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On List Structures
ana Their Use in the Programming of Unification

l.vu INTRODUCTION

To date, most published descriptions of algorithms of
theoretical interest have been essentially imperative in
style and much concerned with operations which change data
structures, possibly for the reason that considerations of
efficiency seem to force the use of a language (even for
very high-level descriptions) which is closely modeled on
the primitive operations of the random-access digital
computer. This paper will try to suggest that such need not
be the case, by using a non-imperative programming notation
to develop the unification algorithm of J.A.Robinson [13,15]
through a variety of forms, culminating in a realization of
the "almost 1linear" algorithm discovered by Huet and Kahn
[7) and by Robinson [l14].

Section 2 is devoted to definitions and to the laying
of a conceptual groundwork. It is argued that the avoidance
of operations which alter existing linked structures
facilitates the conceptualization of entire such structures
as timeless entities, which in turn may serve to narrow the
intellectual gap between an abstract algorithm and its
realization as a program. (Hoare [6] seems to argue for a
similar view of complex data structures, although he is led
to disparage the class of structures containing cycles which
will feature prominently here.)

In Section 3 the programming notation wused in this
paper 1is introduced. It is 1in fact the non-imperative
subset of a dialect of Lisp presently under development at
Syracuse by the author and his colleagues. The principal
novelty of this dialect is a provision for the computation
of list structures as solutions to recursive equations, and
nence for the creation, without recourse to assignment, of
structures containing cycles. Such recursive definitions
have been proposed several times, e.g. by Burge [3] and
Landain [9], but an implementation technique is outlined here
which is believed to be new. The 1list structures whose
creation such definitions allow, which would appear as
infinite expressions according to the usual Lisp
"S-expression" notation, are perhaps suitably called
unbounded, by analogy with the "finite, but unbounded”
universe of Riemanian geometry.

In section 4 "tables" are introduced - a family of
abstract data types encapsulating the notion of a tabulated
function or predicate. Using this notion, the simplest

non-primitive operations for unbounded 1list structures -
testing for equality and copying - are programmed.
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In Section 5 elementary (exponential-time) programs for
unification are developed. It is convenient to discuss in
parallel classical unification and unrestricted unification,
which considers a variable to be wunifiable with a term
containing it.,. The infinite terms which may arise by
unrestricted unification receive natural representations as
unbounded list structures. There are seen to be advantages
in both space and time to approaching classical unification
as the addition of a separate cycle-detection phase to
unrestricted unification.

In Section 6 the (textually slight) changes to the
programs of the preceding section are introduced which yield
a realization of the Huet-Kahn-Robinson algorithm.

2.U ONTOLOGY AND NOMENCLATURE

Recall that the elementary objects of Lisp are divided
into atoms and pairs (the latter sometimes called "dotted
pairs".) The elementary operations are cons, which given any
two objects as arguments has as result a pair with first
component the first of these and second component the
second; car and c¢cdr, which retrieve from any pair its first
or second component respectively; atom, a predicate true of
atoms and false of pairs; and eq, which we shall take here
to be the identity relation on objects. (Eq is wuniversally
so implemented, although it was originally specified as a
relation only on atoms.) Lisp does not make a distinction of
"L-value" vs "R-value" (location vs contents); if one
wishes to speak in that way one should say that in Lisp the
L-values have taken over, so that a Lisp object may be
thought of either as an instance of a record in memory or as
the address quantity which locates it.

Rather than confining attention to individual pairs,
one may contemplate the complex of all objects accessible
from a given one by chains of zero or more car's and cdr's
as far as these are defined - i.e., 40 not entail taking car
or cdr of an atom. Such a complex we call here a 1list
structure (for reasons of tradition and euphony, not because
any notion of one-dimensional list is involved.)

Most existing versions of Lisp have two additional
primitives, rplaca and rplacd. for altering the components
of a pair object. There is, however, good reason for doing
without them; namely, in the absence (which we shall take
for granted from here on) of pair-altering primitives, 1list
structures are incorruptible - e.g., if a variable is
assigned a list structure, it will continue to refer to that
very list structure until reassigned. It 1is just this
incorruptibility tnat makes the act of abstraction which
regarsis an entire 1list structure as a single entity
performable ‘without precaution. Properties of list
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processing programs can then be proved by reasoning about
list structures in the same sense that properties of Algol
programs are proved by reasoning about numbers and truth
values. One might argue that this provision of complex
entities is the chief high-level property of Lisp.

