Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1999

mpiJava: an object-oriented Java interface to MPI

Mark Baker

Syracuse University

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Geoftrey C. Fox

Syracuse University, Northeast Parallel Architectures Center

Sung Hoon Ko
Syracuse University, Northeast Parallel Architectures Center, shko@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac
b Part of the Computer Sciences Commons

Recommended Citation

Baker, Mark; Carpenter, Bryan; Fox, Geoffrey C.; and Ko, Sung Hoon, "mpiJava: an object-oriented Java interface to MPI" (1999).
Northeast Parallel Architecture Center. 7.

https://surface.syr.edu/npac/7

This Working Paper is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted
for inclusion in Northeast Parallel Architecture Center by an authorized administrator of SURFACE. For more information, please contact

surface@syr.edu.

https://surface.syr.edu?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/7?utm_source=surface.syr.edu%2Fnpac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

mpiJava: An Object-Oriented
Java interface to MPI

Mark Baker!, Bryan Carpenter?, Geoffrey Fox?,
Sung Hoon Ko? and Sang Lim?

1 School of Computer Science
University of Portsmouth,
Southsea, Hants,

UK, PO4 8JF
Mark.Baker@port.ac.uk
2 NPAC at Syracuse University
Syracuse, New York,

NY 13244, USA
{dbc,gcf,shko,slim}@npac.syr.edu

Abstract. A basic prerequisite for parallel programming is a good com-
munication API. The recent interest in using Java for scientific and en-
gineering application has led to several international efforts to produce a
message passing interface to support parallel computation. In this paper
we describe and then discuss the syntax, functionality and performance
of one such interface, mpiJava, an object-oriented Java interface to MPI.
We first discuss the design of the mpiJava API and the issues associ-
ated with its development. We then move on to briefly outline the steps
necessary to 'port’ mpiJava onto a range of operating systems, includ-
ing Windows NT, Linux and Solaris. In the second part of the paper
we present and then discuss some performance measurements made of
communications bandwidth and latency to compare mpiJava on these
systems. Finally, we summarise our experiences and then briefly men-
tion work that we plan to undertake.

1 Introduction

It is generally recognised that the vast majority of scientific and engineering ap-
plications are written in either C, C++ or Fortran. The recent popularity of Java
has led to it being seriously considered as a good language to develop scientific
and engineering applications, and in particular for parallel computing[1][2][3][4].
Sun’s claims, on behalf of Java, that it is simple, efficient and platform-neutral
- a natural language for network programming - makes it attractive to scien-
tific programmers who wish to harness the collective computational power of
parallel platforms as well as networks of workstations or PCs, with interconnec-
tions ranging from LANSs to the Internet. The attractiveness of Java for scientific
computing is being encouraged by bodies like Java Grande[5]. The Java Grande
forum has been set up to co-ordinate the communities efforts to standardise

many aspects of Java and so ensure that its future development makes it more
appropriate for scientific programmers.

Developers of parallel applications generally use the Single Program Multi-
ple Data (SPMD) model of parallel computing, wherein a group of processes
cooperate by executing identical program images on local data values. A pro-
grammer using the SPMD model has a choice of explicit or implicit means to
move data between the cooperating processes. Today, the normal explicit means
is via message passing and the implicit means is via data-parallel languages,
such as HPF. Although using implicit means to develop parallel applications is
generally thought to be easier, explicit message passing is more often used. The
reasons for this are beyond the scope of this paper, but currently developers can
produce more efficient and effective parallel applications using message passing.

A basic prerequisite for message passing is a good communication API. Java
comes with various ready-made packages for communication, notably an inter-
face to BSD sockets, and the Remote Method Invocation (RMI) mechanism.
Both these communication models are optimised for client-server programming,
whereas the parallel computing world is mainly concerned with ‘symmetric’ com-
munication, occurring in groups of interacting peers.

