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Labor Scheduling with Employee Turnover and Absenteeism 

Abstract 
 
 Most labor staffing and scheduling models presume that all employees scheduled for duty 

reliably report for work at the beginning of their shift.  For industries with even moderate 

turnover or absenteeism, this assumption may be quite costly.  We present a profit-oriented labor 

scheduling model that accounts for the day-to-day flux of employees and capacity induced by 

voluntary resignations, new hires, experience curves, and absenteeism.  The proposed model also 

anticipates revenue losses due to reneging by customers whose patience decays exponentially 

with queue time.  Our computational studies suggest that firms with comparatively high 

transaction volumes, long transaction times, and/or relatively tight profit margins may 

experience significant benefit from this approach.  Compared with conventional labor scheduling 

models, the proposed method boosts average expected profits by more than 10 percent in certain 

operating environments.  
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Labor Scheduling with Employee Turnover and Absenteeism 

1.  Introduction 
 

A host of direct and indirect costs arise from the wake of each employee who voluntarily 

leaves an organization.  Obvious expenses include the employer's recruiting, hiring, and training 

costs for a replacement employee.  Until the vacancy is filled, employers may also face 

additional overtime costs, reduced productivity, increased customer queue times, lost sales and 

business opportunities, and the likelihood of additional turnover due to the extra work shouldered 

by coworkers of the departing employees (Herman, 1997; McConnel, 1999; Richardson, 1999).   

Turnover is not just expensive; it is pervasive, arising in virtually all professions.  Twenty 

percent of all new school-teachers and forty-four percent of all new lawyers quit within three 

years (Cooper, 2000; Flaherty, 1999).  The average annual turnover rate (the number of annual 

resignations divided by the average workforce size) among call center employees is 31 percent 

(Karr, 1999), although larger operations (500 or more agents) average 61 percent/year. Zuber 

(2001), citing declining turnover rates for limited-service restaurant workers, reported that 1999 

turnover averaged 123 percent in this industry.  

Voluntary turnover problems also tend to be persistent and difficult to eliminate.  Leonard's 

(1998) survey of human resource professionals found that 55 percent took measures to improve 

turnover, but only 10 percent reported noticeable improvements. Furthermore, many firms report 

that it takes 75 - 90 days to fill a vacant position (Fitz-enz, 1997; Matson, 1999), followed by 

weeks or months of training before a newly-hired employee becomes proficient. 

While turnover results in permanent losses of human capital, unexpected absences due to 

illness or personal matters consume 2.5 percent of all scheduled work hours in the U.S. service 
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sector (Bureau of Labor Statistics, 2001).   Some industries, however, suffer much higher 

absenteeism rates.  Call center managers, for example, report losing 12 - 16 percent of all 

scheduled work hours to absenteeism (Call Center Ops, 2001).  

The need to protect service delivery systems from turnover and absenteeism is well 

established.  Turnover planning models have been developed for many industries and 

professions, including banking (Jones et al, 1973), engineering (Lapp & Thompson, 1974), law 

enforcement (Leeson, 1981), and the armed services (Charnes et al., 1972; Collins, et al, 1983; 

Eiger et al., 1988). Typically, these models anticipate the effects of turnover on existing staff and 

estimate the number of new employees that should be recruited into the organization each year at 

each grade to satisfy projected future staffing needs (Bartholomew, Forbes & McClean, 1991).   

In this paper, however, we focus on the day-to-day operational impact of turnover and 

absenteeism, and developing techniques that mitigate their impact through short-term staffing 

and scheduling decisions. Our premise is that both service demand and employee availability are 

random variables. We model the day-to-day flux of employee resignations and new hires as a 

Markov process, then derive estimates for the probabilities of realizing different incumbency 

levels.  From the underlying employee survivor function, we predict workforce experience levels 

and proficiencies.  Modeling the service delivery system as a multi-server queue, we estimate 

revenue losses due to reneging when customer patience decays exponentially with waiting time.  

Finally, we devise a labor staffing and scheduling model that integrates workforce incumbency 

probabilities, experience levels, and random employee absenteeism with the object of 

maximizing expected profit under stochastic demand and impatient customers.  The model 

determines the nominal workforce size, and how those employees should be deployed over time, 

to compensate for anticipated turnover and absenteeism.   
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To identify operating environments likely to benefit from this model, we compare its 

solutions with those from a conventional profit-oriented labor staffing and scheduling model that 

assumes stochastic service demand and deterministic labor supply.  Our experiments reveal that 

even with modest turnover rates and brief job vacancies, conventional labor scheduling models 

consistently misstate ideal staffing levels and overstate expected profits and service levels.  This 

limitation is more pronounced as a firm's average service rate or profit margin decreases, and as 

either its average turnover rate, mean job vacancy duration, absenteeism, or training time 

increases. In several operating environments, the proposed model improved expected profit by 

more than 10 percent over that earned with a conventional labor staffing and scheduling model.  

