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Fortran 90D/HPF Compiler for Distributed Memory MIMD Computers:Design, Implementation, and Performance Results�Zeki Bozkusy, Alok Choudhary, Geo�rey Fox, Tomasz Haupt, and Sanjay RankaNortheast Parallel Architectures Center3-201, Center for Science and TechnologySyracuse UniversitySyracuse, NY 13244-4100fzbozkus, choudhar, gcf, haupt, rankag@npac.syr.eduApril 1, 1993AbstractFortran 90D/HPF is a data parallel language with special directives to enable users to specifydata alignment and distributions. This paper describes the design and implementation of aFortran90D/HPF compiler. Techniques for data and computation partitioning, communicationdetection and generation, and the run-time support for the compiler are discussed. Finally,initial performance results for the compiler are presented which show that the code producedby the compiler is portable, yet e�cient. We believe that the methodology to process datadistribution, computation partitioning, communication system design and the overall compilerdesign can be used by the implementors of HPF compilers.�This work was supported in part by NSF under CCR-9110812 (Center for Research on Parallel Computation)and DARPA under contract # DABT63-91-C-0028. The content of the information does not necessarily reect theposition or the policy of the Government and no o�cial endorsement should be inferred.yCorresponding Author: Zeki Bozkus, NPAC, 111 College Place, Rm. 3-201, Syracuse University, Syracuse, NY13244-4100 1



1 IntroductionDistributed memory multiprocessors are increasingly being used for providing high performancefor scienti�c applications. Distributed memory machines o�er signi�cant advantages over theirshared memory counterparts in terms of cost and scalability, though it is widely accepted thatthey are di�cult to program given the current status of software technology. Currently, distributedmemory machines are programmed using a node language and a message passing library. Thisprocess is tedious and error prone because the user must perform the task of data distribution andcommunication for non-local data access.There has been signi�cant research in developing parallelizing compilers. In this approach,the compiler takes a sequential program, e.g. a Fortran 77 program as input, applies a set oftransformation rules, and produces a parallelized code for the target machine. However, a sequentiallanguage, such as Fortran 77, obscures the parallelism of a problem in sequential loops and othersequential constructs. This makes the potential parallelism of a program more di�cult to detect bya parallelizing compiler. Therefore, compiling a sequential program into a parallel program is nota natural approach. An alternative approach is to use a programming language that can naturallyrepresent an application without losing the application's original parallelism. Fortran 90 [1] (withsome extensions) is such a language. The extensions may include the forall statement and compilerdirectives for data partitioning, such as decomposition, alignment, and distribution. Fortran 90 withthese extensions is what we call \Fortran 90D", a Fortran 90 version of the Fortran D language [2].We developed the Fortran D language with our colleagues at Rice University. There is an analogousversion of Fortran 77 with compiler directives and other constructs, called Fortran 77D. Fortran Dallows the user to advise the compiler on the allocation of data to processor memories. Recently,theHigh Performance Fortran Forum, an informal group of people from academia, industry and nationallabs, led by Ken Kennedy, developed a language called HPF (High Performance Fortran) [3] basedon Fortran D. HPF essentially adds extensions to Fortran 90 similar to Fortran D directives. Hence,Fortran 90D and HPF are very similar except a few di�erences. For this reason, we call our compilerthe Fortran 90D/HPF compiler.From our point of view, Fortran90 is not only a language for SIMD computers [4, 5], but itis a natural language for specifying parallelism in a class of problems called loosely synchronousproblems [6]. In Fortran 90D/HPF, parallelism is represented with parallel constructs, such as array2