This symmetric model of communication is captured in the successful Mes-
sage Passing Interface standard (MPI), established a few years ago[6]. MPI
directly supports SPMD model of parallel computing. Reliable point-to-point
communication is provided through a shared, group-wide communicator, instead
of socket pairs. MPI allows numerous blocking, non-blocking, buffered or syn-
chronous communication modes. It also provides a library of true collective op-
erations (broadcast is the most trivial example). An extended standard, MPI 2,
allows for dynamic process creation and access to memory in remote processes.

The existing MPI standards specify language bindings for Fortran, C and
C++. In this article we discuss a binding of MPI 1.1 for Java, and describe an
implementation using Java wrappers to invoke C MPI calls through the Java
Native Interface[8]. The software is publically available from:

http://www.npac.syr.edu/projects/pcrc/mpiJava

1.1 Related work

Early work by two of the current authors on Java MPI bindings is reported
in[9][10]. In these papers we compared various approaches to parallel program-
ming in Java, including sockets and MPI programming. A comparable approach
to creating full Java

MPT interfaces is used by JCI[4], the Java-to-C interface generator. In JCI,
Java wrappers are automatically generated from the C MPI header. This eases
the implementation work, but does not lead to a fully object-oriented API.

MPIJ is a completely Java-based implementation of MPI which runs as part
of the Distributed Object Group Metacomputing Architecture[12] (DOGMA).
Being closely modelled on the MPI-2 C++ bindings, MPLJ implements a large
subset of MPI functionality. MPILJ communication uses native marshalling of

primitive Java types. This technique allows MPIJ to achieve communications
speeds comparable with native MPI implementations. jmpi[13] is an MPI en-
vironment built upon JPVM][14], a Java-based implementation of PVM. jmpi,
offers a full Java API to MPI 1.1 as well as features such as thread safety and
multiple communication end-points per task. jmpi is a pure Java MPI environ-
ment, but is complicated by the need to call JPVM methods. Another recently
announced Java MPI interface, called JavaWMPI[15], is built upon the Win-
dows MPI environment WMPI[20]. JavaWMPI has a very similar in structure
to mpiJava, but the syntax of the interface is less object-oriented and a proce-
dural method is used to perform polymorphism between Java datatypes.

MPI Software Technology, Inc. has also announced their intention to deliver a
commercial Java interface to MPI called JMPI[16]. Java implementations of the
related PVM message-passing environment have been reported by Yalamanchilli
et. al.[17] and The MPI Forum[6]. Many of the above-mentioned groups, as part
of the Java Grande forum activities, have recently published a position paper[18]
in an attempt to standardise on a single APL.

1.2 Overview of this article

First we outline the mpiJava API and describe various special issues that arise
in Java. Implications of object serialization are also explored briefly as are the
difficulties due to the lack of true multidimensional arrays in Java.

This discussion is followed by a description of an implementation of the pro-
posed Java binding through a set of wrappers that use the JNI to call existing
MPI implementations. The virtues and problems of this implementation strat-
egy are discussed, and results of tests and benchmarks on Solaris, Windows NT
and Linux are presented.

2 Introduction to the mpiJava API

The MPI standard is explicitly object-based. The C and Fortran bindings rely
on ‘opaque objects’ that can be manipulated only by acquiring object handles
from constructor functions, and passing the handles to suitable functions in the
library. The C++ binding specified in the MPI 2 standard collects these objects
into suitable class hierarchies and defines most of the library functions as class
member functions. The mpiJava API follows this model, lifting the structure of
its class hierarchy directly from the C++ binding. The major classes of mpiJava
are illustrated in Figure 1.

The class MPI only has static members. It acts as a module containing global
services, such as initialization of MPI, and many global constants including the
default communicator COMM_WORLD.

The most important class in the package is the communicator class Comm. All
communication functions in mpiJava are members of Comm or its subclasses. As
usual in MPI, a communicator stands for a ’collective object’ logically shared

package mpi

by a group of processors. The processes communicate, typically by addressing
messages to their peers through the common communicator.