List structures are not, in fact, a very abstract
notion; by use of the predicate eq, distinct but isomorphic
structures can be distinguished, and moreover the precise
isomorphism class of a given structure as a rooted directed
graph is determinable. Put more colloquially, the "sharing"
pattern of substructures is significant. Both confluences
and cycles may exist; that is, distinct sequences of car's
and cdr's may lead to one structure, and a non-empty
sequence of car's and cdr's may lead from a structure to
itself. The curious situation that there is no evident way
of creating list structures with cycles will be dealt with
in the next section. We shall not, however, introduce any
means of creating, or consider as possibly existing, 1list
structures which contain an infinite number of distinct
pairs or atoms.

A further abstraction is often fruitful: the
identification of all 1list structures which cannot be
distinguished without the use of eq on pairs. We shall call
the entities arising from this identification reduced list
structures, and give the name equal to the corresponding
equivalence relation on list structures. Stated positively,
two list structures are equal if and only if every finite
composition of car and cdr which leads to an atom in either
leads also to the same atom in the other. (This definition
of equal generalizes the predicate traditionally so called
in Lisp, which is defined for acyclic structures only.)

Regarded as an operation on reduced 1list structures,
cons 1is a univocal function. Evidently one may think of
reduced list structures as ordered binary trees whose leaves
are atoms and whose interior nodes are unlabelled, and which
may (on account of c¢ycles in the corresponding list
structures) have infinite paths. However, because of the
finiteness of list structures, we do not get all such trees
but only those which have finitely many distinct subtrees.

We next turn to the definition of terms, the abstract
entities with which the unification algorithm is concerned.
Given a fixed stock of variables and a signature (the
assignment of a non-negative arity to each of a stock of
operators), the corresponding algebra, T, of (finite and
infinite) terms may be abstractly characterized as the
maximal system enjoying the following properties:

l. (Closure) T is an algebra with the given signature
and containing the given variables.
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2. (Unique decomposition) Every term either is a
variable or else is a composite f(tl, ... ,tk) for
exactly one choice of operator £ and subterms
tl, ... ,tk.

3. (Identity by finite paths) Two terms are the same
if and only if every well-defined path of
decomposition in either leads to the same variable
in both or to composite subterms with the same

operator in both.

A term which has only finitely many distinct subterms we

will «call rational. (The analogy here is with rational
numbers regarded as terminating or periodically infinite
decimals. One can imagine that, by some elaborate

generalization of the wvinculum notation for repeating
decimals, any rational term might be written down in a
finite number of symbols.)

To represent terms by list structures, we may follow
the familiar plan of choosing a distinct atom, not NIL, to
represent each operator and each variable, and representing
a composite £(tl, ... ,tk) by a list of length k+l:

(£* t1* ... tk¥*)
- actually this is the structure
cons|f*,constl*, ... cons[tk*,NIL}] ... }] -

where f*, tl1*, ... ,tk* represent £, tl1, ... ,tk. One
observes that what this scheme provides 1is a unique
representation of every rational term by a reduced 1list
structure, and thus a non-unique way of representing terms
by list structures; such list structures we will call term
structures. We will suppose that there is a fixed Lisp
predicate, varp, which distinguishes atoms representing
variables from all other objects. (Reduced) list structures

which contain only finite paths - in particular the term
structures which represent finite terms - we will call
bounded.

Finally, we define a substitution to be an endomorphism
of T, and note that any function from variables to terms can
be extended to a unique substitution. (See [5] for an
explicit construction of algebras similar to T and for the
proof of this property.) We shall be dealing here
exclusively with finite sets of rational terms and, as a
consequence, exclusively with substitutions which are the
identity on all but finitely many variables.

3.0 NOTATION

Our programming notation in this paper is an informal
and condensed representation of Lisp, called "M-notation" by
McCarthy et.al.[l0] in contrast to the machine-acceptable
"S-notation". Identifiers are written in lower case. Lisp
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atoms (strings of upper-case characters) stand for
themselves - thus M-notation has X where S-notation has
(QUOTE X). We show function application with square
brackets, separating multiple arguments with commas as in
fix,yl. We 1indicate the conditional expression by the
keywords if - then - else, write the truth values as true,
false, symbolize“logical negation by =1, and use infixed
operators A, V as shorthand for the evident conditionals,
e.g. xVy for if x thep %rug else vy, so that a conjunction
or disjunction may be well-defined even though its
right-hand argument is not.