operations, where statements, forall statements, and intrinsic functions. This gives the programmera powerful tool to express the data parallelism natural to a problem.This paper presents the design of a prototype compiler for Fortran 90D/HPF. The compilertakes as input a program written in Fortran 90D/HPF. Its output is SPMD (Single ProgramMultiple Data) program with appropriate data and computation partitioning and communicationcalls for MIMD machines. Therefore, the user can still program using a data parallel language butis relieved of the responsibility to perform data distribution and communication.The goals of this paper are to present the underlying design philosophy, various design choicesand the reasons for making these choices, and to describe our experience with the implementation.That is, in contrast to many other compiler papers which present speci�c techniques to performone or more functions, our goal is to describe the overall architecture of our compiler. We believethat the presented design will provide directions to the implementors of HPF compilers.The rest of this paper is organized as follows. The compiler architecture is described in Section2. Data partitioning, and computation partitioning are discussed in Sections 3, and 4. Section5 presents the communication primitives and communication generation for Fortran 90D/HPFprograms. In Section 6, we present the runtime support system including the intrinsic functions.Some optimization techniques are given in Section 7. Section 8 summarizes our initial experienceusing the current version of the compiler. It also presents a comparison of the performance withhand written parallel code. Section 9 presents a summary of related work. Finally, summary andconclusions are presented in Section 10.2 Compiler System DiagramOur Fortran90D/HPF parallel compiler exploits only the parallelism expressed in the data parallelconstructs. We do not attempt to parallelize other constructs, such as do loops and while loops,since they are used only as naturally sequential control constructs in this language. The foundationof our design lies in recognizing commonly occurring computation and communication patterns.These patterns are then replaced by calls to the optimized run-time support system routines. Therun-time support system includes parallel intrinsic functions, data distribution functions, commu-nication primitives and several other miscellaneous routines. This approach represents a signi�cantdeparture from traditional approaches where a compiler needs to perform in-depth dependency3



analyses to recognize parallelism, and embed all the synchronization and low-level communicationfunctions inside the generated code.Figure 1 shows the components of the basic Fortran 90D/HPF compiler. Given a syntacticallycorrect Fortran90D/HPF program, the �rst step of the compilation is to generate a parse tree. Thefront-end to parse Fortran 90 for the compiler was obtained from ParaSoft Corporation. In thismodule, our compiler also transforms each array assignment statement and where statement intoequivalent forall statement with no loss of information [7]. In this way, the subsequent steps needonly deal with forall statements.The partitioning module processes the data distribution directives; namely, decomposition,distribute and align. Using these directives, it partitions data and computation among processors.Fortran 90D/HPFCodeLexer & ParserPartitioningDependency AnalysisSequentializationand OptimizationCommunication Insertionand OptimizationCode GenerationFortran 77+MPCodeFigure 1: Diagram of the compiler.After partitioning, the parallel constructs in the node program are sequentialized since it will be4