Another class that is important for the discussion below is the Datatype
class. This describes the type of the elements in the message buffers passed to
send, receive, and all other communication functions. Various basic datatypes
are predefined in the package. These mainly correspond to the primitive types

Cartcomm

Graphcomm

---- MPI

I

I

I

I

Lo

; Group

I

: I ntracomm
I

+--4 Comm —

I

I

4 Intercomm
I

:— - -1 Datatype

I

I

I

I

r--1 Status

I

I

I

I

' - --| Request Prequest

Fig. 1. Principal classes of mpiJava

of Java, shown in Figure 2.

The standard send and receive operations of MPI are members of Comm with

interfaces:

MPI datatype

Java datatype

MPI.BYTE
MPI.CHAR
MPI.SHORT
MPIL.BOOLEAN
MPILINT
MPI.LONG
MPILFLOAT
MPI.DOUBLE
MPI.PACKED

byte
char
short
boolean
int
long
float
double

Fig. 2. Basic datatypes of mpiJava

public void Send(Object buf, int offset, int count, Datatype
datatype, int dest, int tag)

public Status Recv(Object buf, int offset, int count, Datatype
datatype, int source, int tag)

In both cases the actual argument corresponding to buf must be a Java array.
In the current implementation they must be arrays with elements of primitive
type. By implication they must be one-dimensional arrays, because Java 'mul-
tidimensional arrays’ are really arrays of arrays. In these and all other mpiJava
calls, the buffer array argument is followed by an offset that specifies the element
of in array where the message actually starts.

2.1 Special features of the Java binding

The mpiJava API is modelled as closely as practical on the C++ binding defined
in the MPT 2.0 standard (currently we only support the MPI 1.1 subset). A num-
ber of changes to argument lists are forced by of the restriction that arguments
cannot be passed by reference in Java. In general outputs of mpiJava meth-
ods come through the result value of the function. In many cases MPI functions
return more than one value. This is dealt with in mpiJava in various ways. Some-
times an MPI function initializes some elements in an array and also returns a
count of the number of elements modified. In Java we typically return an array
result, omitting the count. The count can be obtained subsequently from the
length member of the array. Sometimes an MPI function initializes an object
conditionally and returns a separate flag to say if the operation succeeded. In
Java we return an object handle which is null if the operation fails. Occasion-
ally an extra field is added to an existing MPI class to hold extra results - for
example the Status class has an extra field, index, initialized by functions like
Waitany. Rarely none of these methods work and we resort to defining auxilliary
classes to hold multiple results from a particular function. In another change to
C++, we often omit array size arguments, because they can be picked up within
the wrapper by reading the length member of the array argument.

As a result of these changes mpiJava argument lists are often more concise
than the corresponding C or C++ argument lists.

Normally in mpiJava, MPI destructors are called by the Java finalize
method for the class. This is invoked automatically by the Java garbage col-
lector. For most classes, therefore, no binding of the MPI_class FREE function
appears in the Java API. Exceptions are Comm and Request, which do have ex-
plicit Free members. In those cases the MPI operation could have observable
side-effects (beyond simply freeing resources), so their execution is left under
direct control of the programmer.

// Simple program
import mpi.*;

class Hello {
static public void main(String[] args){
MPI.Init (args);
int myrank = MPI.COMM_WORLD.Rank() ;
if (myrank == 0)}

char [] message = "Hello, there".toCharArray() ;
MPI.COMM_WORLD.Send (message,0,message.length, MPI.CHAR, 1, 99);
} else {

char [] message = new char [20] ;
MPI.COMM_WORLD.Recv(message, 0, 20, MPI.CHAR, 0, 99) ;
System.out.println("received:" + new String(message) + ":");

}
MPI.Finalize();
}
}

Fig. 3. Minimal mpiJava program (run in two processes)

