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Abstract

Assembling financial instruments such as equities, bonds, options, and other deriva-

tives into a portfolio requires a thorough understanding of how the portfolio will

behave in response to changes of specific economic variables and parameters of the

instruments. With more information about a more diverse set of instruments be-

coming available to traders, it is becoming important to limit the complexity of the

analysis involved. We show how this complexity can be limited by using qualitative

analysis, where the objective is to construct a few good vehicles which can then

be analyzed quantitatively. We illustrate how two qualitative reasoning techniques

– qualitative simulation and qualitative synthesis – are used to design investment

vehicles for risk management purposes. These techniques are currently employed

by a prototype expert that aims at assisting traders solving a risk management

problem called hedging.

Key Words

Qualitative Reasoning (QR), Qualitative Reasoning Techniques, Qualitative Sim-
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1 Introduction

Hedging is a risk management area that is concerned with the design of vehicles

which eliminate losses due to, or generate profits from taking, risks that are asso-

ciated with uncertain events, such as unanticipated changes in currency exchange

rates [9]. A risk management vehicle is created by buying and/or selling instru-

ments, such as: bonds, stocks, and options. It allows a trader to control the balance

between risk and reward, as a function of how the predicted state of the economy

will affect the value of various instruments.

The design of risk management vehicles starts by identifying configurations –

combinations of instruments – that provide some goal payoff-profile (p-p). The

goal p-p specifies what a trader is willing to pay and what s/he is willing to risk to

derive a certain payoff pattern. It is defined based on qualitative assessments of how

the predicted behavior of certain economic variables (e.g., interest rate, oil prices,

demand for orange juice) is likely to affect the value of instruments available in the

marketplace. Many of these assessments are based on current market information

and/or historical trends.

Example: A firm with a loan that is up for renewal in six months
believes that the interest rate will rise from its current level rt to rc,
with a chance it will decline no lower than rf . If the interest rate rises
(declines), the firm will pay a higher (lower) rate on its loan. The firm
therefore defines the ‘cap-floor’ p-p in Figure 1a. This p-p states that
the firm seeks to pay loan rate lc if interest rate rises above rc, and to
take the risk of paying rate lf if interest rate declines below rf .

Solution: One vehicle configuration that provides this p-p is created
by selling one call option on bond B with strike price b1 and buying
one put option on B with strike price b2, b1 < b2 (Figure 1b). A call
(put) option on B gives its buyer the right to buy (sell), and obligates
its seller to sell (buy), B for the agreed upon strike price at some future
expiration date. Hence, if interest rate rises above rc, the price of B
will decline below b2, causing the put to become more valuable as the
firm can gain from selling B for b2. This gain will offset the increase
in loan rate, and the actual loan rate will be lc (Figure 1c). If interest
rate declines, the price of B will rise, making the put worthless. But,
the reduced loan rate will offset, and more, the put’s purchase cost. At
the same time, if interest rate is above rf , the firm will profit from the
cost received for the call sold. If it declines below rf , the call sold will
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be exercised by its buyer, causing a loss to the firm. However, this loss
will be offset by the lower loan rate, and the actual loan rate will be lf
(Figure 1c).

-----------------------------------------------------
INSERT FIGURE 1 ABOUT HERE

-----------------------------------------------------

This example shows that a vehicle configuration is specified in terms of: the

combination of instruments to be purchased and/or sold, the ordinal relation of

these instruments’ strike prices, and the unit proportions to be purchased/sold of

each instrument. Moreover, in order to configure vehicles that provide some goal

p-p, one needs knowledge of the profit&loss pattern (or p-p) provided by each of

the instruments traded in capital markets, and of how to ‘synthesize’ the goal p-p

by permuting the p-p’s of specific instruments.

The problem of configuring vehicles can be characterized by three features.

One, the number of alternative vehicle configurations is combinatorial, given the

thousands of individual instruments available to the trader. Second, the alternative

configurations change over time with the constant issuance of new instruments and

the elimination of matured ones. Last, each instrument may provide different p-p’s

under different market situations, depending on its sensitivity to the one or more

particular economic variables being hedged.

The difficulty that a typical trader faces while configuring vehicles is mainly due

to her/his specialization in only few types of instrument. For example, a trader who

specializes in stocks of the automobile industry may not know enough about how to

manage risk using the variety of other instruments (e.g., bond options, Eurodollar

futures). Without computerized support, s/he is prone to consider only a subset

of the alternative vehicle configurations for a given situation, and thus to make

suboptimal decisions.

In considering a computer-based solution for supporting traders in the configu-

ration of vehicles (and the rest of the hedge design process) it became apparent to

us that the search space of alternative configurations is very large and constantly

changing. Hence, the problem cannot be solved using conventional optimization
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techniques, such as linear programming. Also, pre-storing all possible configu-

rations for selection is not feasible. Thus the configurations must be constructed.

However, given the explosive number of usable instruments, constructing configura-

tions is a combinatorial generate-and-test search problem. It is therefore important

to use good heuristics to constrain the generator.

