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Abstract

In this paper we show that APP decoding for a linear code C

is optimum not for C, but for a minimum-distance-2 code C which

contains C as a subcode when the codewords of C are transmitted

with equal probability. However, APP decoding is shown to be a­

symptotically optimum for C for high SNR when C is a binary one­

step orthogonolizable code with equiprobable codewords transmitted

over the AWGN channel.
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1. Introduction

In recent years there has been a growing interest in soft de­

cision decoding schemes for error-correcting codes. The intent is

to avoid, in part or in whole, the degradation of communication sys­

tem performance which results when symbol-by-symbol "hard decision"

quantization precedes decoding. In most cases the additional infor­

mation provided by using soft decisions is worth about 2 dB of ad­

ditional coding gain.

Among the soft decision decoding techniques which seek to mini­

mize the probability of symbol error, Massey's APP (a postetiori

probability) decoding [1J is one of the most important. In this

paper we show that APP decoding for a linear code C is optimum not

for C,but for a minirnurn-distance-2 code ~ which contains C as a

subcode when the codewords of C are transmitted with equal probability.

However, APP decoding is shown to be asymptotically optimum for C

for high SNR when C is a binary one-step orthogonolizable code with

equiprobable codewords transmitted over the AWGN channel.
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2. Main Result

In this section we first show that the complexity of the optimum

error symbol decoding rule is independent of the number of parity

checks used and is prohibitve for almost any code. Based on this

optimum decoding rule we then define a new error symbol decoding rule

which is analogous to maximum-likelihood word decoding. We then show

that for a particular case this new decoding rule becomes APP decoding.

Let H be the parity check matrix for an (n,k,d) linear code C

over GF(p), P a prime. Also let B be a Jxn matrix whose rows corre-

spond to J parity checks of C. A codeword £ = (cO' c l ' ... , c 1)n-
is transmitted over a time-discrete memoryless channel with output

alphabet~. The received word is denoted by £ = (rO' r 1 , ... , r n - 1 ) ,

r j E h and its quantized version by ! = (ro ' r1 , ••• , rn - 1 ), rj € GF(p).

- T ~ ~Define § = rB , and let~denote addition over GF(p) andC'x the

additive inverse of x in GF(p). Now let y = (vO' VI' ... , v n - 1 ) and

~ = (wO' WI' .•• , wn- 1 ) be arbitrary vector of Vn , the n-dimentional

vector space over GF(p). Finally, let ~ = (eO' e l , •.. , en-I)'

e. € GF (p), be the error vector, that is, ~ = £ e ~.
J

The decoding problem is: given that a codeword from C was trans-

mitted, and given d B · Ar an , compute an est1rnate em
of the roth error

"symbol e in such a way that the probability that e equals e ism m m

maximized. Now we state the optimum error symbol decoding rule.

Decoding Rule 1: 1\ -Set e = rea, where a € GF (p) maximizesrn m

Pr(e
m

-3-
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where

E(a) = {v, v = r 0 a yB T
f"W m m '.-

We now show that this decoding rule is -equivalent to the op-

timum symbol-by-symbo1 decoding rule, which is:

a € GF(p) maximizes

A
Set c = a, where

m

Pr(c
rn = aIr) = L

f"'o..I

~€G (a)
(2)

A
where c m is the estimate of em and

We demonstrate this equivalence by showing that (1) and (2) are

equal. Define ~ = r - ~ for ~ € Vn and

where

U (a) = {~f~ W € C(a)},
~

We now prove two technical lemmas.

Lemma 1: L
~EC (a)

Pr(~I;E) = E
J:!€U(a)

Pr(ulr).
,.." """'"

Proof: Since r is determined by knowing [, we may write

Pr(f8 ~I!:) =Pr(~I!:). Sincel3=r0~, Pr(M1r) =Pr(!tlr). Now,

since for each element ~EC(a) there is a corresponding element

-4-



1:! = ~0)t € U(a) and vice versa, we may conclude that

L:
~€C(a)

Pr(~1 £) = L Pr(2Ir).
1d EU (a)

Q.E.D.