The rest of the paper is organized in the following manner.  In Section 2, we develop a 

framework for estimating workforce incumbency levels and experience levels.  In Section 3, we 

characterize a multi-server queuing system with customers whose patience decays exponentially 

with queue time.  In Section 4, we describe our labor staffing and scheduling model for 

stochastic service demand, impatient customers, and stochastic labor availability. In section 5, 

we describe our experiments to compare the proposed model with conventional techniques and 

discuss the results.  Our summary of the project appears in Section 6. 

2.  Modeling turnover, absenteeism, and experience levels 
 

Our goal in this research is to account for the stochastic nature of the labor supply in staffing 

and scheduling decisions for systems with random arrivals and impatient customers.  We adopt 

the premise that employee resignations are in general random, independent events and that on 

average, fraction T of the total workforce will voluntarily leave the organization each year.  We 

assume that once a vacancy occurs, the employer initiates efforts to recruit a replacement.  After 

a random interval, a replacement worker arrives to staff the vacant position.  We assume the new 
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worker's proficiency improves gradually with training and experience, approaching that of 

veteran staffers after a certain period of time.  Finally, we assume that a random fraction of the 

employees scheduled for duty will fail to report due to unexpected illness.  In the following 

subsections, we develop models to estimate: (1) the short-term impact of turnover on the firm's 

labor supply, (2) the effects of turnover on aggregate experience levels and productive capacity, 

and (3) the effects of absenteeism. 

2.1  Turnover, recruitment, and workforce dynamics. 
Let W be the nominal workforce size during the period of interest (W is an output of our 

proposed labor scheduling model, described in Section 4).  In this section we estimate the 

probabilities that w = 0, …, W of those positions are occupied.  If employees independently and 

randomly decide when to resign, the number of resignations/day should resemble a Poisson 

process.  Let γ = T /365 denote the expected fraction of the available workforce that resigns on a 

given day.  For γ to remain stationary1, the number of voluntary departures will depend on the 

number of occupied positions. The Poisson probability that exactly k employees will resign 

during interval t, given w positions are occupied, is: 

  ( ) !)|( kewtwkP wtk γγ −= . (1)  

When an employee resigns, a search for a qualified replacement begins.  Let v be the number 

of days until the position is filled, and assume that v is exponentially distributed with mean v .  

At any instant 0 < w < W of the authorized positions might be occupied, depending on the flux 

of resignations and new recruits, with W-w active searches underway. On average vwW /)( −  

vacant positions will be filled each day, so the Poisson probability that exactly k new recruits 

                                                 
1 Due to the increased workload and job stress for surviving workers, Tsui, Pearce, Porter, & Tripoli (1997) posit 
that the ratio of resignations to occupied positions tends to increase with the number of job vacancies. 
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report for duty during some interval t is given by equation (1), substituting vwW /)( −  for 

parameters γw.  The probability of exactly one voluntary resignation during interval h is: 

 0.h as h!1)()|1( 1 →≈= − wewhwP wh γγ γ  (2) 

The probability that exactly one new recruit arrives during interval h also depends on the state 

variable w and the number of authorized positions W. For state w, the probability that exactly 

one new recruit arrives during interval h is h(W-w)/ v  as h→0.  

The birth-death diagram in Figure 1 illustrates the flux of existing workers resigning and new 

workers recruited into the system.  The nodes represent the number of occupied positions, 

ranging from 0 to W.  The values within each node denote the probability of occupying that 

state.  The directed arcs pointing to the right are the state-dependent probabilities of exactly one 

new recruit reporting for duty during interval h.  The directed arcs pointing left are the state-

dependent probabilities of exactly one employee resignation occurring during the same interval.  

(please insert Figure 1 about here) 

To maintain a stable workforce size, the flow leaving each state in Figure 1 must equal the 

flow into that state.  The graph of this system is a tree, so it is reversible (Kelly, 1979) and its 

state probabilities can be estimated from the probability flux between any pair of adjacent states 

(Nelson, 1993).  For each state, the following relationships must hold:  

  State  Flow out  =  Flow in (3) 
1  vWPP 01 =γ  (3.1) 

2 ( ) vWPP 12 12 −=γ  (3.2) 
3 ( ) vWPP 23 23 −=γ  (3.3) 
… 
W vPWP WW 11−=γ  (3.W) 

 
Rearranging and substituting P0 we have for state: 
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1 vWPP γ01 = , (4.1) 

2 ( ) ( )
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and in general, 
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Since the state probabilities summed from 0 to W must equal 1, we require: 
 

 ( ) 11
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Exploiting the binomial expansion of (1+x)W (Beyer, 1981, p. 64), P0 simplifies to: 
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For a nominal workforce size W, the average number of employees available for duty is: 

  ∑
=

=
W

k
kkPW

0

. (6) 

In Table 1, we illustrate the effects of turnover at different average turnover rates T and average 

vacancy durations v .  For example, with a nominal workforce W = 10, the chance of being fully 

staffed (i.e., P(k=10)) is 85 percent when annual turnover is 20% and positions remain vacant for 

an average of 30 days. The likelihood of at least one vacant position increases with turnover and 

the average duration of a vacancy.  For T  = 60% and v  = 60 days, for example, the model 

predicts the organization will operate short-handed more than 60 percent of the time. 