The earlier example shows that one can use two means (or heuristics) for this

purpose. One is ‘qualitative abstraction’, which allows reasoning about entire

classes of similar instruments (e.g., all call options on bond B with strike price

bi) instead of individual instruments (e.g., a June-93 call on a March-95 T-bond

with $45 strike price). This allows replacing the p-p’s of all individual instruments

of the same type by one qualitative p-p, thus reducing significantly the number of

p-p’s that has to be permuted in order to synthesize the goal p-p. However, such an

abstraction causes lose of useful information. As Figure 1b illustrates, to find the

right ordering of strike prices, the first element in the qualitative p-p of “buy put”

had to be made longer than that in the p-p of “sell call”. Hence, to rediscover some

of the information lost, one ought to know how to manipulate the qualitative p-p’s

used to synthesize the goal p-p. The other means is the use of a qualitative causal

calculus. Specifically, one can predict the situation-specific p-p of an instrument

by qualitatively analyzing causal relationships between economic variables and the

value of that instrument (i.e., “If interest rate rises, bond prices decline, causing

the value of bond puts to ...”). This eliminates the need to pre-store the various

p-p’s that every instrument can provide under different market situations.

What techniques that employ similar means can be used to configure risk man-

agement vehicles? Qualitative reasoning (QR) techniques, which were originally

developed to support the analysis and design of physical systems, seem a natural

choice. These techniques basically emulate the ability of humans to reason about

physical systems using a qualitative causal calculus [8]. More importantly, QR tech-

niques seem suitable because a vehicle can be conceptually analogized to a physical

system. Instruments are elementary components which are ‘connected’ in a certain

way to provide some desired functionality (i.e., goal p-p). The behavior (i.e., value)
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of a vehicle results from the ‘combined’ behaviors of its instrument components,

where the behavior of instruments is characterized by the contingent behavior of

economic variables.

This paper explains how QR techniques are used to solve the problem of con-

figuring risk management vehicles. The paper is organized as follows. Section 2

reviews the role of QR techniques in the analysis and the design of physical systems,

and how this role relates to the problem at hand. Sections 3 and 4 explain and

illustrate how two QR techniques – qualitative simulation and qualitative synthesis

– are used to configure risk management vehicles. Section 5 shows how the use

of these two techniques fits into the overall problem of designing risk management

vehicles.

2 Qualitative Reasoning Techniques

Much of the work on qualitative reasoning (QR) about physical systems (e.g., [4])

relies on the relationships between: structure (or configuration) – a collection of

components connected as a system; behavior – a sequence of states that a system

and its components exhibit over some time-interval; and function – the purpose of

structure in producing the behavior of a system. The behavior of a system results

from interactions between the behaviors of its components. The effects of a change

in the state of one component propagate locally through structural connections

causing a change in the state of other components and of the system as a whole.

On the other hand, the function of a system explains in terms of causality why and

how the structure of a system determines its behavior [6].

One can distinguish between QR techniques that are used to analyze a system,

and ones that are used to construct a system. The goal of QR analysis techniques

is to infer behavior from structure. For example, qualitative simulation [11] accepts

two inputs: a model describing the structure of a system in terms of the parameters

characterizing that system as well as structural connections between them, and the

initial state of parameters in that model. It simulates how changes in the state
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of parameters propagate through structural connections in order to predict the

qualitative transitions that a system will make over time, and to explain in causal

terms how the behavior of that system results from its structure.

The primary goal of QR-based design techniques is to infer the structure of

a system from its function. For example, consider a QR-based technique called

interaction-based invention (Ibis) [13]. The input to Ibis includes knowledge describ-

ing each type of elementary component in some domain in terms of the parameters

characterizing it (e.g., h(V ) for height of fluid in a vat component V ) and the types

of components with which it can interact (i.e., be connected). It also includes some

desired interaction. For example, the interaction [h(V )−h(B)] = [dh(B)/dt], where

B is a bowl component and [ ] denotes the sign of an algebraic expression, states

that the goal is to design a device in which the change in the height of fluid in B

is a function of the difference between the heights of fluid in V and B. Ibis maps

the desired interaction onto all possible chains of interactions between the various

types of components, such that each chain relates the parameters in the desired

interaction (e.g., h(V ), h(B), dh(B)/dt). It selects the shortest chains, each as

a candidate design. As an interaction is a qualitative (or quantitative) relation-

ship between multiple parameters, Ibis then uses a QR analysis technique to test

whether or not a candidate design generates the desired interaction. Apparently,

Ibis uses a generate-and-test approach, which can be inefficient when the number

of types of elementary components is large.

For some design situations, one can specify function in terms of desired behavior.

For example, “cap loan rate”, which is a function of the portfolio, can be specified in

terms of the behavior of loan rate in response to interest rate. This kind of behavior

can be expressed as a qualitative two-dimensional piecewise linear function, which

specifies the input ‘values’ that a system can accept and the corresponding output

‘values’ it should produce. Specifically, if the behavior of each type of elementary

components in a domain can be expressed as a qualitative two-dimensional piecewise

linear function, the idea is to algebraically ‘compose’ the goal behavior from the

behaviors of components. This approach basically identifies components that can
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be connected so that the overall behavior resulting from interactions between their

behaviors according to laws of causality is identical to the desired behavior. One

QR-based technique which applies this approach is called qualitative synthesis [2].

Clearly, deriving structure from behavior is a synthesis (not a selection) problem.

The next two sections explain how QR techniques are used in actuality for

the analysis and the configuration of risk management vehicles. Hereafter, we

shall distinguish between two types of vehicles – generic and compound. A generic

vehicle is created by either selling or buying instruments of a single type, whereas a

compound vehicle is created by selling and/or buying instruments of multiple types.

Given that in some situations both a generic and a compound vehicle can provide

the same p-p (e.g., the p-p of “buy put on stock S” is identical to the p-p of “buy

stock S” combined with “sell call on stock S”), traders usually prefer to first look

for configurations of generic vehicles that provide the goal p-p. A generic vehicle is

simply easier to set up, maintain, track over time, etc.