executed on a single processor. This is performed by the sequentialization module. Array operationsand forall statements in the original program are transferred into loops or nested loops. The com-munication module detects communication requirements and inserts appropriate communicationprimitives.Finally, the code generator produces loosely synchronous [6] SPMD code. The generated code isstructured as alternating phases of local computation and global communication. Local computa-tions consist of operations by each processor on the data in its own memory. Global communicationincludes any transfer of data among processors, possibly with arithmetic or logical computationon the data as it is transferred (e.g. reduction functions). In such a model, processes do not needto synchronize during local computation. But, if two or more nodes interact, they are implicitlysynchronized by global communication.3 Data PartitioningThe distributed memory system solves the memory bottleneck of vector supercomputers by havingseparate memory for each processor. However, distributed memory systems demand high localityfor good performance. Therefore, the distribution of data across processors is of critical importanceto the e�ciency of a parallel program in a distributed memory system.Fortran D provides users with explicit control over data partitioning with both data alignmentand distribution speci�cations. We briey overview directives of Fortran D relevant to this paper.The complete language is described elsewhere [2]. The DECOMPOSITION directive is used todeclare the name, dimensionality, and the size of each problem domain. We call it \template" (thename \template" has been chosen to describe \DECOMPOSITION" in HPF [3]). The ALIGNdirective speci�es �ne-grain parallelism, mapping each array element onto one or more elementsof the template. This provides the minimal requirement for reducing data movement. The DIS-TRIBUTE directive speci�es coarse-grain parallelism, grouping template elements and mappingthem to the �nite resources of the machine. Each dimension of the template is distributed in eithera block or cyclic fashion. The selected distribution can a�ect the ability of the compiler to minimizecommunication and load imbalance in the resulting program.The Fortran 90D/HPF compiler maps arrays to physical processors by using a three stagemapping as shown in Figure 2 which is guided by the user-speci�ed Fortran D directives.5
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However, it may not be possible to apply the owner computes rule for every case without extensiveoverhead. The following examples describe how our compiler performs computation partitioning.Example 1 (canonical form) Consider the following statement, taken from the Jacobi relax-ation programforall (i=1:N, j=1:N)& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))In the above example, as in a large number of scienti�c computations, the forall statement canbe written in the canonical form. In this form, the subscript value in the lhs is identical to the foralliteration variable. In such cases, the iterations can be easily distributed using the owner computesrule. Furthermore, it is also simpler to detect structured communication by using this form ( Thiswill be elaborated in Section 5.2.).Figure 3 shows the possible data and iteration distributions for the lhsI = rhsI assignmentcaused by iteration instance I . Cases 1 and 2 illustrate the order of communication and computationarising from the owner computes rule. Essentially, all the communications to fetch the o�-processordata required to execute an iteration instance are performed before the computation is performed.The generated code will have the following communication and computation order.Communications ! some global communication primitivesComputation ! local computationExample 2 (non-canonical form) Consider the following statement, taken from an FFTprogramforall (i=1:incrm, j=1:nx/2)& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)The lhs array index is not in the canonical form. In this case, the compiler equally distributesthe iteration space on the number of processors on which the lhs array is distributed. Hence, thetotal number of iterations will still be the same as the number of lhs array elements being assigned.However, this type of forall statement will result in either Case 3 or Case 4 in Figure 2. Thegenerated code will be in the following order.Communications ! some global communication primitives to read off-processor valuesComputation ! local computationCommunication ! a communication primitive to write the calculated values to off-processors7
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CASE 1: No communicationsFigure 3: I shows the processor on which the computation is performed. lhsI and rhsIshow the processors on which the lhs and rhs of instance I reside.For reasonably simple expressions, the compiler can transform such index expressions into thecanonical form by performing some symbolic expression operations [11]. However, it may not alwaysbe possible to perform such transformations for complex expressions.Example 3 (vector-valued index) Consider the statementforall (i=1:N) A(U(i)) = B(V(i)) +C(i)The iteration i causes an assignment to element A(U(i)), where U(i) may only be known atrun-time. Therefore, if iterations are statically assigned at compile time to various PEs, iteration iis likely to be assigned to a PE other than the one owning A(U(i)). This is also illustrated in cases3 and 4 of Figure 3. In this case, our compiler distributes the computation i with respect to theowner of A(i).Having presented the computation partitioning alternatives for various reference patterns ofarrays on the lhs, we now present a primitive to perform global to local transformations for loopbounds.set_BOUND(llb,lub,lst,glb,gub,gst,DIST,dim) ! computes local lb, ub, st from global onesThe set BOUND primitive takes a global computation range with global lower bound, upperbound and stride. It distributes this global range statically among the group of processors speci�ed8



by the dim parameter on the logical processor dimension. The DIST parameter gives the distribu-tion attribute such as block or cyclic. The set BOUND primitive computes and returns the localcomputation range in local lower bound, local upper bound and local stride for each processor. Thealgorithm to implement this primitive can be found in [7].The other functionality of the set BOUND primitive is to mask inactive processors by returningappropriate local bounds. For example, such a case may arise when the global bounds do notspecify the entire range of the lhs array. If the inputs for this primitive are compile-time constants,the compiler can calculate the local bounds at compile-time.In summary, our computation and data distributions have two implications.� The processor that is assigned an iteration is responsible for computing the rhs expression ofthe assignment statement.� The processor that owns an array element (lhs or rhs) must communicate the value of thatelement to the processors performing the computation.5 CommunicationOur Fortran 90D/HPF compiler produces calls to collective communication routines [12] insteadof generating individual processor send and receive calls inside the compiled code. There are threemain reasons for using collective communication to support interprocessor communication in theFortran 90D/HPF compiler.1. Improved performance estimation of communication costs. Our compiler takes the data dis-tribution for the source arrays from the user as compiler directives. However, any futurecompiler will require a capability to perform automatic data distribution and alignments[13, 14, 15]. Such techniques usually require computing trade-o�s between exploitable par-allelism and the communication costs. The costs of collective communication routines canbe determined more precisely, thereby enabling the compiler to generate better distributionsautomatically.2. Improved performance of Fortran 90D/HPF programs. To achieve good performance, inter-processor communication must be minimized. By developing a separate library of interpro-9