 (please insert Table 1 about here) 
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2.2 Turnover and Aggregate Workforce Experience Levels 
 

To maintain a stable workforce, new employees must be recruited to replace those who 

voluntarily leave the organization.  Until they gain experience, those recruits may not be as 

productive as veteran workers.  To illustrate, suppose newly-hired employees achieve full 

productivity after τ days of experience, and that during training, they process transactions at 

average rate µ1.  After τ periods of experience, their average service rate increases to µ2.  Since 

average employee tenure is 1/ T , and employees randomly and independently decide when they 

will resign, the probability that an employee will remain with the organization for at least τ days 

may follow the exponential distribution.  Under this distribution, the likelihood of remaining 

with the firm for at least τ varies inversely with both T and τ.   

While Bartholomew et al (1991) suggest that each employee cohort may have its own 

characteristic turnover rate, we shall assume for now this rate is identical for all employees. Let 

(1-φ) be the fraction of employees who resign during the interval [0,τ].  Expressed as a survivor 

function, the expected fraction of new hires who reach full productivity (or the fraction of 

veteran employees likely to still be working τ periods from now), is: 

 ττφ Texp −=>= )(  (7) 

For example, with T = 0.6/yr and τ = 2 months, φ is about 90 percent.  During any one training 

cycle, we should expect (1-φ)W resignations. If the organization plans to maintain a workforce 

of size W, on average (1-φ)W new employees will always be in training.  The average processing 

time per transaction µ-1 depends on the expected mix of experienced and inexperienced 

employees in the workforce, so:  

  21)1(1 µφµφµ +−= . (8)  
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2.3  Absenteeism 

Even those employees who fully intend to continue their relationship with the organization 

occasionally get sick or must attend to personal business during the times they are scheduled to 

work.  In 2000, U.S. industry lost 2.0% of all scheduled work hours due to unscheduled absences 

(Bureau of Labor Statistics, 2001), and 2.5% in the service sector.  For industries like call 

centers, however, anecdotal reports of 12 - 16 percent absenteeism are not unusual (Call Center 

Ops, 2001).  CCH (2000) reports that 41 percent of the HR professionals responding to their 

annual survey now view unscheduled absenteeism as a serious problem in their organizations.  

Furthermore, few of the managers surveyed expect absenteeism to improve in the near future.    

Mitchell (2001) observed that the direct costs of absenteeism are a significant component of 

total payroll expense.  For example, employee benefit plans often indemnify workers from 

incidental absence and short-term illness.  However, unscheduled absenteeism also adversely 

affects productivity, especially when compounded by employee turnover.  Let A be the ratio of 

scheduled labor hours lost to unplanned absenteeism divided by total scheduled hours.  Although 

H workers may have been originally scheduled for duty at a particular time, turnover and 

absenteeism will reduce the expected number of workers who actually report for duty to 

WWAH )1( − .   

3.  Expected loss due to reneging in M/M/S 

Most workforce management systems use M/M/S queueing models (Erlang C) to estimate 

customer delays for different arrival rate/staffing level combinations (Durr, 1994; Cleveland, 

1999).  M/M/S assumes queued customers patiently advance in line once every 1/sµ time units, 

on average.  In practice, their patience often decays exponentially with average waiting time 
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(Sasser et al, 1991; Whitt, 1999b) and some customers may renege (abandon the queue) before 

service begins.  

While reneging customers speed up the line for others still in the queue, their behavior 

reduces the effective arrival rate (λeff )and sales/period. We can estimate λeff and lost revenue 

from the definition for server utilization.  Let Fk = probability that the M/M/S: reneging system is 

occupied by k customers.  With s servers each operating at mean service rate µ, server utilization 

Ueff is:  

  

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
−+
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s 0010
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, (9) 

so the effective arrival rate λeff must equal Ueffsµ.   

Reneging behavior impacts total revenue, and is therefore an important consideration for 

staffing and scheduling decisions.  Unfortunately, the recent literature contains surprisingly few 

references on this topic.  Boots and Tijms (1999) estimate loss probabilities for systems where 

customers renege after waiting a fixed time period.  For systems that serve a population of 

humans, however, it is more likely that patience varies from customer to customer.  Gross and 

Harris (1998, p. 94) outlined a single-server model where the propensity to renege increases 

exponentially with queue time.  Below, we extend that notion to the multi-server case.   