Applications of the primitives car and <c¢dr are
indicated by prefixed operators a and d; applications of eq
by infixed =. The predicate null is definable:

null(x] = x=NIL,
NIL being the particular atom conventionally used as 1list
terminator, but for convenience application of null is
indicated by an operator: prefixed n.

To show applications of cons we use the punctuation of

S-notation - round parentheses and the dot - in template
fashion, so that (x.y) means consix,yl, and - in conformity
with Lisp conventions for lists - (x y z w) means the same

as (X.({y.{(z.(w.NIL))})).

Functions of zero or more arguments may be denoted by
lambda-abstraction:
X[xl, eo. sXnle
where the X1 are identifiers and e is any expression.

We shall use two additional variable-binding notations
which, unlike lambda-abstraction, ascribe values to the
identifiers introduced:

{ : }
letrec§ x
Lo "

1l = al
and X2 = a2
and ...

;2 b .

The construct with let is merely a convenient abbreviation
for the application:
{ Aix1, ... ,xnlbl{al, ... ,an] .
(Indeea by using let, and by exploiting the fur ther
convention of writing function definitions in the familiar
"dummy argument" form:
flx,yl] = a

rather than the strict

£ = MNx,yla
we shall contrive to avoid explicit appearances of
lambda-abstraction in what follows.) As the reduction to an
application makes clear, the scope of the variables xi is
the body b.
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Tne meaning of the corresponding letrec construct, for
which the scopes of tne xi are both b and all the
right-nand-side expressions aj, is not to be disposed of so
easlily. The purpose of the construct is to provide for the
adefinition of both mutually recursive functions and
unbounaded list structures. (The implementation of recursive
functions is by now well understood, and for simplicity the
following discussion will be confined to the problem of list
structures.)

Reflection may make it apparent that any prescription
to compute each of quantities xl, ..., Xn by zero or more
applications of cons to any of x1, ..., Xxn themselves and
other independently computed quantities (but without
directly circular prescriptions of the form xi = xj = xk =
e = xi) should determine a system of list structures,
unique up to isomorphism, which solves it in the sense that
if, e.g., it is prescribed that x3 be cons[x5,cons[NIL,x3]]
then +the resulting structures are such that gx3fx5,
adx3=NIL, and ddx3=x3. (To be precise, for uniqueness up to
isomorphism rather than merely up to equality we must
additionally require that the prescribed cons's all give

rise to distinct pairs.)

It is not immediately clear how this attempt to smuggle
rudiments of least-fixed-point finding into a language which
has imperative aspects, and in which the order and
multiplicity of evaluation of expressions are therefore
significant, is to be made to work. The approach which does
least violence to ordinary notions of program execution
seems to be to lay down that al, ..., an and b are to be

evaluated once each - the value obtained for b being that
yielaed by the whole letrec construct - by the ordinary

evaluation mechanism. This is to say that the ai need not
be restricted to any particular syntactic form, and that the
calls of cons they cause to be made are not treated in any
special way. It follows that an identifier xi, even before
the value of its corresponding ai has been obtained, must if
evaluated yield an object which, however deficient in
properties, 1is amenable at least to cons (and presumably to
eq, if we take seriously our characterization of that
predicate as "identity of objects").

If one supposes that the realization of objects in the
machine is such that objects lacking all properties save
identity can be created, and that moreover these can fuse
with other objects (i.e. that under certain circumstances
distinct objects having no conflicting properties can come
to be one) then a straightforward semantics for letrec is
evident: The identifiers x1l, ..., Xn are at first
associated with n such ghostly objects; the expressions al,
«+¢, an are then evaluated and the object resulting for each
ai fused with the value associated to the corresponding xi;
and the final state of these associations is used to provide
the environment for the evaluation of the body b.
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The writing of useful programs is greatly facilitated
by specifically ruling, in addition to what is set down
above, that al, ..., an are to be evaluated 1in the order
written, and that each fusion is to be performed immediately
its right-hand-side value 1is obtained. This means that
during, for example, the evaluation of a2, the internal
structure of x1 is well-defined and accessible to inspection
except at those points where it incorporates any of x2, ...,
Xxn.

The uses of letreg which appear in the remainder of
this paper may be understood in the light of the above
account (including the rule of 1left-to-right evaluation),
and the reader not specifically interested in problems of
implementation is invited to skip to the last paragraph of
this section. It appears that a system of fusible objects
as described above can be realized, by building in the
Fischer-Galler algorithm - described in Section 6 below - as
the implementation of eq.