3 Configuring Generic Vehicles

To understand how generic vehicles can be configured, consider the following ex-

ample.

Example: A firm that plans to issues bonds in order to raise capital
believes that the risk-free interest rate is likely to increase, with a chance
it will decline, prior to the issuance date. As an increase in the interest
rate will higher the yield rate offered on issued bonds, the firm wants to
protect itself against an increase, while preserving the ability to benefit
from a decline in the interest rate. It therefore defines the “cap” p-p in
Figure 2.

Solution: One generic vehicle configuration that provides this p-p is
created by the purchase of put options on some bond B with strike price
bi. An increase in interest rate will cause the price of B to decline below
bi, allowing the firm to profit from selling bonds for bi and to offset the
extra cost of issuing bonds at a higher yield rate. Alternately, a decline
in interest rate will make the put valueless, but allow the firm to issue
bonds at a lower yield rate and make a profit to offset, and more, the
cost paid for the put.
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This example shows that the p-p of a generic vehicle can be derived by qualitatively

analyzing causal relationships between the behavior of the economic variable(s) be-

ing hedged (e.g., interest rate) and the value of the instruments purchased/sold. In

effect, this analysis simulates qualitatively the behavior (i.e., value) of the trader’s

hedged position, as a function of the behavior (i.e., value ) of the purchased/sold in-

struments (i.e., vehicle) and the contingent behavior of the variable(s) being hedged.

Qualitative simulation is one technique that can emulate this kind of analysis.

-----------------------------------------------------
INSERT FIGURE 2 ABOUT HERE

-----------------------------------------------------

3.1 Qualitative Simulation

Qualitative simulation (QSIM) is a QR technique that can derive the behavior of

a system based on that system’s structure [11]. The main ideas behind QSIM are:

(1) the structure of a system can be described by equations modelling structural

connections between the parameters (i.e., continuous functions) characterizing that

system; (2) a change in the state of one parameter propagates to other parameters

through structural connections; (3) the qualitative behavior of a parameter can be

described by the transitions it makes from one state to another (e.g., a change from

an ‘increasing’ state to a ‘steady’ state); and (4) the qualitative behavior of a system

can be described by the qualitative behavior of every parameter characterizing that

system.

QSIM receives as input a qualitative structural model (i.e., a set of qualitative

equations) of a system and the initial state of parameters in that model. The

qualitative state of a parameter is represented by a pair 〈qdir, qval〉, where qdir is

the qualitative direction of change of that parameter’s value (i.e., qdir ∈ {−1, 0, 1}
or {decreasing, steady, increasing}) over qval – a qualitative point or region on

the real-line. Assuming that a system is in equilibrium and that one or more of its

parameters are perturbed, QSIM propagates the effects of the perturbation to other

parameters through structural equations according to various calculus laws. For

example, given a system whose structure is described by the equation X = Y + Z,
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if Y is perturbed to start increasing, propagation of this perturbation using limit

analysis will conclude that X also starts increasing. By propagating changes in

the current state of parameters, QSIM derives the next qualitative state of every

parameter in the system and of the system as a whole. QSIM continues to propagate

changes in the state of each parameter, until all parameters reach a ‘steady’ state

or a boundary qval. For example, in the above system, unless some ‘external’

parameter causes X, Y or Z to change its behavior, the system will remain in that

state forever. Of course, when the structure of a system is described by a number

of equations, it is the various interactions between the behavior of parameters in

that system which generate complex behaviors.

3.2 Applying QSIM in Hedging

When the ‘structure’ of the trader’s hedged position is known, QSIM can be used

to predict its behavior (i.e., p-p) under the market situation of concern. If the

predicted p-p matches the goal p-p, the vehicle configuration used to construct the

hedged position is suitable.

As a generic vehicle is conceptually a one component (i.e., instrument) system,

the structure of a position that is hedged using a generic vehicle can be described

by two things. One is the equation VHP=VUP±VI, which states that the Value of

the Hedged Position is the Value of the Unhedged Position plus (minus) the Value

of the Instrument sold (purchased) (i.e., value of generic vehicle used). The other

thing is the valuation model of the instrument purchased/sold. In Finance, causal

relationships between economic variables and the value of a specific instrument

are each modeled formally by an equation that specifies how a certain economic

variable affects the value of that instrument [7]. The set of equations modelling

the major relationships for a specific instrument is called the valuation model of

that instrument. This model’s analytic solution is typically used to compute the

fair market value of that instrument. Since each type of instrument is sensitive to

a different set of economic variables, different types of instruments have different

valuation models.
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To illustrate how QSIM predicts the p-p of a position that is hedged by a

particular generic vehicle, consider the example of using a “purchase put option

on bond” vehicle to “cap” the cost of issuance (see Figure 2). A p-p is expressed

symbolically as a sequence of pairs ((V 〈qdir qval〉)(VHP 〈qdir qval〉)), where V is

the variable being hedged, and VHP is the value of the hedged position. The “cap”

p-p is thus expressed as:

[((R 〈inc (0, rc)〉) (HIC 〈inc (0, yc)〉))
((R 〈inc (rc,∞)〉) (HIC 〈std [yc]〉))],

where R is interest rate, HIC is the hedged issuance cost, and rc is the interest rate

level corresponding to the cap level yc on the yield rate offered on issued bonds.