2.2 Derived datatype vs Object serialization

In MPI new derived types of class Datatype can be created using suitable library
functions. The derived types allow one to treat contiguous, strided, or indirectly
indexed segments of program arrays as individual message elements. The corre-
sponding array subsections can then be communicated in a single function call,
potentially exploiting any special hardware or software the platform provides for
exchanging scattered data between user space and the communication system.
Currently mpiJava provides all the derived datatype constructors of stan-
dard MPI, with one limitation: it places significant restrictions on its binding
of MPI_TYPE STRUCT. In C or Fortran this function can be used to describe
an entity combining fields of different primitive (or derived) type. Because of
the assumption that buffers are one-dimensional arrays with elements of prim-
itive type, mpiJava imposes a restriction that all the types combined by its
Datatype.Struct member must have the same base type, which must agree
with the element type of the buffer array. Also mpiJava does not provide an
analogue of MPI_BOTTOM buffer address, or the MPI_ADDRESS function for finding
offsets relative to this absolute member base. In C or Fortran these functions
allow buffers to include fields from separately declared variables or arrays, but
the mechanism does not sit well with the pointer-free Java language model.
Approaches based on the MPI derived datatype model do not seem to be the
best way to alleviate this restriction. A better option is probably to exploit the

run-time type information already provided in Java objects. We are developing
a version of mpiJava that adds one new predefined datatype:

MPI.Object

A message buffer can then be an array of any serializable Java objects. The
objects are serialized automatically in the wrapper of send operations, and un-
serialized at their destination.

The absence of true multi-dimensional arrays in Java limits another use of
derived data types. In MPI the MPI_TYPE_VECTOR function creates a derived
datatype representing a strided section of an array. In C or Fortran this strided
section can be identified with a section of a multi-dimensional array. It could
describe, say, an edge of the local patch of a two-dimensional distributed array.
In Java there is no equivalence between a multi-dimensional array and a contigu-
ous patch of memory, or a one-dimensional array. The programmer may choose
to linearize all multi-dimensional arrays in the algorithm, representing them
as one-dimensional arrays with suitable index expressions. In this case derived
datatypes can be used to send and receive sections of the array. Alternatively
the programmer may use Java arrays of arrays to represent multi-dimensional
arrays. This simplifies the index arithmetic in the program. Sections of the array
are then explicitly copied to one-dimensional buffers for communication. The
latter option seems to be more popular with programmers.

Although, for reasons of conformance of with MPI standards, we expect
to continue supporting derived datatypes in mpiJava, their value in the Java
domain is less clear-cut than in C or Fortran. Allowing serializable objects as
buffer elements is probably a more powerful facility.

3 mpiJava implementations on PC Platforms

3.1 Introduction

As Javais a platform-neutral language there is much interest in "porting’ mpiJava
to PC-based systems, in particular Windows NT and Linux. To ’port’ mpiJava
onto a PC environment it is necessary to have a native MPI library, a version
of the Java Development Toolkit (JDK) and a C compiler. mpiJava consists of
two main parts: the MPI Java classes and the C stubs that binds the MPI Java
classes to the underlying native MPI implementation. We create these C stubs
using JNT - the means by which Java can call and pass parameters to and from
a native API. Figure 4 provides a simple schematic view of the software layers
involved.

To ’port’ mpiJava onto a new platform, generally two steps need to be un-
dertaken:

— Create a native library out of the compiled JNI C stubs.

— Compile MPI Java in class libraries - ensuring that the correctly named stub
library is loaded by the Java System.loadLibrary ("stublib") call in the
main source file MPI. java.

MPIprog.java

!

Import mpi.* ;

V

JNI C Interface

!

Native Library (MPI)

Fig. 4. Software Layers

The development and testing of mpiJava was undertaken on various Sun and
SGI UNIX platforms using MPICH. As interfacing Java to MPI is not always
trivial, in earlier implementation we often saw low-level conflicts between the
Java runtime and the interrupt mechanisms used in the MPI implementations.
The situation is improving as the JDK matures, in particular version 1.23 allows
the use of green or native threads, which have eliminated the interrupt problem
that we encountered with earlier releases of the JDK. mpiJava is now stable on
NT platforms using WMPI and JDK 1.1 or later as well as UNIX platforms
using MPICH and JDK 1.25.