However, it is of interest to see what <can be done
within the conventional implementation of Lisp objects, for
which an object is just a record instance in the memory, and
eq is comparison of record addresses. In this case, objects
are not fusible; moreover, pairs may be allocated records
of a different size or in a separate area of memory from
atoms, so that to be, even as a record with wundefined
fields, is either to be a pair or to be an atom.

An approximation to the above evaluation scheme is
still possible, and, with some <care, the programmer can
avoid provoking the mistakes to which it 1is subject. It
seems not to be difficult in practice to arrange the
computations one would like to make with letrec in such a
way that any value of an identifier which must be called
into existence before it has been computed in the ordinary
sense turns out in the end to be a dotted pair - this is not
surprising, since any cycle in a list structure consists of
pairs - and moreover a pair which has been created solely to
be the value of that identifier, rather than being part of a
previously existing and independently accessible 1list
structure. For programs which have been so arranged, the
following evaluation method will work: Associate to any xi
whose value is needed before that of ai has been obtained a
new pair object with undefined car and cdr components. When
the value - call it pi - of ai is at hand, and if xi is
found to be associated to such a pair (so that a fusion
should be performed), instead copy the car and cdr
components of pi into the object which is the value of xi.
If pi is in fact an atom, then an error must be reported.
Even worse, if there exists any other means of access to pi,
then the system has erroneously come to contain two
accessible and distinct (although equal) objects which
should be one; it is not feasible in Lisp to detect the
commission of this form of error, any more than it is
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feasible in general to reclaim unused storage except by
Jarbage collection.

All this sounds very unsatisfactory, but there 1is a
sufficient syntactic condition which will ensure that
neither form of error occurs: that each of the expressions
a2, ..., an should have cons as main connective. Programs
that observe the restrictions of the preceeding paragraph -
as do all those to be presented in this paper - may readily
be transcribed into any conventional 1language, such as
Pascal, which provides pointers and records with assignable
fields.

It is hoped to discuss letrec and these implementation

. N . g . . .
techniques (which generalize naturally to permit application
of car and cdr to objects whose components are not yet
definea, resulting 1in the creation of trees of pairs which
grow from the top down) more fully elsewhere.

We shall suppose one further augmentation to Lisp: the
germ of an exception-handling facility in the shape of a
"function" named error (actually provided by many existing
Lisp systems) which aborts any computation calling it. Our
purposes here do not require us to consider the problem of
integrating exception-handling with the other control
structures of the language.

4.0 TABLES

The programs to be presented in this paper will need to
use data structures representing tabulated functions,
relations, and sets. (We shall use "table" as a catchall
term covering all of these.) Many efficient implementations
of these notions are known, and we want to avoid here
getting enmeshed in the details of any one of them. Plainly
the right way of proceeding 1is to specify abstract data
types, and to impose just the necessary restrictions on the
behavior of the primitive operations which act on them.
This might in principle best be done by the axiomatic
method; however for these particular notions inefficient
(linear access time) representations by lists are so simple
that we shall instead give straightforward exemplary
definitions of functions to manipulate the list
representations.

For tabulated functions, then, we need means of
creating an empty table, of adding an argument-value pair,
of discovering if an argument appears in a table, and of
producing the value corresponding to a given argument.
Representing the table by a 1list of its argument-value
pairs, we are led to the definitions:
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nila[] = NIL

extend(x,y,al = ((x.y).a)

defined|x,a] ="na A [aa=x V defined(x,gdal]
assoc|x,a}] = i; aaa=x then an else assoc(x,dal .

(Wwhat we have here is of course the data structure known to
Lisp tradition as an "association 1list". Accessing
functions generally used in practice with association lists,
and 1indeed with many other implementations of the notion of
tabulated function, adopt some more or less awkward device
by which one primitive can do the work of both defined and
assoc. Since our first aim here is <clear programs, we
prefer to separate them; note that assoc{x,a] will produce
a result only in case defined(x,al is true.)

What is meant by calling these definitions "exemplary"
is that any other quadruple of functions nila, extend,
defined, assoc is acceptable for which the behavior of
defined and assoc on objects built up by nila and extend is
indistinguishable from that of the versions given here,
whatever the actual form of the objects may be.