cessor communication routines, each routine can be optimized. This is particularly importantgiven that the routines will be used by many programs compiled through the compiler.3. Increased portability of the Fortran 90D/HPF compiler. By separating the communicationlibrary from the basic compiler design, portability is enhanced because to port the compiler,only the machine speci�c low-level communication calls in the library need to be changed.5.1 Communication PrimitivesIn order to perform a collective communication on array elements, the communication primitiveneeds the following information 1-) send processors list, 2-) receive processors list, 3-) local indexlist of the source array and, 4-) local index list of the destination array.There are two ways of determining the above information. 1) Using a preprocessing loop tocompute the above values or, 2) based on the type of communication, the above information maybe implicitly available, and therefore, not require preprocessing. We classify our communicationprimitives into unstructured and structured communication.Our structured communication primitives are based on a logical grid con�guration of the pro-cessors. Hence, they use grid-based communications such as shift along dimensions, broadcastalong dimensions etc. The following summarizes some of the structured communication primitivesimplemented in our compiler.� transfer: Single source to single destination message.� multicast: broadcast along a dimension of the logical grid.� overlap shift: shifting data into overlap areas in one or more grid dimensions. This isparticularly useful when the shift amount is known at compile time. This primitive uses thatfact to avoid intra processor copying of data and directly stores data in the overlap areas [16].� temporary shift: This is similar to overlap shift except that the data is shifted into atemporary array. This is useful when the shift amount is not a compile time constant. Thisshift may require intra-processor copying of data.� concatenation: This primitive concatenates a distributed array and the resultant array endsup in all the processors participating in this primitive.10



We have implemented two sets of unstructured communication primitives: 1) where the com-municating processors can determine the send and receive lists based only on local information, andhence, only require preprocessing that involves local computations [17], and 2) where to determinethe send and receive lists preprocessing itself requires communication among the processors [18].The primitives are as follows.� precomp read: This primitive is used to bring all non-local data to the place it is neededbefore the computation is performed.� postcomp write: This primitive is used to store remote data by sending it to the processorsthat own the data after the computation is performed. Note that these two primitives requiresonly local computation in the preprocessing loop.� gather: This is similar to precomp read except that preprocessing loop itself may requirecommunication.� scatter: This is similar to postcomp write except that preprocessing loop itself may requirecommunication.5.2 Communication DetectionThe compiler must recognize the presence of collective communication patterns in the computationsin order to generate the appropriate communication calls. Speci�cally, this involves a number oftests on the relationship among subscripts of various arrays in a forall statement. These testsshould also include information about array alignments and distributions. We use pattern matchingtechniques similar to those proposed by Chen [19] and also used by Gupta [20]. Further, we extendthe above tests to include unstructured communication.Consider the following forall statement to illustrate the steps involved in communication detec-tion.FORALL (i1=l1:u1:s1, i2= ..., ...) LHS(f1,f2,...,fn) = RHS1(g1,g2,...,gm) + ...where gi and fj , 1 � i � m, 1 � j � n, are functions of index variables or are indirection arrays.The steps involved in determining a communication pattern are summarized in Algorithm 1.The algorithm �rst attempts to detect structured communication if the arrays are aligned tothe same template. For each array on the RHS, the following processing is performed. Each11



Algorithm 1 (Detecting the communication for the forall statement.)Input: Forall statement with untagged array and array subscriptsOutput: Forall statement with arrays and array subscripts tagged with communication primitives.Method:1. for each RHS array do2. if (is aligned same template(LHS,RHS)) then3. for each subscript gi of RHS do4. �nd fj such that gi and fj are aligned with the same dimension of a template5. if the pair (fj, gi) is in Table 1tag the subscript gi with the corresponding structured communication primitive.6. end do7. end if8. � if an untagged distributed dimension of array reference pattern is in Table 2,tag the RHS array with the unstructured primitives to read RHS before computation.9. end do10. � If a distributed dimension of LHS reference pattern is in Table 2tag the LHS array with the unstructured primitives to write LHS after computation11. � if LHS array is not distributedtag the distributed RHS array with concatenation primitive.subscript of the array is coupled with the corresponding subscript on the LHS array such that bothsubscripts are aligned with the same dimension of the template. For each such pair, the algorithmattempts to �nd a structured communication pattern in that dimension according to Table 1. If astructured communication pattern is found then the subscript on the RHS from this pair is taggedwith indicating the appropriate communication primitive.If any distributed dimension of an array on the RHS is left untagged then the array is markedwith one of the unstructured communication primitives (the third column of Table 2) dependingon the reference pattern given in the second column of Table 2.The algorithm tags the LHS array as postcomp write or scatter according to the reference pat-terns given in Table 2 if one or more of the distributed dimension's subscript is in non-canonicalform, is vector-valued or is unknown at compiler time. Note that any pattern that can not beclassi�ed according to Tables 1 or 2, is marked as unknown (such subscripts involving more thanone forall index, e.g I+J) so that scatter and gather can be used to parallelize any forall statement.12