3.2 Windows NT

To test mpiJava under Windows NT we had the choice of a number of MPI im-
plementations to pick from[19]. We chose WMPI from the Instituto Supererior
de Engenharia de Coimbra, Portugal. WMPI is a full implementation of MPI for
Microsoft Win32 platforms. WMPI is based on MPICH and includes a p4[21]
device standard. P4 provides the communication internals and a startup mech-
anism. The WMPI package is a set of libraries (for Borland C++, Microsoft
Visual C++ and Microsoft Visual FORTRAN). The release of WMPI provides
libraries, header files, examples and daemons for remote start-up. WMPI can
co-exist and interact with MPICH/ch_p4 in a cluster of mixed UNIX and Win32
platforms. WMPI is still under development and is freely available.

mpiJava under WMPI: To create a release of mpiJava for WMPI the fol-
lowing steps were undertaken:

— Step 1 - Compile the mpiJava JNI C interface into a Win32 Dynamic Link
Library (mpiJava.dll).

— Step 2 - Modify the name of the library loaded by the mpiJava interface
(MPI. java) to that of the of the newly compiled library.

— Step 3 - Compile the Java MPI interface into class libaries.

— Step 4 - Create a JNI interface to WMPIL. This was necessary as under
WMPI a master process is first spawned. Its purpose is to first read in a job
configuration file and use the information within it to set up and run the
actual MPT processes. An idiosyncrasy of WMPI is that all MPI processes
must have a file name with the extension .EXF. This led to the need to
produce a JNI to WMPI so that the JVM was loaded and the 'main’ method
of mpiJava Java class started.

3.3 Linux

At the time of writing this paper, our attempts to 'port’ mpiJava to Linux are in
progress. We are currently experiencing problems similar to those encountered
during our early attempts to create the interface on Solaris, mentioned in sec-
tion 3.1 . Sun’s releases the JDK for Solaris and NT platforms first. On other
platforms, such as Linux, it is necessary for developers to 'port’ the JDK. The
most recent release of the JDK for Linux is 1.1.7 and this is version is known to
be the cause of our problems. It is anticipated that JDK 1.2 will be available for
Linux shortly and that we will be able to report our experiences with Linux at
the IPPS/SPDP 99 workshop in April 1999.

3.4 Functionality Tests

An integral part of the development of this project was to produce or translate
a number of basic MPI test codes to mpiJava. An obvious starting point was
the C test suite originally developed by IBM . This suite had been modified to
comply fully with the MPI standard and to be compatible with the MPICH. The
suite consists of fifty-seven C programs that test the following MPI calls and data
types; collective operations, communicators, data types, environmental inquiries,
groups, point to point and virtual topologies. These codes were all translated to
mpiJava.

Under WMPI and Solaris-MPICH these codes were run either as multiple
processes on a single machine (Shared Memory mode - SM) or as multiple pro-
cesses running on separate machines (Distributed Memory mode - DM). Under
WMPI and Solaris-MPICH all the codes ran in both modes without alterations.
Our experiences using Linux-MPICH will be reported when JDK 1.2 is available
for Linux.

4 Simple Communications Performance Measurement

4.1 Introduction

At this early stage of our project we have decided to restrict performance mea-
surements to those that will give some indication of the basic inter-processor

communications performance. The actual computational performance of each
process is felt to be dependent on the local JVM and associated technologies
used by specific vendors to increase the performance of Java.

4.2 PingPong Communications Performance Tests

In this program increasing sized messages are sent back and forth between pro-
cesses - this is commonly called PingPong. This benchmark is based on standard
blocking MPI_Send/MPI Recv. PingPong provides information about latency of
MPI_Send/MPI Recv and uni-directional bandwidth. To ensure that anomalies in
message timings are minimised the PingPong is repeated many times for each
message size. The codes used for these tests were those developed by Baker and
Grassl[23]. The three existing codes (MPI-C, MPI-Fortran and Winsock-C) were
used for comparison and we implemented an mpiJava version for our purposes.

