antenna 

along different theta angles (antennas within a closed PEC box). 
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5.4.5 Example V: Six Dielectric Plates Forming a Closed Contour   

 

The previous four examples have used PEC plates to model plates of a room, but this is 

not realistic in a real measurement. The idea of using the PEC plates is to enhance the 

environmental effects and make it easier to be observed. On the other hand, that greatly 

increases the difficulty of the reconstruction problem, since the reflection and diffraction 

components are strong. Actually, they are too strong that the current distribution of the 

AUT has also been much changed under those environment settings. This example 

models the environment as a room formed by six dielectric plates, which is much more 

realistic. 

The simulation model of this example includes the AUT, the probe and six dielectric 

plates around the antennas, as shown in Figure 5.48. The antennas are inside the air box 

while the dielectric material starts from the plates and extends to the infinity. Therefore, the 

dielectric plates around the antennas will be infinite thick. This is a simplified model of a 

regular room where the plates are made of concrete blocks with a thickness of around 1 feet. 

The radiated fields from the AUT will reflect, diffract and refract on dielectric plates.  

The dielectric box has a size of 2 m by 2 m by 4 m, and the six plates separate the air 

and the dielectric material, which is concrete ( 2.2r  , tan 0.011  ). The AUT and the 

probe are 2.5 meters away from each other and are 1 meter away from plates around.  
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Figure 5.48 Model of the measurement system within a closed box with 6 dielectric 

plates. 

 

For this model, the differences between the ideal and non-ideal (under the presence of 

dielectric plates) radiation patterns are much smaller. We will not show the 3D plot here 

since they look very close in 3D plot, but we will show comparison of the patterns in 2D 

cut plots.  

First let’s check the current distribution on the feed dipole of the yagi antenna, which is 

shown in Figure 5.49. It shows that the current distribution on the feed dipole of the yagi is 

very slightly changed by the dielectric plates, which means the reflection and diffraction 

components are much smaller under this environment compared with previous examples. 

And we should expect this in the reconstructed results. Based on the experience of previous 

examples we expect that the reconstructed pattern should be closer to the ideal pattern. 

 

 

2 m 

4.5 m 2 m 

2.5 m 
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Figure 5.49 Current distribution on the feed dipole of the yagi antenna when the test 

environment is a closed box with 6 dielectric plates. 

 

 

We followed the procedures as described in Section 5.2 and reconstructed the 

patterns for the yagi antenna and the parabolic reflector antenna. To better display the 

differences between the ideal pattern, non-ideal pattern, and the reconstructed pattern, 2D 

cuts along different spatial angles are given in the following figures. 

For the yagi antenna, 2D cuts along different phi angles and theta angles are shown 

in Figures 5.50 and 5.51, respectively. The reconstructed pattern is indicated by the red 

line while the ideal pattern is indicated by the black line. The blue dash line is for the 

non-ideal pattern. In Figure 5.50 the x-axis is the elevation angle  , the y-axis is the 

amplitude of S21 in dB scale. In Figure 5.51 the x-axis is the azimuth angle  , the y-axis is 

the amplitude of S21 in dB scale.  
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Similarly, for the pattern reconstruction of the parabolic reflector antenna, the 2D 

cuts along different phi angles and theta angles are shown in Figures 5.52 and 5.53, 

respectively. 

The results for both the yagi and the parabolic reflector antenna show that the 

reconstructed patterns agree very well to the ideal patterns. The differences between the 

ideal patterns and the reconstructed patterns are mainly located at the region of 

o o[0 ,50 ]  , o o[130 ,180 ]  , 
o o[ 180 , 100 ]   , and o o[100 ,180 ] , which are the 

side lobes and back lobes.  

This example also indicates that under a more realistic environment setting, when the 

current distribution of the AUT is not much affected by the test environment, the 

deconvolution method can achieve a very good reconstructed result. For previous four 

examples, those are the worst scenarios where PEC plates are used as the reflector. The 

PEC plates generate much more reflections and diffractions than the dielectric plates and 

affect the current distribution on the AUT a lot.  

The previous 2D pattern reconstruction has been extended to 3D environments. The 

five examples shown above discussed the pattern reconstruction in different 3D 

environments. The reconstructed results can greatly mitigate the undesired reflections and 

approximate the ideal patterns. One major reason for the differences between the ideal 

patterns and the reconstructed patterns is due to the change of the current distribution on 

the AUT.  
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Figure 5.50 Comparison of the patterns for the yagi antenna along different phi angles 

when the test environment is a closed box with 6 dielectric plates. 
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Figure 5.51 Comparison of the patterns for the yagi antenna along different theta angles 

when the test environment is a closed box with 6 dielectric plates. 
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Figure 5.52 Comparison of the patterns for the parabolic reflector antenna along different 

phi angles when the test environment is a closed box with 6 dielectric plates. 
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Figure 5.53 Comparison of the patterns for the parabolic reflector antenna along different 

theta angles when the test environment is a closed box with 6 dielectric plates. 
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Chapter 6  

Conclusion and Future Work 

 

This work focuses on illustrating and extending a deconvolution algorithm to retrieve the 

free space far-field pattern of an AUT from its measured radiation pattern in a 

non-anechoic environment. Extensive numerical examples are given for illustration.  