We shall also require tabular representations of
finitely supported binary relations on data objects. This
is the same as to say "finite sets of ordered pairs of
objects", but note that "ordered pair" here 1is the
extensional concept from mathematics, not the Lisp dotted
pair. Suitable primitives are nilr (empty relation),
extendr (include an instance in a relation), and memr (does
a relation hold between two objects?), which may be given
the exemplary definitions

nilr = nila
extendr = extend
memr (x,y,r} ==pnr A [laar=x A dar=y] V memr(x,y,dr}} .

Similarly, for finite sets of single objects we may take the
primitives nils, extends, mems, with exemplary definitions

nils = nila
extends = cons
mems[x,s] ==ns A [as=x V mems(x,ds]] .

It is tempting to be a little 1less exemplary and to
ensure against duplicate occurrences in sets and relations
by defining, e.g.,

extendr|x,y,r] = if memr(x,y,r] then r else ((x.y).r) .
I am indebted to Professor E.E.Sibert for pointing out that
these additional checks, besides being logically

unnecessary, would never come into play in the applications
developed here.

Observe that tables as considered here, being definable
as list structures, are likewise incorruptible entities. It
is hoped that the resulting programs will be more
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transparent than they would be if they relied on the use of
data structures subject to side-effects.

As a first example of operating on arbitrary 1list
structures by the help of tables, we consider programming
the predicate egual. Recall that two 1list structures are
unequal if and only if some finite path to an atom in one
corresponds to a path to a different atom, or to a non-atom,
in the other. But if there exists a sequence of car's and
cdr's leading to two such incompatible objects, then there
exists one of which all the initial subsequences lead to
distinct ordered <couples of pair objects in the two
structures. (If an ordered couple repeats, then we can get
a shorter sequence by deleting the part between 1its first
and second appearances.) Therefore, if we simply amputate
any incipient infinite search - by decreeing that any couple
of objects encountered for a second time in an equality
computation are equal - we will ensure termination without
invalidating the answers produced. Thus we are led to the
program

equal(x,y] = equalx,y,nilr[]]

equa(x,y,r] = 1f atom(x] V atom[y] then x=y
else if memr(x,y,r] then &rue
else ;g; r' = extendr|x,y,r]
in equalax,ay,r'} A equaldx,dy,r']

Convergence 1is assured, because the relation r, which
increases in size with every recursive call, cannot grow
beyona the product of the numbers of dotted pairs present in
the two input 1list structures. It may be very slow,
however, for small but tightly knotted structures. In fact,
it appears that an equality predicate with running time
linear or nearly so in the actual sizes of its input
structures requires the same sophisticated
equivalence-classing techniques as does (nearly) 1linear
unification.

A second programming example, which will illustrate the
use of letrec as well as that of tables, is given by the
problem of making an isomorphic copy of a 1list structure,
built out of the same atoms but with all new dotted pairs.
Here the observation to make 1is that the necessary
intermediate data structure tabulates a function mapping
pairs in the old list structure to their image pairs in the
new one, and that letrec allows us to create a value of this
function out of thin air, before we know the subobjects of
which it will ultimately be the cons. We define:
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copylx] = extractix,copix,nilaf]]}]
extract[x,h] = if atom([x] then x else assoc(x,h]

coplx,h] = if atom([x] WV defined(x,h] then h
else letres h' = copldx,coplax,extend[x,x',h]]]
and x' = (extractlax,h'] . extract{dx,h'])

v~

in h' .
o~

Here coplix,h], the function which ©performs the
depth-first search, may be thought of as computing two
results: x', a copy of x, and h', an extension of h. Lisp,
in common with most existing languages, regrettably does not
provide functions with multiple results. They can be
simulated with explicit cons's, car's, and cdr's, but these
are likely to distract attention from the productive 1list
manipulation being done. Moreover, a two-result cop would
not allow of such simple nesting of its recursive calls. It
seems to make a neater program, therefore, to observe that
X', if not identical with x, is hidden within h', and to
provide the function extract for recovering x' from h',
although this leads to calls of assoc which are not strictly
necessary.

Equal and copy will not be wused in the subsequent
development of programs for wunification; however, their
patterns of operation will be discernable within several
other functions.

5.U UNIFICATION

Robinson's most abstract enunciation [15] of his
unification algorithm may be summarized as follows so as to
be valid for both classical (finite terms only)_ apd
unrestricted unification. We shall use upper-case italic
letters to range over abstract terms, and gnall qenote
abstract substitutions by small Greek letters, 1n‘parglcular
the identity substitution by £. we write application of
substitutions to terms with the substitution on the.rlght,
and use the corresponding convention for composition of
substitutions, i.e.