The main problem encountered running the PingPong code was that under
WMPI on Win32 MPI_Wtime () had been implemented with a millisecond resolu-
tion. It was necessary to adapt each of the codes to use an alternative timer with
microsecond (us) resolution. The performance tests shown in the next section
were run on two similar systems:

— Two dual processor (P6 200 MHz) NT 4 workstations each with 128 MBytes
of DRAM.

— Two dual processor (UltraSparc 200 MHz) Solaris workstations with 256
MBytes of DRAM.

Both systems were connected via 10BaseT Ethernet and the tests were carried
out when there was little network activity and on quiet machines.

4.3 Message Startup Latencies

Wsock (WMPI-C\WMPI-J MPICH-C|{MPICH-J|Linux-C|Linux-J
SM (144.8 us|67.2 ps 161.4 ps |148.7 ps 374.6 us - pus - us
DM|244.9 ps|623.9 ps |689.7 us [679.1 us 961.2 us - ps - us
Table 1. Time for 1 Byte Messages

In Table 1 we show the transmission time in microseconds (s) to send a 1
byte message in each of the environments tested. In SM the mpiJava wrapper
adds an extra 94us (140%) and 226us (152%) compared to WMPI and MPICH
C respectively. In DM the mpiJava wrapper adds an extra 66us (11%) and 282us
(42%) compared to WMPI and MPICH C respectively. The Wsock figures are
those for a WinSock implementation of PingPong benchmark using TCP. Linux
results will be presented during the conference workshop.

Bandwidth (MBwtes/s)

Bandwidth (Log) versus Message Length

{In Shared Memory mode)

a0

O -
5

.1.

5 Key
Pl
qs -
o 2 i
Wzock
a1 =
w05 U mpicHc
n - - - - - - - - - MPICH“J
1 4 16 4 2586 1K 4k 16K 4K 2Bk 104

Message Length (Bytes)

Fig. 5. PingPong Results in Shared Memory (SM) mode

4.4 Results in Shared Memory Mode (Figure 5)

The mpiJava curve mirrors that of C with an almost constant offset up to 8K,
thereafter the curves converge meeting at 256K. Under MPICH, the curves for
C and mpiJava mirror each other in a similar fashion to those under WMPI,
again there is a constant offset and convergence at around 256K.

Under WMPI the peak bandwidth of C is around 65 MBytes/s and mpiJava
is 54 MBytes/s. The peaks occur at around 64K. Under MPICH the bandwidth
is flattening out, but still increasing for C and mpiJava, at the 1M. The actual
rate measured at this point is about 50 MBytes/s.

Clearly the WMPI C code perform best of those tested. The performance of
mpiJava in SM under WMPI is good - it exhibits a fairly constant overhead of
95us up to 2K, thereafter it converges with the C curve. The performance the C
code under MPICH is slightly surprising as the NT and Solaris platforms used for
these tests had similar specifications. It is assumed that the performance reflects
the usage of MPICH rather than a native version of MPI for Solaris. Even so,
the MPICH results for mpiJava show that it exhibits reasonable performance.

Bandwidth (Log) versus Message Length

{In Distributed Memory mode)

Rl
)
17‘? 3
6 2
I
=
= Key
=g
i i
T 03 * WMPI-C
0z _
e
2 O WP
% 01
o5 4 Wsock
.00 = O
sy MPICH-C
ooz 14 _ _
004 MPICH-J

L] L] L] L] L] L] L
Ed 266 ik 4 16k B4 286K 1

o
&

Message Length (Bytes)

Fig. 6. PingPong Results in Distributed Memory (DM) mode

4.5 Results in Distributed Memory Mode (Figure 6)

In DM the differences between the MPI codes is not as pronounced as seen in
SM. Under WMPI the C and mpiJava codes display very similar performance
characteristics throughout the range tested. Under MPICH, there is distinct
performance difference between C and mpiJava, However the difference is much
smaller than in SM and the curves converge at the 4. All curves peak at about
1 MByte/s, which is about 90% of the maximum attainable on 10 Mbps Ethernet
link.