Table 1: Structured communication primitives based on the relationship between LHSand RHS array subscript reference patterns for block distribution. (c: compile timeconstant, s, d: scalar). Similar structured primitives for cyclic distributions are de�nedbut are not presented here.Steps (lhs,rhs) Comm. primitives1 (i; s) multicast2 (i; i+ c) overlap shift3 (i; i� c) overlap shift4 (i; i+ s) temporary shift5 (i; i� s) temporary shift6 (d; s) transfer7 (i; i) no communication
Table 2: Unstructured communication primitives to read RHS data before the computa-tion is performed and to write non-local LHS data after the computation is performed(f : invertible function, V : indirection array).Steps Reference pattern Comm. primitives to read RHS Comm. primitive to write LHS1 f(i) precomp read postcomp write2 V (i) gather scatter3 unknown gather scatter13



5.3 Communication GenerationHaving recognized the type of communication in each dimension of an array for structured commu-nication or each array for unstructured communication in a forall statement, the compiler needs toperform the appropriate program transformations. We now illustrate these transformations withthe aid of some examples.5.3.1 Structured CommunicationAll the examples discussed below have the following mapping directives.C$ PROCESSORS(P,Q)C$ DISTRIBUTE TEMPL(BLOCK,BLOCK)C$ ALIGN A(I,J) WITH TEMPL(I,J)C$ ALIGN B(I,J) WITH TEMPL(I,J)Example 1 (transfer) Consider the statementFORALL(I=1:N) A(I,8)=B(I,3)The �rst subscript of B is marked as no communication because A and B are aligned in the�rst dimension and have identical indices. The second dimension is marked as transfer.1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st2. call set_DAD(B_DAD,.....) ! put information for B into B_DAD3. call transfer(B, B_DAD, TMP, source=global_to_proc(8), dest=global_to_proc(3))4. DO I=lb,ub,st5. A(I,global_to_local(8)) = TMP(I)6. END DOIn the above code, the set BOUND primitive (line 1) computes the local bounds for computationassignment based on the iteration distribution (Section 4). In line 2, the primitive set DAD isused to �ll the Distributed Array Descriptor (DAD) associated with array B so that it can bepassed to the transfer communication primitive at run-time. The DAD has su�cient informationfor the communication primitives to compute all the necessary information including local bounds,distributions, global shape etc. Note that transfer performs one-to-one send-receive communicationbased on the logical grid. In this example, one column of grid processors communicate with anothercolumn of the grid processors as shown in Figure 4 (a).14



(a) transfer (b) multicastFigure 4: Structured communication on logical grid processors.Example 2 (multicast) Consider the statementFORALL(I=1:N,J=1:M) A(I,J)=B(I,3)The second subscript of B marked as multicast and the �rst as no communication.1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st2. call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st3. call set_DAD(B_DAD,.....) ! put information for B into B_DAD4. call multicast(B, B_DAD, TMP,source_proc=global_to_proc(3), dim=2)5. DO I=lb,ub,st6. DO J=lb1,ub1,st17. A(I,J) = TMP(I)8. END DOLine 4 shows a broadcast along dimension 2 of the logical processor grid by the processorsowning elements B(I; 3) where 1 � I � N (Figure 4 (b).)Example 3 (multicast shift) Consider the statementFORALL(I=1:N,J=1:M) A(I,J)=B(3,J+s)The �rst subscript of array B is marked as multicast and the second subscript is marked astemporary shift. The above communication can be implemented as two separate communicationsteps: multicast along the �rst dimension of logical grid TEMPL and temporary shift along the sec-ond dimension of the logical grid. Alternatively, the two communication patterns can be composedtogether to obtain a better communication primitive such as the multicast shift primitive.call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and stcall set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and stmulticast_shift(B, B_DAD,TMP, source=global_to_proc(3),& shift=s, multicast_dim=1, shift_dim=2) 15