If customers are willing to wait an average of α-1 before reneging (exponentially distributed), 

the probability that queue time exceeds T is P(q>T) ≈ e(-αT).  From the relationship between the 

Poisson and the exponential, αTe-(αT) is the probability that exactly one customer reneges during 

interval T.  As T approaches zero, this probability approaches αh. The birth-death diagram in 

Figure 2 illustrates the dynamics of an M/M/S queue with reneging.  Each circle represents a 

possible system state, corresponding to the number of customers in the system.  The arcs 
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pointing right indicate the arrival of a new customer, with the probability of exactly one Poisson 

arrival during a brief instant of time shown above the arc.  The arcs pointing left represent the 

flow of customers departing a given state, which could be due to a Poisson service completion 

(at rates up to sµ) or a reneging customer. Departures from state k>s occur if any of the 

customers at queue positions 1 to k-s renege during interval h, so the departure probabilities for 

state k must include the chance of a single service completion plus the summed reneging 

probabilities from any queue position up to and including position k-s.   

(please insert Figure 2 about here) 

The birth-death diagram forms a tree, so the system is reversible.  If the system is stationary, 

conservation of flow requires: 

State Flow out = Flow in (10) 
1 F1µ =  F0λ 
2 F22µ =  F1λ 
3 F33µ =  F2λ 
…  … 
s Fssµ =  Fs-1λ 
s+1 Fs+1(sµ+α) =  Fsλ 
s+2 Fs+2(sµ+2α) =  Fs+1λ 
...  ... 

 

The birth-death diagram for the system has two distinct sections: the portion from state 0 to state 

s, where the probabilities of a single service completion steadily increase with occupancy; and 

the portion from state s to ∞, where all servers are busy and departures may be due to either a 

service completion or a reneging customer. For a stationary system, the probability of occupying 

state k in an M/M/s system with reneging is F(k), where: 
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The state probabilities must sum to 1.0.  Thus: 
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and therefore: 
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The infinite sum in (13) converges to zero rapidly.  While a closed form solution for (13) 

may exist, we find that than an efficient approximation technique such as Newton's method and 

the relationship in (12) can be used to estimate F0 with adequate precision.   

4.  Employee Staffing and Scheduling Decisions 
 

Many service organizations with turnover and absenteeism problems face consumer demands 

that vary from hour-to-hour and day-to-day. Their production capacity is difficult to store, and 

they risk lost sales when their services cannot be produced upon demand.  Furthermore, their 

service capacity decisions, in the form of employee work schedules, are usually made long 

before that demand is realized.   

Employee scheduling problems have been modeled as deterministic generalized set covering 

problems (Bailey, 1985; Dantzig, 1954) and deterministic goal programs (Andrews & Parsons, 
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1989; Baker, 1976; Keith, 1979; Mabert & Watts, 1982).  In both models, target staffing 

requirements for each period are exogenous parameters.  In their labor scheduling models for 

stochastic demand (SLS/D), Thompson (1995b) and Easton & Rossin (1996) integrated labor 

requirements planning with staffing and scheduling decisions, explicitly accounting for the 

stochastic nature of service demand. 

All of these models assume deterministic employee availability.  Since turnover and 

absenteeism reduce the likelihood that the system will be fully staffed, their solutions may 

overstate labor expenses.  Because some employees scheduled for duty at a particular time may 

have resigned or be absent, customer queues at those times may be longer, and more customers 

may renege, than these models anticipate.  Thus, existing labor staffing and scheduling models 

may also overestimate revenues.  

These limitations motivate our proposed model for labor staffing and scheduling decisions 

under stochastic demand and labor supply (SLS/DL).  The model assumes that each completed 

transaction earns an incremental contribution (in dollars) before labor expense, and that customer 

arrivals/hour and hourly service rates per employee are random variables.  In addition, the model 

assumes customers have limited patience and will abandon the queue after waiting an 

exponentially distributed amount of time.  What makes this model distinctive, however, is that it 

adjusts the workforce size and the number of workers scheduled for duty at a particular time to 

account for turnover, the mix of trainees and veteran employees, and absenteeism. To fully 

describe our labor staffing and scheduling model for variable demand and turnover, we rely on 

the following notation: 
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___________________________________________________________________________ 
 

Model Parameters 
 

Workforce Characteristics 
T  = average annual turnover rate (number of voluntary resignations/yr 

÷average workforce size), Poisson-distributed 
v  = average vacancy duration (days), distributed exponential; 
A = average absenteeism rate; total hours lost due to unexpected absences 

÷total scheduled and paid hours; 
τ = length of the training period for new employees; 
µ1 = mean service rate for employees in training (Poisson-distributed); 

µ2 = mean service rate for experienced employees (Poisson-distributed); 
µ = aggregate service rate (see equations (7) and (8)). 
 
Customer and Market Characteristics 
 
λi = average customer arrival rate forecasted for period i (Poisson-distributed); 
α-1  = average customer patience, exponentially distributed. 
Ri = average contribution per completed customer transaction, before labor 

costs, for period i. 