We model the environmental effects as an impulse response of the test environment 

in the spatial domain. And the measured non-ideal pattern under the environment is an 

angular convolution between the ideal pattern (free space far-field pattern) of the AUT and 

the environmental responses. Therefore, under any test environment, one can obtain the 

free space far-field pattern for an unknown antenna with two antenna measurements. One 

measurement is for the calibration of the environment using a reference antenna whose 

pattern is known, and the other is for the measurement of an AUT in the same test 

environment. This requires two assumptions that the environment is unchanged during 

measurements for two antennas and sizes of the reference antenna as well as the AUT need 

to be similar.  

The proof of the concept and the derivation of the governing equations are given in 

Chapter 3 for the 2D situation. Then, numerical examples with different environmental 

settings and AUTs are presented to illustrate how the deconvolution method works. 

These examples show that through the deconvolution method, the reconstructed patterns 

of the AUTs are well approximated to the free space radiation patterns.  
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Further analysis is made in Chapter 4 to explore the limitations and effectiveness of the 

deconvolution method. Numerical examples indicate that the method is not limited to the 

sizes of the antennas or the frequencies under test, as long as the current distribution on 

the AUT is not much affected by the environments. However, the method does have a 

limitation to the choice of the probe antenna. The failure of the dipole antenna example 

shows that the probe needs to be a directional antenna. And the performance of the 

method is inversely proportional to the complexity of the environments. The complexity of 

the environments shows in two ways in our simplified models, the number of PEC objects 

and the width of PEC plates. 

The deconvolution method is extended to three-dimensional environments in Chapter 5 to 

reconstruct the 3D radiation pattern for an AUT, with both azimuth angle and elevation 

angle considered. Numerical examples are given to evaluate the 3D pattern reconstruction 

under five different environmental settings. Those settings cover different 3D 

environments and present a full picture of how the deconvolution method retrieves the 

ideal pattern from the non-ideal pattern. Results indicate that with PEC plates as the 

reflector, the reconstructed patterns are roughly approximated to the ideal patterns, but are 

not as good as the results shown in 2D examples. And for the environment of a closed 

PEC box, the reconstruction will fail since there will be no far-field inside a closed PEC 

box. While for the example with dielectric plates as the reflector, reconstructed results are 

much improved and are very well approximated to the ideal pattern of an AUT. We find 

that one major reason for the differences between the ideal patterns and the reconstructed 

patterns is due to the change of the current distribution on the AUT. When PEC plates are 

used as the reflector, they cause much more reflections and diffractions than the dielectric 
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plates and affect the current distribution on the AUT a lot. The current distribution change 

directly affects the radiation pattern of the AUT. However, an environment with dielectric  

plates is more realistic than an environment with large PEC plates. Therefore, we can 

expect a better reconstructed result from the deconvolution method under realistic 

environment settings. 

 

In this work, we didn’t consider interference signals (i.e., the radio noise), which is 

not practical in the real measurements. One important function of the anechoic chamber 

is to shield the measurements from the outside signals and provide an accurate result of 

the radiation pattern, especially for side lobes. However, the main goal of the 

deconvolution method is not to provide a reconstructed result as accurate as that 

measured in an anechoic chamber but to provide an approximated radiation pattern. Even 

we didn’t consider the effect of the radio noise, the low level noise will not make a 

significant change to the reconstructed results according to the measurement results of 

man-made noise in VHF and UHF bands [41]-[42]. Therefore, it is reasonable to neglect 

the effect of interference signals.  

So far, multiple numerical examples are presented to model the antenna radiation 

pattern measurement system and test the effectiveness of the deconvolution method. 

Those examples have shown the method can achieve a good approximation of the free 

space radiation pattern of the AUT from the data measured in non-anechoic environments. 

From those examples, we can observe some good features or advantages of the 

deconvolution method comparing to other pattern reconstruction methods in the literature. 

First, this method is independent of the bandwidth of an antenna and there is no 
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requirement of prior knowledge of the system or the test environment. Also, this method 

not only provides an approximated free space radiation pattern, but also provides the 

knowledge of the phase component of the pattern. And this phase knowledge is necessary 

for some applications.  