The input for QSIM includes the set of qualitative structural equations in Fig-

ure 3, and the initial state of parameters in these equations. In principle, to derive

the complete p-p of the analyzed position, one can describe the initial state of every

parameter for the current state of R and run QSIM twice – for R increasing, and

for R declining from its current level. However, we describe the state of parameters

when R is zero, and run QSIM only once, letting R increase over the qval range

(0,∞).

-----------------------------------------------------
INSERT FIGURE 3 ABOUT HERE

-----------------------------------------------------

A trace of the states QSIM derives is presented in Figure 4. In the initial state,

interest rate is zero, the price of a yield bearing bond is positive (infinite in the

limit), the value of a put on that bond is zero, and the issuance cost (hedged and

unhedged) is zero because theoretically a firm can offer an infinitesimal yield rate

to get investors to buy its bonds. Starting with this state, state 0, the transitions

QSIM predicts can be summarized as follows. In state 1, R’s increase causes B to

start declining and UIC to start increasing, in compliance with equations 4 and 2,

respectively. Since B has not yet reached x, the put’s strike price, P remains zero

complying with equation 3, and HIC starts increasing to comply with UIC’s increase

in equation 1. In state 3, as R continues to increase, B declines below x, and P

begins to increase in compliance with equation 3. In turn, HIC becomes steady at
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the “cap” level yc because QSIM ‘assumes’ that the increase in P balances off UIC’s

increase in equation 1. This assumption is based on the notion that (by definition)

a hedge vehicle is constructed to balance off changes in the value of the trader’s

unhedged position. This is the whole idea behind using the hedge ratio to compute

the precise number of units to be purchased/sold of the instruments involved [9].

-----------------------------------------------------
INSERT FIGURE 4 ABOUT HERE

-----------------------------------------------------

The p-p of the hedge position being analyzed is embedded in the sequence of

states QSIM derives. It is comprised of the states of R and HIC over a qval range,

as opposed to at a point. These states are enclosed in dashed boxes in Figure 4. A

comparison of this derived p-p with the goal “cap” p-p will thus conclude that a

“purchase put option on bond” vehicle can be used to cap the cost of issuance.

3.3 Pragmatic Considerations

In order to identify all generic vehicles providing the goal p-p under the particular

market situation being hedged, it is necessary to apply QSIM for every individual

instrument one can use to create generic vehicles. Though QSIM is effective in

producing the p-p of any instrument under any market situation, its use can be

associated with extensive amounts of computation [11]. In hedging, this can be

a serious inhibiting factor because: (1) there are too many instruments for which

QSIM needs to be applied; and (2) each instrument requires two QSIM runs – for

a ‘sell’, and for a ‘buy’ action. We therefore apply several means to keep the use of

QSIM tractable.

One means is qualitative abstraction (or inheritance) that is based on the do-

main’s deep structure. As all instruments of the same class (e.g., put options on a

Treasury bond) have the same valuation model, QSIM is applied collectively for all

instruments of the same class. This concept can be further exploited, given that

instrument classes can be organized in an ISA hierarchy, such as the one in Figure 5,

based on specialization relationships between them (e.g., Treasury bonds, bills, and

notes are all fixed-income instruments). In such an ISA hierarchy, the (qualitative)
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valuation model of one class of instruments can be a specialization of the valuation

model of another class. For example, the valuation model of bond options is a spe-

cialization of the Black-Scholes model, which is used to derive the valuation model

of various option types [9]. Accordingly, QSIM is applied only for each instruments

class whose valuation model is a generalization of the valuation models of other

classes of instruments. Of course, this kind of qualitative abstraction requires re-

liance on the specific representation used to capture knowledge about instruments

(see [1,3] for details).

-----------------------------------------------------
INSERT FIGURE 5 ABOUT HERE

-----------------------------------------------------

Other means for making the use of QSIM computationally tractable involve the

application of several heuristics. First, as the sale/purchase of an instrument that

is insensitive to the economic variables being hedged is meaningless from a hedging

stand point, QSIM is applied only for classes of instruments whose valuation model

references the variables being hedged. Second, as the p-p’s for a ‘buy’ and a ‘sell’

action are symmetrical because trading is a zero-sum game, QSIM is applied only

for a ‘buy’ action and the p-p for a ‘sell’ action is derived easily by finding the

symmetrical p-p of the one QSIM predicts (i.e., the qdir in every state of VHP is

changed from 1 to −1 and vice versa, and the qval’s are adjusted accordingly).

Last, to eliminate almost completely QSIM’s tendency to branch (and sometime

explode) due to its reasoning with qualitative values, we apply various domain-

specific assumptions regrading values for which the affects of competing tendencies

are balanced (see example above), and use mixed qualitative/quantitative values to

describe the magnitude of many economic variables appearing in the models being

simulated [10].

4 Configuring Compound Vehicles

Traders configure compound vehicles when the goal p-p is more complex than the

p-p’s generic vehicles provide, or when all the configurations of generic vehicles that

QSIM identifies violate other design specifications (e.g., maturity date, amount of
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cash available to acquire the vehicle). To understand how compound vehicles can

be configured, consider the following example.

Example: A trader who speculates that the price of stock S will in-
crease above s1, but not above s2, defines the “ratio-spread” p-p pre-
sented in Figure 6.

Solution: One compound vehicle configuration that provides this p-p
involves the purchase of one call option on S with strike price s1 and
the sale of two call options on S with strike price s2, where s1 < s2. In
case of a price movement above s1, the purchased call option allows to
profit from buying stocks for s1 to offset, and more, the cost of this call.
At the same time, as long as the price of S is above s2, the call options
sold allow to profit from the cost paid by another party who believes
that the price of S will move above s2.