Schedule Characteristics  
 
I = set of time periods in planning horizon, indexed i=1,…,I; 
K = set of allowable work schedules for employees, indexed k=1,…,K; 
aik = 1 if i is a working period in schedule k, 0 otherwise, for i=1,…,I; 

k=1,…,K; 
Ck = Wage cost to assign one employee to schedule k. 

    
  Decision Variables and Consequence Variables  
 

Xk = number of employees assigned to schedule k, ∀ k ∈ K; 
Pk = probability of exactly k incumbent employees (equations (4.W) and (5.6)); 
W =  nominal workforce size 

iw  = expected number of employees who actually report for duty in period i;  
Fk = probability of exactly k customers in M/M/S: reneging system (equations 

(11) and (13))  
λeffi = effective customer arrival rate for period i, adjusted for impatient 

customers who abandon the queue before initiating service (equation (9) ). 
 

_____________________________________________________________________ 
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The object of our stochastic labor scheduling model with labor turnover and absenteeism 

(SLS/DL) is to maximize expected profits.  Using the above notation, we determine the number 

of employees who should be assigned to each feasible work schedule that will: 

 SLS/DL:  Maximize ∑∑
∈∈
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0x k ≥ , and integer,  k∈K. (19) 

 The objective function (13) computes the expected contribution for the solution by 

determining expected revenues and expenses.  The first term calculates the product of the 

effective number of customer arrivals and the marginal contribution per arrival. The second term 

computes the expected labor expenses for the solution, after adjusting for turnover (the 

ratio /WW is the fraction of occupied positions).  Note that labor expense includes the expected 

wages for employees with unplanned absences.   

Equation (14) is a consequence variable that determines the nominal workforce size.  

Equation (15) adjusts this total for expected turnover.  Equation (16) calculates the nominal 
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number of employees scheduled for duty during period i. Lacking more complete information 

about individual workers, we assume that employee resignations and absences are dispersed 

uniformly throughout the workforce.  Equation (17) adjusts the number of employees scheduled 

for duty during each period to reflect uniform turnover and absenteeism.   

Equation (18) determines the effective arrival rate, adjusting the nominal arrival rate for 

customers who abandon the queue.  This relationship is adapted from equation (9).  The state 

probabilities Fk used in equation (18) are based on those described in equations (10) and (13). 

SLS/DL is similar to SLS/D when p(W) = 1.0 and A = 0.0 (i.e., when turnover and 

absenteeism are zero).  Both models include non-linear and discontinuous terms, and it is often 

difficult to obtain provably optimal solutions.  Fortunately, meta-heuristics like simulated 

annealing (Brusco & Jacobs, 1998) and hybrid genetic algorithms (Easton & Mansour, 1999) 

work well with this class of problems.  However, unless labor scheduling decisions that account 

for employee turnover and absenteeism provide significant economic benefits for decision 

makers, there is little reason to deploy such models.  In the next section, we hypothesize the 

types of operating environments where the advantages of SLS/DL are likely to be noteworthy.  

We then describe our experiments to ascertain the validity of those hypotheses.  

5. SLS/DL Model Assessment 
Turnover and absenteeism reduce effective service capacity.  As the intensities of these 

factors increase, labor staffing and scheduling models that anticipate their impact should 

outperform approaches that ignore them.  However, other operating factors may either heighten 

or lessen their economic impact.  For example, if scheduling policies and consumer demand 

patterns interact to provide significant surplus labor, employee turnover or absenteeism may 

actually reduce operating expenses without adversely affecting revenues.  
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To help identify the market and service delivery system characteristics where SLS/DL is 

likely to provide a significant performance advantage over SLS/D, we simulated 1024 different 

operating environments.  The characteristics of these labor staffing and scheduling environments 

are summarized in Table 2.  For each environment, we modeled the labor scheduling problem as 

both an SLS/D problem and as an SLS/DL problem, then obtained near-optimal solutions for 

each.  Finally, we computed the performance improvement attributable to the SLS/DL model.   

(please insert Table 2 about here) 

SLS/DL addresses four aspects of labor supply uncertainty that have been ignored in earlier 

labor scheduling models:  turnover rate, average vacancy time, the time for new employees to 

achieve proficiency, and absenteeism.  To assess the effectiveness of SLS/DL, we simulated 

labor environments with turnover rates T = 0.0, 0.2, and 0.6; job vacancy times of v  = 30 and v  

= 60 days; and absenteeism rates of A = 0.00 and 0.05/scheduled hour.  The turnover rates are 

similar to call center averages reported by Karr (1999).  The average job vacancy times are 

similar to those reported by Fitz-enz (1997).  The simulated absenteeism rates straddle the US 

service sector average (BLS 2001), but are probably much lower that those in some industries. 