T(ogreT) =df (TO)T .
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We shall employ the notation {X1+—?T1, ..., Xn+—> Tn} to

give

explicitly a substitution which maps the named

variables as indicated, and is the identity on all others.

To compute, then, a most general unifying substitution
of terms A, B if possible:

l.

2.

wWe note

l.

(Initialization): Set g=¢ .
(Iteration):

l. If A¢~ = B0, then terminate successfully: ¢
is a most general unifier.

2. Otherwise, select any pair of unequal
homologous subterms X, Y of Ag”, Bo~ which are
not applications of the same operator, and if
just one of the two is a variable, let X be
that one.

3. 1f neither is a variable - that is, if X and Y
are composite with different operators - then
terminate unsuccessfully: a "clash" has been

found.

4. Otherwise, construct such that p = {X»r—?
Yp }, replace ¢ by oep and repeat from 2.1;
however,

. 1f there 1is no such f’, then terminate
unsuccessfully.

(but do not prove) the following facts:

Selection of @ can be impossible only if X occurs
in Y (otherwise take Xp = Y = Yp), and if
moreover we disallow infinite terms. If infinite
terms are allowed, then by unendingly replacing
occurrences of X by Y, starting with X itself, we
obtain a term whose substitution for X in either X
or Y yields itself.

Each introduced eliminates a variable;
therefore, if there are only finitely many
variables to begin with, the loop can run for only
finitely many iterations.

Because the substitutions which arise do eliminate
the variables which they modify, they (in
particular the successive values of g=) are all
idempotent, i.e. satisfy geo=¢o .
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4, If the algorithm terminates successfully, the final
value of ¢ has the defining properties of a most
general unifier, namely Ao = Bo, and for any
with Ag Ba ’ 9"0'0

This statement of the algorithm might at first blush
suggest that, even if we do not recompute Ao” and B~ from
scratch at each iteration, we still must start a fresh
search each time for differences between them. This is,
however, untrue: if we denote the successive values assumed
by as &, ¢, ..., and if certain homologous parts of some
AO7, BO] are already unified by some O‘j (3j>=1i), then they
wlll contlnue to be unified by all values of ¢ subsequent to

H Thus we may write a recursive program for wunification
wﬁich proceeds, in effect, by a left-to-right sweep over the
final unified term.

we shall first give as abstract a version as possible
of the recursive organization of the algorithm, retaining
supbstitutions, their application, and their composition as
primitive ideas, but supposing that terms are represented by
list structures as indicated 1in Section 2. We must
consequently restrict all terms to be rational from here on.

We may then write our algorithm as follows:

unifix,yl =
if atom|x] A atomlyl A x=y then €
else if =matom(x] A =atomly] tnen
let T = unif(ax,ayl
1n 'Cvuruf[(g_x)t (dy)T |

else }__g varplx| then p Where L= {(xr—>yp}
else if varply] then p where p = {y+—>xp }
else error {CLASH

It may be observea that calls of unif are always made with x
and y representing homologous subterms of AO7;, BO;, where Of
is one of the substitutions which would arlse in the
iterative version of the algorithm if it were always to
choose the leftmost difference to eliminate; the result of
any call of unif is just that additional substitution which
must be post-composed with o; in order to unify x and y as
well.

Unif has been written to retain the equivocation as to
whether or not infinite rational terms, as represented by
unbounded list structures, are to be countenanced. If only
finite terms are allowed, then the circumstance in which ap
equal to {x+—2yp } does not exist is to be supposed to give
rise to an error. Note that execution of unif can terminate
(in the absence of clashes) only if all the pairs of term
structures x, y which arise are bounded; as the program is
developed further this blemish will be removed by the use of
tables.
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In order to arrive at executable Lisp programs, we need
a representation of substitutions by data structures, and
with a view to finding an economical representation it is
convenient first to introduce the notion of implicit
substitution. For any substitution T, we may consider its
powers  under composition with itself: T, T ....
Provided there is no set of variables which T maps into
itself without fixed points, these powers will have a limit
which we may call ¢€* satisfying ¥* =TeT* and, for any
such that 8 =Te°f# , 5 = 1:*00. This is because any
variable is either left unchanjed by T, eliminated by some
finite power of T, or pushed away into arbitrarily remote
subterms by successively higher powers of €. Then we will
say that T is an implicit representative of an ("explicit")
substitution O just in case T* =0 Since the successive
substitutions &7 which arise in the process of unification
are all iadempotent, they are suitable candidates to be
implicitly represented; and as we shall see, they in fact
have implicit representatives which assign to variables only
subterms of the terms which were originally to be unified.