Lerruna 2: 1:
~€U (a)

Pr(ulr) =
I"0oI I"oJ

1: Pr(vlr).
yEE(a) I"oJ I"oJ

Proof: We prove Lemma 2 by proving that U(a)=E(a) • t\Te first assume

that ~EU(a), that f 8 x, where yEC (a) • Thus and
T - T §.so ~ = Ym=a ?SB = ;(B =

I"oJ

Then ?,Se:E(a) • Now that ~€E(a). Then z =r 0a and T §.we assume ~B =m m

Define w = r 0 z .
'" I"oJ I"0oI

TThen w =a and wB =0.m I"oJ I"oJ
So ~EC(a) and ~EU(a).

Q.E.D.

As a consequence of Lemmasl and 2 we have the following theorem:

Theorem 1: L: Pr(~lf) =
yEE(a)

Now (3) may be written as

L
~EC(a)

( 3)

L
)lEE (a)

Pr(ylr) = L
~e:C(a)

Pr(rlw)Pr(w)/Pr(r) .
I"oJ f'O,J I"oJ '"

(4 )

Since only codewords of C are transmitte~we may write (4) as

L
YEE(a)

Pr(yl!:) = L
~€G (a)

Pr (wi r) •
I"oJ ,...,

So we may conclude that for any given matrix B we have

Pr (e = r t::\ at r) =
In m\.../ I"oJ

L
~€G (a)

An alternative way to see this result is to observe that
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Pr (yl!:) = Pr (~ = r e Xl [) =0 whenever ~ = ~ e ~ I. c. This also shows

that the complexity of calculating Pr(em = rmE)a1r) is O(min(pk,pn-k»[2]

and it is independent of the given matrix B. This complexity of de-

coding is prohibitive for almost any code. We now modify Decoding

Rule 1 in order to decrease its complexity. From the proof of Lemmas

1 and 2 we know that we may write Pr(~1 r) = P(~ = rSyl r) where

y€E(a) and ~ = £e X € C(a). Since the channel is memoryless we have

n-l
Pr(xlr) = 'IT

i=O

n-l
= iT

i=O

Pr(r.1 w.) (Pr(w)/Pr(r»1 1. /'OoJ /'OoJ

(Pr (w. I r . ) Pr (r . ) /Pr (w. ) ) (Pr (w) /Pr (r) )
111 1 ~ ~

where ~ = [ep)l. We note that Pr(w.lr.) = Pr(r. t:'w.lr.) = Pr(v.lr.).
1 ~ 1 ~ 1 1 ~ 1

Thus (1) may be written as:

or

Pr (e =r Cl al r) =m m\:lf'Oo.I t"o.J

n-l
L (iT Pr(v.1 r. )Pr(r. )/Pr(r.C\f7.» (Pr(~)/Pr(r»1 1 1 i\Jv 1 ~ f'Oo.I ~

y€E(a) i=O

n-l
Pr(e =r Gal r)=R(r) L ('If Pr(v.lr.)/Pr(r.<9v.»Pr(rev) (5)

m m ~ - yEE(a) i=O 1 1 1 1 ~-

where

n-l
R(!:) = 1T

j=O
Pr (r · ) /Pr (r) ,J ~

and if the codewords of Care equiprobable and B=H, (5) may be

written as

-6-



Pr(e =r ~ a1 r)m m"-/ - L
v€E(a)
~

n-l
11"

i=O
Pr(v.1 r.).

1. 1.
(6)

Based on (6) we define the following decoding rule:

Decoding Rule 2: 1\ - eSet e =r - a, where a € GF(p) maximizes
m rn

L
~EE(a)

n-l
11'

i=O
Pr (v. I r. ) •

1. ~
(7)

The reader should note the analogy between Decoding Rule 2 and

maximum-likelihood word decoding. Using arguments similar to those

used in the proof of Theorem 1 we can prove the following:

Theorem 2:

n-1
E 7T

YEE(a) i=O
Pr(v.' r.) =

1. ~

n-1
L 7T

we:C(a) i=O,....,

Pr(w.1 r .. ).
1. ~

(8)