Task complexity affects the level of training required for new hires, and in high-turnover 

labor environments may have a significant impact on productivity. Therefore, our simulations 

included two levels for task complexity and new-hire training: 0 days with initial productivity of 

100% of veteran employees, and 20 days, with initial productivity averaging 60%. 

Systems with a small number of high-speed servers tend to have shorter mean queue times 

than systems with identical capacity that use more, but slower, servers (Hillier & Lieberman, 

1995).  With more workers subject to resignation and absenteeism, systems with slower servers 

may lose more revenue than fast-server systems due to increases in average customer queue 
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times and reneging rates.  Thus these slower-server systems are more likely to benefit from the 

SLS/DL model than systems with high service rates.  Guided by earlier studies (Andrews & 

Parsons, (1993) and Thompson (1997)), we simulated systems with average service rates of  µ = 

4/hr and 8/hr per employee. 

Potential gains attainable with SLS/DL may be influenced by customer arrival 

characteristics. Like Thompson (1995a, 1997), we simulated daily demand patterns with 

different numbers of demand peaks per day (unimodal and trimodal), different amplitudes (COV 

= 0.25 and 0.50), and arrival rates (400/hr and 800/hr).  Customer patience may also influence 

the improvements attainable with the SLS/DL model.  Less patient customers are more apt to 

renege when queue times increase due to turnover and absenteeism. Therefore, we simulated 

systems with average customer patience of 120 seconds and 240 seconds.  Finally, as profit 

margins narrow, workforce utilization levels are often driven higher.  Systems with high worker 

utilization may be more vulnerable to loss from absenteeism and turnover, because they have 

smaller capacity buffers.  In our study, we simulated average revenue/transaction values of $7.00 

and $14.15 ( adapted from Andrew and Parsons, 1993).   

Other parameters: 

Full- and part-time employees.  We allowed solutions with a mix of full- and part-time 

employees, provided at least 50% of all employees were full-timers (Easton & Rossin, 

1991) 

Hourly wage rate. We assumed hourly wage rates for full- and part-time employees were 

$15.00 and $12.00, respectively.  

Expected orders/arrival:  We assumed 80% of all transactions produced income.  The 

balance were transactions such as status inquiries or information requests.  
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We conducted a full-factorial experiment by first solving SLS/D problems for the 128 

different combinations of service delivery features and market characteristics described in Table 

2.  These solutions, obtained with Easton & Mansour's (1999) distributed genetic algorithm, 

provided benchmarks for assessing the improvements attainable with SLS/DL.  The solution 

procedure converged to answers that were on average within 0.08 percent of a computed bound.   

SLS/D ignores turnover and absenteeism, so a solution for a problem with 60 percent annual 

turnover is identical to one with zero turnover.  To complete our benchmarks, we "priced" each 

SLS/D solution with the SLS/DL objective function assuming the different turnover rates, job 

vacancy times, absenteeism levels, and training times described in Table 2. Finally, we solved 

each problem as an SLS/DL problem and compared its expected profit with the profit for the 

corresponding benchmark SLS/D solution.   

We then regressed the experimental factors against SLS/DL performance to identify the 

environmental characteristics where SLS/DL could be expected to provide significant benefit 

over existing labor scheduling methods.  The results, reported in Table 3, indicate that all 10 

attributes play a significant role in explaining the improvements obtained with SLS/DL.  As 

expected, the regression coefficients confirm that increasing absenteeism and employee turnover 

seriously degrade SLS/D schedule performance, creating opportunities for SLS/DL to find 

alternative solutions with significantly greater profits.       

(Please insert Table 3 about here) 

Under high turnover and absenteeism, SLS/DL returned an average of 4.9% more profit than 

the SLS/D solutions (see Table 4).  However, SLS/DL achieved better than average results in 

operating environments with comparatively high customer arrival rates, low profit margins, and 

more patient customers.  We also found larger than average profit increases when new workers 
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require more initial training and are less productive that veteran employees.  In Table 4, we "drill 

down" through the various market attributes, demand attributes, and service delivery attributes to 

zero in on the operating characteristics where SLS/DL provided the greatest benefit. 

(please insert Table 4 about here) 

In Table 4.A, we isolate the market attributes where SLS/DL produces above-average 

improvements.  As the regression coefficients in Table 3 indicate, the SLS/DL's performance 

improves with customer arrival rates, decreases with revenue per order, and improves with 

customer patience.  With standard labor scheduling models, worker utilization tends to increase 

with transaction volume.  The loss of a busy worker to absenteeism or turnover has a greater 

impact on revenue than the loss of a worker with lower utilization.  A similar effect occurs with 

tighter profit margins (or less revenue/order).  To maximize profitability, SLS/D tries to squeeze 

surplus capacity from the system.  It is thus more vulnerable to revenue losses when absenteeism 

and turnover increase queue times.  With greater average customer patience, SLS/D allows 

longer queues.  When absenteeism and turnover deplete capacity, queued customers tend to wait 

longer than expected and are more likely to renege, thereby reducing revenue and profits.   