4.6 Overall Results Discussion

In both SM and DM modes mpiJava adds a fairly constant overhead compared
to normal native MPI. In an environment like WMPI, which has been optimised
for NT, the actual overheads of using mpiJava are relatively small at around
100ms. Under MPICH the situation is not quite so good, here the use of mpiJava
introduces an extra overheads of between 250 - 300us.

It should be noted that these results compare codes running directly under
the operating system with those running in the JVM. For example, according to

a single 200 MHz PentiumPro will achieve in excess of 62 Mflop/s on a Fortran
version of LinPack. A test of the Java LinPack code gave a peak performance of
22 Mflop/s for the same processor running the JVM. The difference in perfor-
mance will account for much of the additional overhead that mpiJava imposes on
C MPI codes. From this it can be deduced that the quality and performance of
JVM on each platform will have the greatest effect on the usefulness of mpiJava
for scientific computation.

5 Conclusions

5.1 Overall Summary

We have discussed the design and development of mpiJava - a pure Java interface
to MPI. We have also highlighted the benefits of a fully object-oriented Java
APT compared to those currently available. Our performance tests have shown
that mpiJava should fulfil the needs of MPI programmers not only in terms of
functionality but also in terms of good performance when compared to similar C
MPI programs. Unfortunately, at the time of submission of this paper we have
been unable to test mpiJava under Linux, but we believe that the problems
we have encountered we be overcome soon and we will be able to present our
finding during the Workshop in April 1999. Overall, however, we feel that we
have implemented a well designed, functional and efficient Java interface to MPI.

5.2 Particular Conclusions

— mpiJava provides a fully functional and efficient Java interface to MPI.

— Our performance tests have shown that, in terms of communications speeds,
WMPI on NT out performs MPICH on Solaris.

— When used for distributed computing the current implementation of mpiJava
does not impose a huge overhead on-top of the native MPI interface.

— We have discovered some of the limitation in the usage of JNI. In particular
with MPICH where we had problems with UNIX signals. We are hopeful
that these problems will disappear when we start using JDK 1.2 and native
threads.

— Our performance tests indicate that much of the additional latency that
mpiJava imposes is due to the relatively poor performance of the JVM rather
than the impact of messages traversing additional software layers.

— The syntax of mpiJava is easy to understand and use, thus making it rel-
atively simple for programmers with either a Java or Scientific background
to take up.

— We believe that mpiJava will also provide a popular means for teaching
students the fundamentals of parallel programming with MPIL.

5.3 Future Work

We plan to continue to improve mpiJava with further Java features, such
as object serialization, and also add-in the functionality that has been pro-
posed in MPI-2. We intend to ’port’ mpiJava to a multitude of new MPI
environments, including LAM, Sun MPTI and Globus. We are also planning
a pure-Java MPI environment which does not rely on native MPI services.

References

1. Parallel Compiler Runtime Consortium, HPCC and Java - a report by the
Parallel Compiler Runtime Consortium,
http://www.npac.syr.edu/users/gcf/hpjava3.html, May 1996.

2. G.C. Fox, editor, Java for Computational Science and Engineering -

Simulation and Modelling II, volume 9(11) of Concurrency: Practice and Experience,
November 1997.

3. G.C. Fox, editor, ACM 1998 Workshop on Java for High-Performance Network
Computing, Palo Alto, February 1998, Concurrency: Practice and Experience, 1998.

4. V. Getov, S. Flynn-Hummel, and S. Mintchev. High-Performance parallel program-
ming in Java: Ezploiting native libraries, In ACM 1998 Workshop on Java for High-
Performance Network Computing. Palo Alto, February 1998, Concurrency: Practice
and Experience, 1998. To appear.