DO I=lb,ub,stDO J=lb1,ub1,st1A(I,J)=TMP(J)END DOEND DOCombining two primitives eliminates the need for creating temporary storage and eliminatessome of intra processor copying, message-packing, and unpacking.5.3.2 Unstructured CommunicationIn distributed memory MIMD architectures, there is typically a non-trivial communication latencyor startup cost. Hence, it is attractive to vectorize messages to reduce the number of startups. Forunstructured communication, this optimization can be achieved by performing the entire prepro-cessing loop before communication so that the schedule routine can combine the messages to themaximum extent. The preprocessing loop is also called the \inspector" loop [21, 22].Example 1 (precomp read) Consider the statementFORALL(I=1:N) A(I)=B(2*I+1)The array B is marked as precomp read since the distributed dimension subscript is written asf(i) = 2 � i+ 1 which is invertible as g(i) = (i� 1)=2.1 count=12 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st3 DO I=lb,ub,st4 receive_list(count)=global_to_proc(f(i))5 send_list(count)= global_to_proc(g(i))6 local_list(count) = global_to_local(g(i))7 count=count+18 END DO9 isch = schedule1(receive_list, send_list, local_list, count)10 call precomp_read(isch, tmp,B)11 count=112 DO I=lb,ub,st13 A(I) = tmp(count)14 count= count+115 END DO 16



The preprocessing loop is given in lines 1-9. Note that this preprocessing loop executes con-currently in each processor. It �lls out the receive list as well as the send list of processors. Eachprocessor also �lls the local indices of the array elements which are needed by that processor.The schedule isch can also be used to carry out identical patterns of data exchanges on severaldi�erent but identically distributed arrays or array sections. The same schedule can be reusedrepeatedly to carry out a particular pattern of data exchange on a single distributed array. In thesecases, the cost of generating the schedules can be amortized by only executing it once. This analysiscan be performed at compile time. Hence, if the compiler recognizes that the same schedule canbe reused, it does not generate code for scheduling but it passes a pointer to the already existingschedule. Furthermore, the preprocessing computation can be moved up as much as possible byanalyzing de�nition-use chains [23]. Reduction in communication overhead can be signi�cant if thescheduling code can be moved out of one or more nested loops by this analysis.In the above example, local list (line 6) is used to store the index of one-dimensional array.However, in general, local list will store indices from a multi-dimensional Fortran array by usingthe usual column-major subscript calculations to map the indices to a one-dimensional index.The precomp read primitive performs the actual communication using the schedule. Once thecommunication is performed, the data is ordered in a one dimensional array, and the computation(lines 12-15) uses this one dimensional array.Example 2 (gather) Consider the statementFORALL(I=1:N) A(I)=B(V(I))The array B is marked as requiring gather communication since the subscript is only known atruntime. The receiving processors can know what non-local data they need from other processors,but a processor may not know what local data it needs to send to other processors. For simplicity,in this example, we assume that the indirection array V is replicated. If it is not replicated, theindirection array must also be communicated to compute the receive list on each processor.1 count=12 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st3 DO I=lb,ub,st4 receive_list(count)=global_to_proc(V(i))6 local_list(count) = global_to_local(V(i))7 count=count+18 END DO 17



9 isch = schedule2(receive_list, local_list, count)10 call gather(isch, tmp,B)11 count=112 DO I=lb,ub,st13 A(I) = tmp(count)14 count= count+115 END DOOnce the scheduling is completed, every processors knows exactly which non-local data elementsit needs to send to and receive from other processors. Recall that the task of scheduler2 is todetermine exactly which send and receive communications must be carried out by each processor.The scheduler �rst �gures out how many messages each processor will have to send and receiveduring the data exchange. Each processor computes the number of elements (receive list) andthe local index of each element it needs from all other processors. In schedule2 routine, processorscommunicate to combine these lists (a fan-in type of communication). At the end of this processing,each processor contains the send and receive list. After this point, each processor transmits a listof required array elements (local list) to the appropriate processors. Each processor now has theinformation required to set up the send and receive messages that are needed to carry out thescheduled communication. This is done by the gather primitives.Example 3 (scatter) Consider the statementFORALL(I=1:N) A(U(I))=B(I)The arrayA is marked as requiring scatter primitive since the subscript is only known at runtime.Note that owner computes rule is not applied here. The processor performing the computationknows the processor and the corresponding local-o�set at which the resultant element must bewritten.1 count=12 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st3 DO I=lb,ub,st4 send_list(count)=global_to_proc(U(i))6 local_list(count) = global_to_local(U(i))7 count=count+18 END DO9 isch = schedule3(proc_to, local_to, count)10 call scatter(isch, A, B) 18