This example shows that a compound vehicle is in fact a combination of two or

more individual generic vehicles, and that subsequently one can configure compound

vehicles by synthesizing the goal p-p as a linear combination of the situation-specific

p-p’s of various generic vehicles.

-----------------------------------------------------
INSERT FIGURE 6 ABOUT HERE

-----------------------------------------------------

Synthesizing p-p permutations which match some goal p-p is a combinatorial

generate-and-test search problem. Considering only option-based generic vehicles,

for example, the number of possible permutations of p-p’s is 24n, where 4 stands

for the p-p’s of “sell call”, “buy call”, “sell put”, “buy put”, and n is the num-

ber of different strike prices (n is in the thousands, considering all traded options

on different underlying instruments, such as Treasuries, Eurodollar, Futures, and

Stocks). However, since the goal p-p is specified qualitatively, one can suggest

making the problem tractable by using qualitative abstraction over the p-p’s of all

individual generic vehicles of the same type. Specifically, all individual p-p’s with

a ‘similar’ shape can be replaced by one qualitative p-p. For example, consider all

individual generic vehicles of the type “buy m calls with strike price si”, where si

and m are different across vehicles. The p-p of each of these individual vehicles has

the following shape: the first element has slope 0 over the range (0, si), and the



Benaroch & Dhar 15

second element has slope m over the range (si,∞). All these individual p-p’s can

be replaced by one qualitative p-p in which the first element is flat over the qval

(0, s) with s ∈ (0,∞) being an arbitrary qualitative strike price, and the second

element’s qdir is ‘increasing’ with slope 1. Eventually, the use of such a qualitative

abstraction over the situation-specific p-p’s QSIM derives leaves us with a small

number of what we will hereafter refer to as generic p-p’s (see Figure 7).

-----------------------------------------------------
INSERT FIGURE 7 ABOUT HERE

-----------------------------------------------------

While such qualitative abstraction will significantly reduce the complexity of

the synthesis problem, it will also result with loss of important information. For

instance, consider the example in Figure 8, which describes a compound vehicle

configuration that involves two generic vehicles of the same type (i.e., “buy one

call”). Since the precise p-p of these two individual vehicles is now represented by

the same generic p-p, the goal p-p cannot be synthesized unless the lost information

is rediscovered by stretching and/or steepening elements of the generic p-p’s used

in a permutation. Hence, if one is to rely on qualitative abstraction, one must also

use good heuristics to uncover the information lost.

-----------------------------------------------------
INSERT FIGURE 8 ABOUT HERE

-----------------------------------------------------

4.1 Qualitative Synthesis

Qualitative synthesis (QSYN) is a QR-based technique that solves the above syn-

thesis problem in the domain of two-terminal systems, i.e., systems with one input

node and one output node [2]. QSYN relies on the following principles (see Fig-

ure 9 and [12]): (1) a system is comprised of elementary components which are

connected in series and/or in parallel; (2) the behavior of a system and of each

elementary component can be described by a transfer function – the ratio of the

Laplace transform of the output to the input, with all initial conditions neglected;

(3) given the transfer functions of any two elementary components, their algebraic

sum (product) is the transfer function of a system made from the two components
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connected in parallel (series); and (4) to configure a prospective system, one can

apply algebraic operations on the transfer functions of elementary components to

create permutations that match the desired transfer function of that prospective

system.

-----------------------------------------------------
INSERT FIGURE 9 ABOUT HERE

-----------------------------------------------------

Instead of applying these principles on transfer functions, QSYN applies them

on two-dimensional qualitative piecewise linear functions (hereafter, q-function),

each of which describes the qualitative behavior of one type of elementary compo-

nents over their operational regions. Assuming that the desired behavior of some

prospective system is represented as a q-function and that the behavior of each

type of elementary components is also expressed as a q-function (hereafter, generic

q-function), the configuration problem can be solved by algebraically creating per-

mutations of generic q-functions that match the objective q-function. Since in risk

management the p-p of a compound vehicle is an additive linear combination of

generic p-p’s, we shall explain how QSYN solves the problem for the case of ele-

mentary components which are connected in parallel.

QSYN receives as input a goal q-function, G, and a set of generic q-functions Q.

It creates one permutation of q-functions at a time as the sum of two different q-

functions in Q. A newly created permutation is a q-function that is then compared

against G. If it matches part, or all, of G, that q-function is added to Q with

a reference to the two q-functions in Q that create it. QSYN repeats the same

operations for every pair of different q-functions in Q, including ones containing

q-functions newly added to Q. In so doing, QSYN finds all permutations of generic

q-functions that match G.

Since the number of possible permutations of generic q-functions in Q can be

large (i.e., O(n2) – n is the number of q-functions in Q), QSYN constrains its gener-

ator by applying knowledge about the additivity of qualitative behaviors (using the

transition rules QSIM employs). For example, if the qdir of the first element in two

q-functions is ‘increasing’, their sum will not match a goal q-function whose first
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element qdir’s is ‘steady’. Also, QSYN applies two heuristic synthesis operators

– STRETCH and STEEPEN – on elements of the q-functions in a permutation.

These are used to rediscover the information lost by qualitatively abstracting the

behaviors of all generic components of the same type, as illustrated in Figure 8.

Before we can demonstrate how QSYN operates, it is necessary to define the sum

of two q-functions and the conditions under which two q-functions match.