Still, there are lots of work can be done to improve the deconvolution method:  

1. Besides the measurement of a single AUT, the deconvolution method is also useful 

and promising for measurements of a large target, especially for antennas mounted 

on large platforms. For those large targets, indoor measurements inside an anechoic 

chamber are very difficult. The deconvolution method provides a way to obtain a 

quick and relative accurate estimation of the radiation pattern for such large targets. 

Due to the limited time and computational resources, we are currently unable to 

simulate the pattern reconstruction for antennas mounted on large platforms. This 

situation is suggested to be evaluated in real measurements. 

2. The deconvolution method is not only useful in antenna pattern measurements in 

non-anechoic environments, but also could be applied in characterizing the reflection 

level of an anechoic chamber. It will be very interesting to model an anechoic 

chamber with absorbing materials and simulate the antenna measurements in such 

environment. And the deconvolution method can be used to extract the reflections 

and diffractions within the anechoic chamber.  

3. As shown previously, we choose PEC plates and dielectric plates as the reflector. For 

realistic measurements in a large room, the radiated fields would reflect on wooden 

tables, concrete walls around the room, the floor, and the ceiling of the room. 

Therefore, a more realistic numerical simulation needs to add these realistic objects 
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into the model. And the reconstructed results would be more convincing.  

4. So far, we have evaluated deconvolution method through numerical simulations. A 

better way is to test the method in real measurements. This requires one to choose an 

environment and carry out a real antenna pattern measurement. Then, follow 

procedures of the deconvolution method to measure the received response at the 

probe and extract the environmental effects from measured result of a reference 

antenna. And use it in a subsequent measurement for an AUT to extract its ideal 

pattern, and compare the reconstructed pattern with that measured in an anechoic 

chamber. 

We hope the deconvolution method could be applied into the real antenna 

measurements, and can be used to save the expenses on building an anechoic chamber. So 

the antenna pattern measurement could be more affordable and flexible.   
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Appendix A  

Data Mapping Using the Conversion between 

the Spherical Coordinate System and the 

Cartesian Coordinate System 

 

 

As mentioned in Section 5.3, the FFT transforms the convolution of 2D periodic 

sequences into the multiplication of their corresponding discrete Fourier series. And the 

sequences that we select should be a period of the 2D periodic sequences. For example, if 

we take a step of 10º along the azimuth angle  , the data at 

o o o o180 , 170 , , 160 , 170      should be a period of the periodic sequences, as shown 

below: 

 

Also notice that the end point of one period should be continuous to the start point of 

the next period, like the transition from o o170  to 180  . These two properties can be 

visualized as: we rotate an object along the azimuth angle and the object will return to its 

original starting place after rotating one loop and then it starts to rotate the next loop. This 

is the case for our 1D pattern reconstruction in Chapter 3. 
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 These two properties also apply to the 2D situation. For example, if you change both 

  and   in a step of 10º, we form a 2D matrix by listing the  ,   in a plane, as 

shown below (  varies along the column and   varies along the row): 

o o o o o o
    

o o o o o o
    

    

o o o o o o
    

o o
 

(0 ,  180 )   (0 ,  170 )     (0 ,  170 )  

(10 , 180 )    (10 , 170 )     (10 ,170 )

                                                

(170 , 180 ) (170 , 170 )   (170 ,170 )

(180 , 180 )

 

 

 







   


o o o o

    
19 36

(180 , 170 )   (180 ,170 )  

 




 
 
 
 
 
 
 

 

 

We would think this is also a period of the 2D periodic sequences, and it should be 

continuously transited to the next period along either   or  . However, it turns out to 

be not true. 

 If we duplicate this matrix and pad it at its side as shown below, we see that the two 

adjacent data  ,  of (180º, –180º) and (0º, –180º) should have a step difference of 10º, 

which is not. Therefore, the original 2D matrix cannot satisfy our requirement. 

 

However, if we complete the data matrix by padding the data in the elevation angle 

 , specifically adding   between [180º,360º), we can guarantee that the above two 
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properties can be satisfied. Since there is no explicit definition for the data set of   

between [180º, 360º] in the normal spherical coordinate system, we need to derive that 

data by using the conversion between the Spherical coordinate system and the Cartesian 

coordinate system, as shown below: 

sin cos

sin sin

cos

x r

y r

z r

 

 







 

   (A.1) 

One can verify that the data in the region o o o o[0 ,180 ] and [ 180 ,180 ]     can 

be fully mapped to the data in the region o o o o[180 ,360 ] and [ 180 ,180 ]     by using 

the angular conversion (A.2): 

( , , ) ( ,2 , )r r           (A.2) 

It is easy to see the Cartesian coordinates generated by the two sides of the (A.2) are 

the same. Therefore, the data set of   between [180º, 360º] can be derived. Then, both 

 and    change its value within 2  range and form a periodic 2D matrix. 