Table 4.B focuses on the pattern of service demand, decomposing the column of Table 4.A 

with the greatest average improvement.  With multiple daily demand peaks, work rules about 

minimum shift length make it difficult to avoid significant overstaffing.   These systems thus 

tend to be less vulnerable to absenteeism and turnover, leaving few opportunities for SLS/DL to 

improve on the SLS/D solutions.  As the cell averages in Table 4.B and the regression 

coefficients of Table 3 show, SLS/DL's advantages decrease with the number of daily demand 

peaks. On the other hand, SLS/DL apparent performance advantages increase slightly with 
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demand "peakiness."  Doubling the amplitude of demand leads to small, but significant 

performance improvements.   

In Table 4.C we decompose the column from Table 4.B with the greatest gains to examine 

how service delivery system characteristics influence SLS/DL's performance.  Generally, we find 

SLS/DL's advantages are more pronounced in slower systems, which tend to have more 

employees subject to turnover and absenteeism.  Thus SLS/D solutions for slower systems tend 

to lose a larger number of servers than fast systems with comparable capacity, leading to a 

greater percentage increase in average queue times (Hillier & Lieberman, 1995).  Increased task 

complexity (training time), coupled with higher absenteeism and turnover, reduces the effective 

service rate.  The SLS/D solutions tend to have longer than expected queues when absenteeism 

and turnover strike, reducing revenues as customers become impatient and renege.  

6. Discussion 

 This paper characterized the impact of employee turnover and absenteeism on workforce 

availability and integrated those results into a stochastic labor staffing and scheduling model we 

labeled SLS/DL. We completed a series of experiments to help isolate the operating 

environments most likely to benefit from this approach.  Our preliminary tests indicate that firms 

with low turnover, low absenteeism, short average vacancy times, comparatively high unit 

revenues, and multiple daily demand peaks benefit least from the SLS/DL model.  In contrast, 

firms with comparatively long transaction times, high customer arrival rates, relatively tight 

profit margins, more patient customers, and greater task complexity (training time) should 

experience significant benefits from this approach. 

  These results suggest a number of directions for future research.  For example, we assumed 

interchangeable employees with common skill sets, scheduling preferences, availability and 
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reliability.  In future research, we hope to apply this methodology to systems with extant, 

heterogeneous employees.  We also assumed single stage processes in fairly large-scale systems.  

For smaller, lower volume operations or systems with a sequence of operations, it may be more 

difficult to realize performance advantages of the magnitude reported here.  Finally, SLS/DL 

considers only one strategy for coping with turnover -- overstaffing.  Using other coping 

strategies, such as temporary workers, overtime, reassigning cross-trained employees, etc., may 

provide additional benefits.  
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Figure 1:  Birth-death diagram for worker flux under state-dependent resignations and 

recruitment 
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Figure 2. 
Birth-death diagram for M/M/s with reneging 
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Table 1: State probabilities for number of employees available for duty when nominal workforce size W = 10 
 
 

Average vacancy v = 30 days Average vacancy v  = 60 days Number of 
Available 

Employees T  = 0.2/yr T  = 0.4/yr T =0.6/yr T  = 0.2/yr T  = 0.4/yr T =0.6/yr 
k Pk Pk Pk Pk Pk Pk 
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000008 
3 0.000000 0.000000 0.000001 0.000000 0.000005 0.000067 
4 0.000000 0.000001 0.000012 0.000001 0.000058 0.000477 
5 0.000001 0.000023 0.000148 0.000023 0.000531 0.002901 
6 0.000026 0.000350 0.001505 0.000350 0.004036 0.014706 
7 0.000628 0.004263 0.012207 0.004263 0.024549 0.059639 
8 0.011463 0.038901 0.074260 0.038901 0.112007 0.181403 
9 0.139466 0.236650 0.301167 0.236650 0.340686 0.367845 
10 0.848417 0.719811 0.610699 0.719811 0.518127 0.372954 

w = Avg. 
Workforce 

Size = 
9.8356 9.6712 9.50685 9.6712 9.3425 9.0137 

 
 



 

 

Table 2.  Experimental factors and factor levels 

 
Experimental Factor 

Number 
of Levels 

 
Factor Levels 

 
Employee Characteristics 

 

 Turnover rate 
 
 

3 0, 20%, and 60% per year 

Average job vacancy time 
 
 

2 30 and 60 days 

 Absenteeism rate 
 
 

2 0 and 5.0% 

 
Service Delivery Features 

  

Average service rate for 
fully-trained employees 
 

2 µ2=8 and 4 transactions per hour 

Initial training 
period/trainee productivity 
 

2 0 days @ 100% µ2 and 20 days @ 60% µ2  

 
Market Characteristics 
 Average arrival rate 
 
 