5. Java Grande Forum - http://www. javagrande.org/

6. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
University of Tennessee, Knoxville, TN, June 1995. http://www.mcs.anl.gov/mpi
7. G.C. Fox, editor, Java for Computational Science and Engineering - Stmulation and

Modelling, volume 9(6) of Concurrency: Practice and Experience, June 1997.

8. R. Gordon, Essential JNI: Java Native Interface, Prentice Hall, 1998.

9. D.B. Carpenter, Y. Chang, G.C. Fox, D. Leskiw, and X. Li, Ezperiments with HP-
Java Concurrency: Practice and Experience, 9(6):633, 1997.

10. D.B. Carpenter, Y. Chang, G.C. Fox, and X. Li, Java as a language for scientific
parallel programming, In 10th International Workshop on Languages and Compilers
for Parallel Computing, volume 1366 of LNCS, pages 340-354, 1997.

11. S. Mintchev and V. Getov, Towards portable message passing in Java: Binding
MPI, Recent Advances in MPI and PVM, Editors, M. Bubak, J. Dongarra and J.
Wasniewski, volume 1332 of LNCS pages 135 - 142, Springer Verlag, 1997.

12. DOGMA - http://zodiac.cs.byu.edu/DOGMA/

13. K. Dincer and K. Ozbas, jmpi and a Performance Instrumentation Analysis and
Visualization Tool for jmpi, 1st UK Workshop on Java for High Performance Network
Computing, Southampton, UK, September 1998.

14. A.J. Ferrari, JPVM: Network parallel computing in Java, In ACM 1998 Work-
shop on Java for High-Performance Network Computing. Palo Alto, February 1998,
Concurrency: Practice and Experience, 1998. To appear.

15. P. Martin, L.M. Silva and J.G. Silva, A Java Interface to MPI, Proceeding of
the 5th European PVM/MPI Users’ Group Meeting, Liverpool UK, September 1998
WMPI - http://dsg.dei.uc.pt/w32mpi/

16. G. Crawford III, Y. Dandass, and A. Skjellum, The JMPI commercial message
passing environment and specification: Requirements, design, motivations, strategies,
and target users, http://www.mpi-softtech.com/publications

17. N. Yalamanchilli and W. Cohen, Communication performance of Java based paral-
lel virtual machines, In ACM 1998 Workshop on Java for High-Performance Network
Computing. Palo Alto, February 1998, Concurrency: Practice and Experience, 1998.
To appear.

18. B. Carpenter, V. Getov, G. Judd, T. Skjellum and G. Fox, MPI for
Java - Position Document and Draft API Specification, November 1998 -
http://www.npac.syr.edu/projects/pcrc/mpiJava

19. M.A. Baker and G.C. Fox, MPI on NT: A Preliminary Evaluation of the Awvail-
able Environments, 12th IPPS & 9th SPDP, LNCS, Jose Rolim (Ed.), Parallel and
Distributed Computing, Springer Verlag, Heidelberg, Germany. ISBN 3-540 64359-1,
April 1998.

20. WMPI - http://dsg.dei.uc.pt/w32mpi/

21. R. Butler and E. Lusk, Monitors, messages, and clusters: The p4 parallel program-
ming system, Parallel Computing, 20:547-564, April 1994.

22. IBM Test Suite - ftp://info.mcs.anl.gov/pub/mpi/mpi-test/ibmtsuite.tar

23. PingPong Benchmarks - http://wuw.dcs.port.ac.uk/ mab/TOPIC/

24. LinPack -
http://performance.netlib.org/performance/html/linpack.data.col0.html

25. Java LinPack - http://www.netlib.org/benchmark/linpackjava/

	Syracuse University
	SURFACE
	1999

	mpiJava: an object-oriented Java interface to MPI
	Mark Baker
	Bryan Carpenter
	Geoffrey C. Fox
	Sung Hoon Ko
	Recommended Citation

	mpiJava: An Object-Oriented Java interface to MPI