This data mapping process is shown in Figure A.1. The lower layer data blocks are 

the original data when   is between [0º,180º] while the upper layer data blocks are the 

mapped data when   is between [180º,360º]. The data blocks with the same color 

indicate the mapping location for the spatial angle  ,  . And the dashed lines show 

two examples of data mapping using (A.2), i.e., the spatial angle  ,   at (–120º,120º) 

should be mapped to (60º,240º); while the angle at (150º,60º) should be mapped to 

(–30º,300º).  
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Figure A.1 Data mapping illustration. 
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Appendix B   

A Side Note of the 2D-FFT during the Data 

Processing 

 

 

As mentioned in Section 5.3, we need to perform the 2D-FFT on matrices and transform 

the angular convolution into the multiplication in the other domain. According to (5.12), 

the ideal pattern of the AUT can be calculated as below: 

  
   

 
2 AUT 2 Ref

2 AUT

2 Ref

( , , ) ( , , )
, ,

( , , )

non ideal ideal

ideal

non ideal

fft P f fft P f
fft P f

fft P f

   
 

 

  



 


  (B.1) 

and the 2D-FFT is defined as: 

( 1)( 1) ( 1)( 1)

1 1

(2 / )

( , ) ( , )    ( 1,..., ; 1,..., )
M N

m q n r

M N

q r

j N

N

X m n x q r W W m M n N

W e 

   

 



  




         (B.2) 

where M and N are the dimensions of the matrix, and ( , )X m n  denotes the DFT of 

( , )x q r . In our examples, we take a step of 10º in the spatial domain, and the matrix will 

be padded to be a 36 by 36 square matrix (as shown in Appendix A), i.e., M = N = 36. 

And both ( , )x q r  and ( , )X m n  should be a matrix with the dimension of 36 by 36.  

 When the environment is symmetrical along the plane with the elevation angle 

o90  , and the dimension N is even, it can be proved that some elements of ( , )X m n  

should be zero when m is even and n is odd. The proof is shown as below. 
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 If we set 2 ,  2 1,  ( , 1,2,..., / 2)m k n t k t N    , then m is even and n is odd. So we 

have: 

 (2 1)( 1) (2 2)( 1)

1 1

(2 ,2 1) ( , )    ( , 1,... / 2)
N N

k q t r

N N

q r

X k t x q r W W k t N   

 

    (B.3) 

By separating the summation operator, we have: 

(2 1)( 1) (2 2)( 1)

1 1

(2 ,2 1) ( , )
N N

k q t r

N N

q r

X k t W x q r W   

 

       (B.4) 

We can separate (B.4) as: 

(2 1)( 1)

1

(2 ,2 1)
N

k q

N q

q

X k t W C 



       (B.5) 

(2 2)( 1)

1

( , )
N

t r

q N

r

C x q r W  



        (B.6) 

For a fixed value of q, (B.6) is a weighted summation of row elements at row q, 

which can be viewed as a constant. Also, the terms (2 / )k j N k

NW e   are the complex roots 

of the unit circle, as shown in Figure B.1.  

 

 

Figure B.1 Points of complex roots at the unit circle. 



158 

If qC  have the value of 1, we will have (2 ,2 1) 0X k t    from the Summation 

lemma:  

( 1)( 1)

1

0,   ( 1,2,..., )
N

k q

N

q

W k N  



       (B.7) 

Due to the symmetrical environment setting, for any 1,2,...,r N , we have: 

(1, ) (19, ),  (2, ) (18, ),..., (9, ) (11, )x r x r x r x r x r x r    (B.8) 

Therefore, qC  have the value: 

at the upper unit circle: 1 19 2 18 9 11,  ,...,  C C C C C C       (B.9) 

at the lower unit circle: 20 36 27 29,...,  C C C C        (B.10) 

10C  and 28C  are at the positive axis and negative axis, respectively  (B.11) 

And (B.5) can be expanded as the following summation of 8 terms in 4 lines: 

9 18
(2 1)( 1) (2 1)( 1)

2 11

(2 1)(1 1) (2 1)(19 1)

1 19

(2 1)(10 1) (2 1)(28 1)

10 28

27 36
(2 1)( 1) (2 1)( 1)

20 29

(2 ,2 1)

k q k q

N q N q

q q

k k

N N

k k

N N

k q k q

N q N q

q q

W C W C

W C W C
X k t sum

W C W C

W C W C

   

 

   

   

   

 





 

  







 

 

    (B.12) 

The 4 terms in the center cancel out to be zero; while the first line and the 4
th

 line also 

cancel out to be zero. Therefore (2 ,2 1)X k t   will becomes zero value. 

Thus   2 AUT , ,idealfft P f   in (B.1) will be 0 (0 / 0)  value, which should be zero. 

But N/A value was generated in MATLAB due to the numerical error. To conduct the 

2D-IFFT of the matrix, we manually set those N/A values to be zero, which they should 

be. 
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