The sum of two q-functions, denoted ⊕, is defined as follows. A q-function is a

sequence of elements, each of the form ((IN 〈qdir qval〉)(OUT 〈qdirqval〉)). Assume

the existence of q-functions Q1 and Q2, with m and n elements respectively, and

let [ ] denote the k-th element of a q-function. Elements Q1[i] (1 ≤ i ≤ m) and

Q2[j] (1≤j≤n) are said to be corresponding, if the IN-qval of Q1[i] is contained in

the IN-qval of Q2[j], or vice versa. We define the sum of two q-function elements,

denoted Q1[i]⊕Q2[j], to be a new element, Q3[k], in which: (1) the IN-qval is the

intersection of IN-qval’s of Q1[i] and Q2[j]; and (2) the OUT-qdir is the algebraic

sum of OUT-qdir’s of Q1[i] and Q2[j]. The fact that this definition disregards the

IN-qdir’s and the OUT-qval’s does not limit the generality of the synthesis approach

used by QSYN. The IN-qdir’s are ignored because they are always 1 in every element

of any q-function, and the OUT-qval’s are disregarded because traders look at their

value only during the quantitative analysis and refinement of vehicle configurations.

The next example illustrates how the sum of two q-function elements is computed

based on this definition, assuming that (i1, i2) ⊆ (i1, i3):

Q1[i] = ((IN 〈∗ (i1, i2)〉) (OUT 〈 1 ∗〉))
Q2[j] = ((IN 〈∗ (i1, i3)〉) (OUT 〈−1 ∗〉))
------------- --------=====--------===--
Q1[i]⊕Q2[j] = ((IN 〈∗ (i1, i2)〉) (OUT 〈 0 ∗〉)).

Following the above definition we define the sum of two q-functions, denoted Q1⊕Q2,

to be the sum of every pair of corresponding elements in Q1 and Q2.

Two corresponding elements are matching, denoted Q1[i]≡Q2[j], if they have

the same OUT-qdir. For example, although the above two sample elements are

corresponding because (i1, i2) ⊆ (i1, i3), they do not match because the OUT-qdir
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of Q1[i] is 1 whereas the OUT-qdir of Q2[j] is −1. Two q-functions are matching,

denoted Q1 ≡Q2, if each pair of corresponding elements in Q1 and Q2 match. A

q-function Q1 partially matches another q-function Q2, if Q1 matches the first few

consecutive elements of Q2.

Now that we know what is the sum of two q-functions and what are the condi-

tions under which two q-functions match, let us use an example to illustrate how

QSYN uses operators STRETCH and STEEPEN.

4.2 Qualitative Synthesis in Hedging: An Example

Suppose we are trying to synthesize the “ratio-spread” p-p denoted RS in Figure 6.

One of the permutations of p-p’s QSYN tries includes the pair of generic p-p’s

denoted Pi and Pj in Figure 7. Apparent from the example in Figure 6, RS can

be synthesized from Pi and Pj. However, Pi⊕Pj ≡/RS because Pi and Pj are

each an abstraction of an entire ‘class’ of individual p-p’s with the same qualitative

shape. QSYN therefore tries to use operators STRETCH and STEEPEN in order

to synthesize RS using these two generic p-p’s.

Figure 10 traces QSYN’s synthesis of RS from Pi and Pj. Starting with the

first triplet of elements, QSYN concludes that Pi[1]⊕Pj[1]≡ RS[1] (Figure 10a).

Proceeding with the next triplet QSYN concludes that Pi[2]⊕Pj[2]≡/RS[2], because

the VHP-qdir of RS[2] is not equal to the VHP-qdir of Pi[2]⊕Pj[2] (Figure 10b).

However, since the VHP-qdir of RS[2] is equal to the VHP-qdir of Pi[2]⊕Pj[1], a

modified version of Pj (denoted Pj
′ in Figure 10b), in which the first element is

stretched over the V-qval (0, s2), is more likely to contribute to the synthesis of RS.

QSYN therefore uses operator STRETCH to extend Pj[1] over the range (0, s2),

and to conclude that Pi[2]⊕P ′
j [1]≡RS[2]. For the next triplet of elements QSYN

concludes that Pi[2]⊕Pj
′[2] ≡/RS[3], because the VHP-qdir of RS[3] is not equal

to the VHP-qdir of Pi[2]⊕P ′
j [2]. However, this mismatch can be eliminated by

modifying the VHP-qdir of Pj
′[2] from −1 to −2. QSYN therefore applies operator

STEEPEN to create a new version of Pj
′ (denoted Pj

′′ in Figure 10c), and to

conclude that Pi[2]⊕Pj
′′[2]≡RS[3]. At this point QSYN found a full match.
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-----------------------------------------------------
INSERT FIGURE 10 ABOUT HERE

-----------------------------------------------------

The matching permutation QSYN has synthesized is made from two generic p-

p’s which were modified by operators STRETCH and STEEPEN. These modified

p-p’s provide important information about how to configure “ratio-spread” vehicles.

First, Pj and P ′′
j have the same qualitative shape of the p-p’s of a “buy call option on

some stock S” vehicle and a “sell call option on some stock S” vehicle, respectively.

Second, since s1≤ s2, the strike price of the purchased call (s1) should be smaller

than that of the sold call (s2). Last, the absolute value of the VHP-qdir of the

second element in Pj
′′ is 2, something which indicates the need to sell more than

one call for every call purchased. This information is identical to the one provided

by the example in the beginning of Section 4.