Now let C be the linear (n,k,d) code over GF(p) defined by the

matrix B, that is, ~ € C if and only if !BT=Q. Theorem 2 shows that

the performance of a decoder which implements Decoding Rule 2 is equal

to the performance of a decoder which implements the optimum syrnbol-by­

symbol decoding rule for C whenever the codewords of C are transmitted

with equal probability. We note that C is a subcode of C and thus

d ~ d and k ~ k. Since the complexity of calculating (7) is O(min(pk,pn-k)

and d ~ d, it appears that Decoding Rule 2 may be more complex than,

and yields an inferior performance to, Decoding Rule 1. However,

we will show that when the parity check corresponding to the rows of

thB are orthogonal on the m position, Decoding Rule 2 is the same as

-7-



Massey's original APP decoding rule (APPDR) which has complexity

O(Jn} [1J. To show this we let Q.={ jl' j2' ••• , jp. }, lsjsJ,
J J

be the set of positionschecked by the jth row of B, excluding the

roth position. Since the parity checks corresponding to the rows of

B are orthogonal in the roth position, we know that Q.nQ. = ~ for
J ~

i~j, l:5i,j~J. Now let

and

S.=
J

F.
J

E
i=l

b. r. G)r ,
J. J.. m

1. 1.

b. E: GF (p) ,
Ji

M.= {x= (x. ,
J "J ) 1

... ,
F.

J
x . ) I x. ~ GF (p), A b. x .

J F . Ji i=l Ji J i
)

=s·0 r 0aLJ m

We now define APPDR in terms of our formulation.

APPDR: Set ~ = r 1"::\ a where a E GF (p) maximizesrn rn \:,.J ,

Pr (x =r e a I r )m m In

J
1f (

j=l

F.
J

r "IT

xEM. i=l
"J J

Pr (x. f r. ).
J · J ·1. 1.

(9)

Since Q.nQ.=~ for i~j, it is easily seen that (7) and (9) are equal.
J 1

When the rows of B correspond to parity checks orthogonal on the

roth position,then d=2. Thus the performance of an APP decoder is the

same as the performance of the optimum symbol-by-syrnbol decoder for

C, with d=2, whenever the codewords of Care equiprobable. However,

when a binary code C is transmitted over the AWGN channel and J=d-l,

the APP decoder is asymptotically optimum for high SNR. This is

obtained as follows: from (8) and [3J we may conclude that PAPp 4SNR+OO),

-8-



the asymptotic probability of error of the mth bit for APPDR, is

given by

where em is the minimum Hamming weight of vectors in C(l), N(Gro ) the

number of codewords of weight em in C(l), R=k/n, Yb=Eb/No the SNR per

transmitted digit of information and

It is easily seen that 0 =J+l. Thus for J=d-l, e =d andm m

which is proportional to the asymptotic behavior of the probability

of error of the mth bit for the optimum symbol-by-syrnbol decoding rule

for C whenever its codewords are transmitted over the AWGN channel

with equal probability. [3J
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3. Simulation Results

In this section we present performance curves for the (21,11)

binary projective geometry code transmitted over the AWGN channel for

APP decoding and maximum-radius decoding [4J, both using five ortho-

gonal parity checks, their iterative extensions [4J, majority logic

decoding and optimum symbol-by-symbol decoding. The APP decoder and the

maximum radius decoder with the demodulation function

[

1,
p(x} = COS (1TX),

-1,

~~o

o<x<l,
l~x [4J

are asymptotically optimum for high SNR. Figures 1 and 2 show the

bit-error-rate and the word-error-rate performance respectively. The

dotted curve in Figure 2 shows the asymptotic behavior of optimum

decoding [5J.

The APP decoding rule is a function of the channel SNR. However,

as Figures 1 and 2 show for the (21,11) PG code transmitted over the

AWGN channel, maximum radius decoding, which is fixed and thus indepen-

dent of the channel SNR, gives almost the same performance as APP de­

coding when both decoders use the same five orthogonal parity checks.

This make maximum-radius decoding very attractive for practical ap-

plications.
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Figure 1:

Bit Error Rate of the

(21,11) P.G. Code over the AWGN Channel

(Antipodal Signalling)
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Figure 2:

Word Error Rate of the

(21,11) P.G. Code over the AWGN Channel

(Antipodal Signalling)
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