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In a Digital World of Generative AI  
Detection Will Not be Enough

Jason Davis 
Syracuse University, USA

Recent and dramatic improvements in artificial intelligence (AI) driven by large language models 
(LLM), image generators, audio, and video have fed an exponential growth in generative AI 
applications and accessibility.1 The disruptive ripples of this rapid evolution have already begun 
to fundamentally impact how we create and consume content on a global scale.2 And while the 
use of generative AI has and will continue to enable massive increases in the speed and efficiency 
of content creation, it has come at the cost of uncomfortable conversations about transparency 
and the erosion of digital trust.3 

While the problem of mis and disinformation is not new, the speed and scale at which 
it currently propagates is. Over the last decade the rise of social media platforms and their 
development of hugely successful algorithmic amplification strategies has led to increasing 
challenges associated with the damaging spread of fake news.4 While the use of these platforms 
and their ability to automate the targeting and distribution of mis and disinformation has already 
created significant damage, they have remained limited in some sense by the need for human 
content creation. The addition of generative AI offers the potential to remove this human 
capacity driven bottleneck and magnify the problem exponentially.

The resulting digital landscape becomes one in which a significant portion of all content 
is fully, or at least partially synthetic and existing detection strategies designed to use binary 
classifications (i.e. synthetic or human generated) offers rapidly diminishing down selection 
value in terms of threat evaluation and human actionable response. In a recent study by Europol 
“experts estimate that as much as 90 percent of online content may be synthetically generated 
by 2026.”5 Even this staggering numerical transformation represents an oversimplification 
which still assumes a binary distribution of media. In reality, this increasing digital ocean will not 
remain some bimodal distribution of wholly real or synthetic media but rather a continuum of 
hybridized content that stretches fully between the two.

To address the rapidly shifting mix of digital content a more holistic approach is required 
where detection remains an important part of digital tool development to combat mis and 
disinformation but is insufficient in and of itself.  Rather, a more comprehensive approach is 
required that includes Detection (is it synthetic or human generated), Attribution (is it coming 
from the source it says it’s coming from or if synthetic, which generative tool or model was used 
to create it), and Characterization (is it malicious or benign, what is the intent, who is the target 
audience).6 These two additional layers represent progressively more challenging tasks for AI/
ML driven tools, so it is not surprising that simple binary detection strategies that focus primarily 
on leveraging statistical differences in non-human readable meta data, pixel level artifacts or 
token prediction remains the current focus of most tool development.

The complexity of this task grows even higher when considering the paths to user adoption 
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for these tools by both trained human analysts making critical national security decisions about 
a potential threat or the general public as simple consumers of digital content. Both will require 
human interpretable evidence that can support AI/ML driven recommendations or conclusions. 
Otherwise, the result is a black box problem being solved with a black box solution and requires 
humans to relinquish any role in the decision-making process by placing unconditional trust 
in any detection system that is applied. This represents a challenging approach if the goal is 
to achieve rapid and widespread adoption in a population where digital trust is already at 
a premium. Given the rapid rate at which generative AI and its applications are advancing, 
approaches requiring gradual validation with a secondary focus on the development of trust in 
digital transparency tools suggests an ever-widening gap. If this is the case, short of the global 
throttling of the development of Generative AI capabilities, the co-development of AI/ML driven 
digital transparency safeguards and human explainable evidence frameworks becomes critical.7 
The alternative is a black box arms race between generative AI and its detection which, at best, 
represents a partial solution that gets us no closer to advancing protections for the public against 
malicious disinformation content. To have any chance at actually diminishing the societal impact 
of digital disinformation in an age of generative AI, approaches strategically designed to assist 
human decision making must move past simple detection and provide more robust solutions.

To achieve this, algorithm developers must consider beyond what model driven patterns can be 
exploited using how much and which training data to achieve the required statistical thresholds 
for detection, attribution, and characterization determinations. They must also consider how to 
integrate, communicate, and display these various AI/ML decision making processes to human 
users so they can retain some ability to self-validate any particular conclusion.
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