Unlike the gather primitive, in this case each processor computes a send list containing processorids and local list containing the local index where the communicated data must be stored. Theschedule3 is similar to schedule2 of gather primitives except that schedule3 does not need to sendlocal index in a separate communication step.The gather and scatter operations are powerful enough to provide the ability to read andwrite distributed arrays with vectorized communication facility. These two primitives are availablein PARTI (Parallel Automatic Runtime Toolkit at ICASE) [21] designed to e�ciently supportirregular patterns of distributed array accesses. The PARTI and other communication primitivesand intrinsic functions form the run-time support system of our Fortran 90D compiler.6 Run-time Support SystemThe Fortran 90D compiler relies on a very powerful run-time support system. The run-time supportsystem consists of functions which can be called from the node programs of a distributed memorymachine.Intrinsic functions support many of the basic data parallel operations in Fortran 90. Theydo not only provide a concise means of expressing operations on arrays, but also identify parallelcomputation patterns that may be di�cult to detect automatically. Fortran 90 provides intrinsicfunctions for operations such as shift, reduction, transpose, and transpose, and matrix multiplica-tion. The intrinsic functions that may induce communication can be divided into �ve categories asshown in Table 3. Table 3: Fortran90D Intrinsic Functions1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Specialcommunication communication routinesCSHIFT DOTPRODUCT SPREAD PACK MATMULEOSHIFT ALL, ANY UNPACKCOUNT RESHAPEMAXVAL, MINVAL TRANSPOSEPRODUCTSUMMAXLOC, MINLOC 19



The �rst category requires data to be transferred using with less overhead structured shiftcommunications operations. The second category of intrinsic functions require computations basedon local data followed by use of a reduction tree on the processors involved in the execution ofthe intrinsic function. The third category uses multiple broadcast trees to spread data. Thefourth category is implemented using unstructured communication patterns. The �fth categoryis implemented using existing research on parallel matrix algorithms [12]. Some of the intrinsicfunctions can be further optimized for the underlying hardware architecture. Our Fortran 90D/HPFcompiler has more than 500 parallel run-time support routines and the implementation details canbe found in [24].Arrays may be redistributed across subroutine boundaries. A dummy argument which is dis-tributed di�erently than its actual argument in the calling routine is automatically redistributedupon entry to the subroutine by the compiler, and is automatically redistributed back to its originaldistribution at subroutine exit. These operations are performed by the redistribution primitiveswhich transform from block to cyclic or vice versa.When a distributed array is passed as an argument to some of the run-time support primitives,it is also necessary to provide information such as its size, distribution among the nodes of thedistributed memory machine etc. All this information is stored into a structure which is calleddistributed array descriptor (DAD) [24].In summary, parallel intrinsic functions, communication routines, dynamic data redistributionprimitives and others are part of the run-time support system.7 OptimizationsSeveral types of communication and computation optimizations can be performed to generate a moree�cient code. In terms of computation optimization, it is expected that the scalar node compilerperforms a number of classic scalar optimizations within basic blocks. These optimizations includecommon subexpression elimination, copy propagation (of constants, variables, and expressions),constant folding, useless assignment elimination, and a number of algebraic identities and strengthreduction transformations. However, to use parallelism within the single node (e.g. using attachedvector units), our compiler propagates information to the node compiler using node directives.Since there is no data dependency between di�erent loop iteration in the original data parallel20