4.3 Computational Feasibility

Though the number of p-p permutations QSYN has to analyze is explosive, the use

of operators STRETCH and STEEPEN allows QSYN to avoid searching exhaus-

tively the space of all permutations of generic p-p’s. When these two operators

are applied under the right conditions (see [2] for details), they can narrow down

significantly the search space. Figure 11, for example, shows the search tree only

for one permutation involving p-p’s Pi and Pj in the synthesis of a “ratio-spread”

p-p. The arrowed branches in the tree are the ones QSYN explores, while all other

branches are readily pruned.

-----------------------------------------------------
INSERT FIGURE 11 ABOUT HERE

-----------------------------------------------------

One can probably improve the efficiency of QSYN by finding all the specific

conditions under which operators STRETCH and STEEPEN are more likely to

lead to a successful synthesis of a goal p-p. Nevertheless, our experience with a

C++ implementation of QSYN running on a 386-based PC indicates that QSYN’s

performance is adequate for its intended application. For example, in the case of a

goal p-p with six linear elements and an input of seven generic p-p’s, QSYN takes
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only a fraction of a second to produce all the possible permutations matching that

goal p-p.

5 The Other Parts of Hedge Design

Hedge design can be viewed as a constrained multi-objective optimization prob-

lem [1,3]. Constraints exist for matching maturity dates, not exceeding available

resources in setting up the hedge vehicle, and so on. The multiple objectives are

maximizing liquidity, maximizing maturity match, minimizing setup cost, and mini-

mizing credit risk, among others. Solving such a problem is hard. Performing qual-

itative simulation/synthesis in one simplification strategy, but it focuses only on

matching the goal payoff-profile, ignoring some of the above constraints and objec-

tives. Upon applying the configuration results of qualitative simulation/synthesis

for the construction of individual vehicles (using the many instruments traded in

capital markets) one usually ends up with a large number of candidate vehicles.

These candidate vehicles need to be screened down to a manageable number by

applying design constraints, and then ordered using the optimization criteria. At

that point, quantitative analysis can be performed to determine expected values of

payoffs under varying parameters of the instruments involved, their price volatility,

their time to maturity, and so forth.

The screening part of the task is fairly straightforward. Individual candidate

vehicles are analyzed against design constraints, such as: the cash upfront fee

needed to set up a vehicle must not exceed the amount of cash available to the

trader, the tax regulations associated with a vehicle must grant the tax benefits

sought by the trader, and the minimum size contract of a vehicle should not exceed

the value of the asset being hedged. For certain feasibility constraints, the ISA

hierarchy of instrument classes (Figure 5) permits using qualitative abstraction

and/or inheritance in order to rule out entire classes of instruments. For example,

if the hedger does not want to use over the counter instruments, ruling out a general

class of over the counter instruments (e.g., call on put on bonds) will automatically

rule out all the subclasses and instances of that class.
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Ordering the remaining vehicles must necessarily be done by the trader, since

none of the remaining solutions is Pareto-Optimal to others. In other words, trade-

offs must be explored actively by the trader, based on personal preferences and

risk taking propensity. Vehicles can be ordered based on the importance assigned

to the various objective functions, which include: liquidity (maximize), setup cost

(minimize), unwinding complexity (minimize), and maintenance complexity (mini-

mize), among others. Specifically, these ‘competing’ objectives are prioritized based

on preferences of the trader, as well as qualitative assessments of the anticipated

market conditions (i.e., state of various economic variables) at the end of the hedg-

ing period and their effect on the behavior of vehicles. For instance, consider the

‘maximize liquidity’ objective, which may initially be given a high preference. Yet,

this objective may have an overall low priority for vehicles involving put options on

bonds, if the trading volumes of put options on bonds are expected to be high (for

example, because trade balances and subsequently foreign investment are expected

to be high).

Finally, a quantitative what-if analysis is required to see the ‘precise’ protection

level provided by each candidate vehicle. This analysis helps evaluate tradeoffs be-

tween candidate vehicles in response to changes in economic variables or instrument

parameters. To illustrate one of these tradeoffs, consider the following hypothetical

situation. A trader who speculates that the value of stock S will increase in the

near future has to select among two candidate vehicles that involve the purchase

of a different call option on S. The primary parameters that determine the at-

tractiveness of, or the precise profit&loss (P&L) pattern expected from such an

option are: c – the purchase price of the option, s – the current price of stock

S, σ – the currently observed price volatility of stock S, x – the option’s strike

price, t – the option’s time to maturity, and r – the risk-free interest rate [5]. The

P&L patterns offered by two call options on S, C1 and C2, where C1 has a lower

price and an earlier maturity date, are presented in Figure 12 (two tangent curves).

Evidently, C1 is preferable because it offers a P&L pattern that is slightly more

attractive, assuming that the price volatility of S will not change over the hedging



Benaroch & Dhar 22

period. However, C2 may appear attractive in another respect, namely: its value is

more sensitive to changes in the price volatility of S (i.e., ∂c1/∂σ < ∂c2/∂σ). The

latter observation means that, if the price volatility of S will rise during the hedg-

ing period, C2 will end up offering a more attractive P&L pattern (see Figure 12,

top curves). Hence, if the trader believes that the price volatility of S is going to

increase, s/he will prefer C2 over C1, even though C2 is more costly. Of course,

by preferring C2 the trader indicates that s/he is willing to take the risk that the

price volatility of S will decline, in which case C2 will end up offering a much less

attractive P&L pattern (see Figure 12, bottom curves). This example shows that

tradeoffs between candidate vehicles are typically assessed based upon the trader’s

personal beliefs and risk attitude.