2 λ=400 and 800 arrivals/hour,  

Daily demand pattern 
 
 

2 Unimodal and trimodal sinusoidal patterns 

 Amplitude of demand 
 
 

2 Coefficient of variation (COV) of 0.25 and 0.50; sine 
function amplitudes of 0.353 and 0.706 

Unit contribution before 
labor 
 

2 $7.00 and $14.15 per order (80% of all arrivals are 
orders, 20% are non-revenue producing) 

Average customer 
patience 

2 120 seconds and 240 seconds, exponentially 
distributed 

   
 



 

 

Table 3: Regression Coefficients for Environmental Factors Influencing SLS/DL Performance 
 

 Attribute Levels Coefficients t Statistic P-value 
Average arrival 
rate/hr 

400/hr 800/hr 1.215E-05 9.0082 1.02E-18

Demand Amplitude 
 

0.353 0.706 -0.0070 -4.6058 4.63E-06

Number of Demand 
Peaks/day 

1 3 -0.0019 -15.2140 3.12E-47

Average Revenue 
 

$7.00/order $14.15/order -0.0006 -8.5501 4.48E-17

Average Patience 
 

120 sec 240 sec 1.192E-05 2.6524 0.008117

Average Service Rate 
 

4/hr per 
employee 

8/hr per 
employee 

-0.0021 -15.6720 9.95E-50

Mean Training  
Time/Proficiency 

0 days @ 
100% 

20 days @ 
60% 

-0.0121 -8.9388 1.83E-18

Average Turnover 
Rate 

0.2/year 0.6/year 0.0482 35.7120 1.9E-181

Average Vacancy 
Time 

30 days 60 days 0.0004 22.4406 7.42E-91

Mean Absenteeism 
 

0% 
scheduled 

hrs/day 

5% 
scheduled 

hrs/day 

0.2987 27.6843 4.5E-126

     
 



 

  

Table 4:  Drill-down Relationships: Environmental Factors and SLS/DL Performance 
 

A.  Market Attributes 
 
 
 

Arrival rate 400/hr (80% orders) 800/hr (80% orders) 
Revenue/Order $7 $14.15 $7 $14.15 

 

Avg. Patience 120s 240s 120s 240s 120s 240s 120s 240s
Tbar Vbar Absent SLS/DL Profit Increase (%) 

0% 0.19 0.17 0.08 0.09 0.19 0.28 0.12 0.12 30 
days 5% 0.97 0.98 0.78 0.82 1.27 1.57 1.06 1.09 

0% 0.43 0.41 0.25 0.28 0.51 0.62 0.33 0.34 

0.2/yr 

60 
days 5% 1.47 1.53 1.19 1.23 1.92 2.28 1.58 1.64 

0% 0.95 0.96 0.63 0.67 1.14 1.39 0.83 0.84 30 
days 5% 2.29 2.42 1.89 1.96 2.94 3.47 2.49 2.59 

0% 2.59 2.72 1.88 1.96 3.14 3.65 2.42 2.51 

0.6/yr 

60 
days 5% 4.53 4.82 3.78 3.91 5.68 6.52 4.81 5.05 

Arrivals=800/hr, Revenue=$7/order, Patience=240s. 
Demand Peaks/day 1 3 

 

Demand Amplitude low high low high 
Tbar Vbar Absent SLS/DL Profit Increase (%) 

0.0% 0.41 0.31 0.24 0.17 30 
days 5.0% 1.88 2.10 1.39 0.91 

0.0% 0.71 0.77 0.57 0.43 

0.2/yr 

60 
days 5.0% 2.67 3.03 2.05 1.36 

0.0% 1.65 1.73 1.26 0.94 30 
days 5.0% 4.04 4.51 3.18 2.14 

0.0% 4.20 4.53 3.38 2.51 

0.6/yr 

60 
days 5.0% 7.48 8.21 6.09 4.28

Arrivals=800/hr, Revenue=$7/order, Patience=240s 
Peaks/day =1, Amplitude = high 

Service Rate 4/hr 8/hr 

 

Training time/Initial 
Proficiency 

0 day/ 
100% 

20 day/ 
60% 

0 day/ 
100% 

20 day 
/60% 

Tbar Vbar Absent SLS/DL Profit Increase (%) 
0.0% 0.32 0.56 0.11 0.24 30 days 
5.0% 2.42 2.76 1.45 1.78 
0.0% 0.84 1.19 0.44 0.62 

0.2/yr 

60 days 
5.0% 3.46 3.88 2.20 2.58 
0.0% 1.68 2.75 0.86 1.62 30 days 
5.0% 4.64 6.09 3.04 4.28 
0.0% 4.72 6.26 2.95 4.17 

0.6/yr 

60 days 
5.0% 8.51 10.40 6.15 7.79 

B.  
Demand 
Attributes

C.  Service 
Delivery 
Attributes 
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