constructs such as forall statement, vectorization can be performed easily by the node compiler.Our compiler performs several optimizations to reduce the total cost of communication. Someof communication optimizations [19, 25, 26] are as follows.1. Vectorized communication. Vectorization combines messages for the same source and destina-tion into a single message to reduce communication overhead. Since we are only parallelizingarray assignments and forall statements in Fortran 90D/HPF, there is no data dependencybetween di�erent loop iterations. Thus, all the required communication can be performedbefore or after the execution of the loop on each of the processors involved.2. Eliminate unnecessary communications. In many cases, communication required for twodi�erent operands can be replaced by their union. For example, the following code mayrequire two overlapping shifts. However, with a simple analysis, the compiler can eliminatethe shift of size 2.FORALL(I=1:N) A(I)=B(I+2)+B(I+3)3. Reuse of scheduling information. Unstructured communication primitives are required bycomputations which require the use of a preprocessor. As discussed in Section 5.3.2, theschedules can be reused with appropriate analysis.4. Code movement. The compiler can utilize the information that the run-time support routinesdo not have procedural side e�ects. For example, the preprocessing loop or communicationroutines can be moved up as much as possible by analyzing de�nition-use chains [23]. Thismay lead to moving of the scheduling code out of one or more nested loops which may reducethe amount of communication required signi�cantly. We are incrementally incorporatingmany more optimizations in the compiler.8 Experimental ResultsA prototype compiler is complete (it was demonstrated at Supercomputing'92). In this section, wedescribe our experience in using the compiler. 21



8.1 Portability of the Fortran 90D/HPF CompilerOne of the principal requirements of the users of distributed memory MIMD systems is some\guarantee" of the portability for their code. Express parallel programming environment [27]guarantees this the portability on various platforms including, Intel iPSC/860, nCUBE/2, networksof workstations etc. We should emphasize that we have implemented a collective communicationlibrary which is currently built on the top of Express message passing primitives. Hence, in orderto change to any other message passing system such as PVM [28] (which also runs on severalplatforms), we only need to replace the calls to the communication primitives in our communicationlibrary (not the compiler). However, it should be noted that a penalty must be paid to achieveportability because portable routines are normally built on top of the system routines. Therefore,the performance also depends on how e�cient are the communication primitives on the top of whichthe communication library is built.As a test application we use Gaussian Elimination, which is a part of the FortranD/HPFbenchmark test suite [29]. Figure 5 shows the execution times obtained to run the same compilergenerated code on a 16-node Intel/860 and nCUBE/2 for various problem sizes. Due to spacelimitations, we do not present performance of many other programs, and some of them can befound in [30].8.2 Performance EvaluationTable 4 shows a comparison between the performance of the hand-written Fortran 77+MP codewith that of the compiler generated code. We can observe that the performance of the compilergenerated code is within 10% of the hand-written code. This is due to the fact that the compilergenerated code produces an extra communication call that can be eliminated using optimizations.However as Figure 6 shows, the gap between the performance of the two codes increases as thenumber of processors increases. This is because the extra communication step is a broadcast whichis almost O(log(P )) for a P processor hypercube system.
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Figure 5: Execution time of Fortran 90D compiler generated code for Gaussian Elimi-nation on a 16-node Intel iPSC/860 and nCUBE/2 (time in seconds).Table 4: Comparison of the execution times of the hand-written code and Fortran 90Dcompiler generated code for Gaussian Elimination. Matrix size is 1023x1024 and it iscolumn distributed.(Intel iPSC/860, time in seconds).Number of PEs1 2 4 8 16Hand Written 623.16 446.60 235.37 134.89 79.48Fortran 90D 618.79 451.93 261.87 147.25 87.4423
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Figure 6: Speed-up against the sequential code (corresponds to Table 4 of the hand-written code and Fortran 90D compiler generated code for Gaussian Elimination).9 Summary of Related WorkThe compilation technique of Fortran 77 for distributed memory systems has been addressed byCallahan and Kennedy [10]. Currently, a Fortran 77D compiler is being developed at Rice [25, 31].Superb [9] compiles a Fortran 77 program into a semantically equivalent parallel SUPRENUMmultiprocessor. Koelbel and Mehrotra [22, 17] present a compilation method where a great dealof e�ort is put on run-time analysis for optimizing message passing in implementation of Kali.Quinn et al. [32, 33] use a data parallel approach for compiling C* for hypercube machines. TheADAPT system [34] compiles Fortran 90 for execution on MIMD distributed memory architectures.The ADAPTOR [35] is a tool that transform data parallel programs written in Fortran with arrayextension and layout directives to explicit message passing. Chen [19, 36] describes general com-piler optimization techniques that reduce communication overhead for Fortran-90 implementationon massivelly parallel machines. Many techniques especially for unstructured communication ofFortran 90D compiler are adapted from Saltz et al. [37, 26, 18]. Gupta et al. [20, 38] use collectivecommunication on automatic data partitioning on distributed memory machines. Due to spacelimitations, we do not elaborate on various other related projects.24
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