-----------------------------------------------------
INSERT FIGURE 12 ABOUT HERE

-----------------------------------------------------

6 Concluding Remarks

Current practice in organizations indicates that traders have narrow areas of special-

ization and expertise. By focusing only on a limited number of types of instruments

(foreign exchange, muni bonds, etc), traders reduce the complexity associated with

putting together hedge vehicles to a manageable level. At the same time, however,

traders risk making suboptimal decisions in that they overlook a whole range of ve-

hicles, some of which may occasionally be most suitable for their risk management

needs.

The trend in financial institutions, however, is towards integration, where more

global information is becoming available to traders. Under this scenario, traders will

begin to seek out better solutions, as long as the right kinds of tools are available

to help them manage the additional complexity brought about by consideration of

a larger set of instruments. For the most part, this involves doing a lot of screening

for the trader, and presenting only the most promising vehicles for quantitative

analysis.
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Our objective is to show how we can capitalize on the integration. By con-

sidering a more diverse set of instruments, better risk management vehicles can

be constructed. In this paper, we have presented a model that deals with the

additional complexity brought about by considering the extremely large set of in-

struments available in capital markets. This model has been implemented in a

prototype expert system for hedging [1,3]. So far, our experience with this system

suggests that the model we have presented performs well its intended function.
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1 ADD(HIC, UIC, P ) HIC = UIC−P . The hedged issuance cost (HIC) is the
unhedged issuance cost (UIC) less the terminal value of the
purchased put (P ). This equation creates a ‘buy’ action
affect.

2 M+(R, UIC) R∝+ UIC. The relationship between the risk-free interest
rate (R) and the unhedged issuance cost (UIC).
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B∈(0, x)

P =max(X−B, 0). The terminal value of a put (P ) is zero
when the bond price (B) is higher than the put’s exercise
price (x), or the difference between the exercise price and
the bond price otherwise. Extracted from the valuation
model for put options (i.e., Black-Sholes model [5]).

4 M−(R, B) R ∝− B. The relationship between the risk-free interest
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derlying instrument. Extracted from the valuation model
for bonds.
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INPUT
(Pi [(V 1 (0, s1))(VHP 0 [v1])][(V 1 (s1,∞))(VHP 1 (v1,∞))])
(Pj [(V 1 (0, s1))(VHP 0 [v2])][(V 1 (s1,∞))(VHP − 1 (−∞, v2))])
(RS [(V 1 (0, s1))(VHP 0 [v1])][(V 1 (s1, s2))(VHP 1 (v1, v2))][(V 1 (s2,∞))(VHP − 1 [−∞, v2))])

(Pi[1] [(V ∗ (0, s1))(VHP 0 ∗)])
(Pj [1] [(V ∗ (0, s1))(VHP 0 ∗)])
———————————————–
(⊕ [(V ∗ (0, s1))(VHP 0 ∗)])
Match with:
(RS[1] [(V ∗ (0, s1))(VHP 0 ∗)])

(Pi[2] [(V ∗ (s1,∞))(VHP 1 ∗)])
(Pj [2] [(V ∗ (s1,∞))(VHP − 1 ∗)])
————————————————–
(⊕ [(V ∗ (s1,∞))(VHP 0 ∗)])
No match with:
(RS[2] [(V ∗ (s1, s2))(VHP 1 ∗)])

⇓
STRETCH(Pj [1])

⇓
(Pi[2] [(V ∗ (s1,∞))(VHP 1 ∗)])
(P ′j [1] [(V ∗ ( 0, s2))(VHP 0 ∗)])
————————————————–
(⊕ [(V ∗ (s1, s2))(VHP 1 ∗)])
Match with:
(RS[2] [(V ∗ (s1, s2))(VHP 1 ∗)])

(Pi[2] [(V ∗ (s1,∞))(VHP 1 ∗)])
(P ′j [2] [(V ∗ (s2,∞))(VHP − 1 ∗)])
————————————————–
(⊕ [(V ∗ (s2,∞))(VHP 0 ∗)])
No match with:
(RS[3] [(V ∗ (s2,∞))(VHP − 1 ∗)])

⇓
STEEPEN(P ′j [2])

⇓
(Pi[2] [(V ∗ (s1,∞))(VHP 1 ∗)])
(P ′′j [2] [(V ∗ (s2,∞))(VHP − 2 ∗)])
————————————————–
(⊕ [(V ∗ (s2,∞))(VHP − 1 ∗)])
Match with:
(RS[3] [(V ∗ (s2,∞))(VHP − 1 ∗)])
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......... . . . . . . . . . . . . . . . Pi ⊕ Pj

(a) Start (match on 1st
element of RS is found)
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(b) Stretch 1st element of Pj

to create P ′j (match on 2nd
element of RS is found)
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P ′′j
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...
...............................

Pi ⊕ P ′′j

(c) Steepen 2nd element of P ′j
to create P ′′j (match on 3rd
element of RS is found)





4 P&L pattern of C2, if the price volatility of S increases
P&L pattern of C1, if the price volatility of S increases
P&L pattern of C1, if the price volatility of S does not change
P&L pattern of C2, if the price volatility of S does not change

2 P&L pattern of C1, if the price volatility of S declines
3 P&L pattern of C2, if the price volatility of S declines
· · · qualitative P&L pattern of both options
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