Coming down to actual data structures, we may represent
any (explicit or implicit) substitution which alters only
finitely many variables by a tabular function with arguments
the altered variables and values their assigned terms. Our
"tabular representations of implicit substitutions" are what
are called by Boyer and Moore (2] simply "substitutions".

Our programs for unification using implicit
substitutions will follow essentially the same pattern of
recursion as unif - that is, sweeping from 1left to right
over the common image of the two input terms under the
substitution built up so far; however, they will do so
without actually creating any representation of the image
term. what we need to make this possible 1is the function
ult:

ultlx,s| = lﬂ defined{x,s] then ultlassoc[x,s}),s] else x .

Here x 1s any term structure and s 1is the tabular
representation of an implicit substitution, in turn
representing, let us say, an explicit substitution O . The
purpose of ult is to apply & to x from hand to mouth; that
is to make sure that whenever x is an atom, ult(x,s]
actually 1is a usable stand-in for x07, while not letting
itself be put to any trouble by non-atomic x. The effect of
this 1is that chains of alternating wult's and car's (or
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cdr's) applieda to any x, both starting and finishing with
ult, will vyield just the same atoms in the same places as
would those chains with their ult's suppressed applied to
X0 .

We may make one further observation: since a
representation of ¢, the unifying substitution so far, will
need to be everywhere available for the wuse of ult, it
follows that the function analogous to unif whose task it is
to compute the most general unifier, €T, of terms xo0°, yo
may as well return 6T rather than €T as its answer; this
is what will be wanted in the end, and by accumulating it
piecemeal we will avoid having to compose arbitrary
substitutions.

It is now easy to write our programs. We give first
one for classical unification:

mgu|x,y] = unify(x,y,nilal}]

The top-level function, mgu, serves only to set up the
representation of the identity substitution.

unify|x,y,s}] = unilultix,s],ult[y,s],s]

Unify passes all the work off to uni, but establishes for it
the following invariant: that 1ts first two arguments are
not defined in its third (meaning that these first two
arguments do correspond to an actual subterm of the common
image term).

uni|x,y,s] = if x=y then s
else Lg-'at_:om[xll\ -natgmly]
then unifyldx,dy,unifylgx,ay,s]]
else if varpix] then
1f occlx,y,s] then error|[CYCLE] else extend|[x,y,s]
else if varplyl then
if occly,x,s] then error [CYCLE] else extendly,x,s]
else error[CLéSH] o

Here the Jjob of, say, occlx,y,s] 1is to enforce the
;estriction to finite terms by determining whether x occurs
in yo0~; but since yo~does not exist, occ must use the same
"decomposition" technique as does uni:

occlv,y,s] =
if atom|y] then v=y
else occ{v,ultlay,s],s] V occ|v,ult(dy,s],s]

Tne following invariant is essential to the correctness of
occ: y is not defined in s.

The case of unrestricted unification is complicated by
the necessity to carry along a tabulated relation of pairs
of structures which must be unified, just as equal requires
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a table of pairs which must be eguated, in order to avert
infinite recursion. On the other hand, the unrestricted
case relieves us of the obligation to forbid substitutions
which give rise to unboundedness. Thus we may write the
following three functions, closely analogous to mgu, unify,
and uni:

rmgulx,y)] = runify(x,y,nilr|],nilafl]
runify|x,y,h,s] = runilultix,s},ultly,s],h,s]

runi[x,y,h,s] = if x=y then s
else if ~atom{x} A =matomiy] then
1f memr|[x,y,h] then s
else let h' = extendr(x,y,hl]
in runify(dx,dy,h',runify{ax,ay,h',sl]
lse if varpix] then extendlx,y,s]
lse ;Z varplyl] then extend(y,x,s]
lse error |{CLASH] .

(R T0R T4

%

The function of h here is precisely that of the relation r
in equal: we will still compute the unifying substitution,
if there is one, even though we ignore any pair of term
structures on 1its second and subsequent appearances. Just
as with equal, all the arguments x and y which are ever
given to runi are substructures of the original inputs to
rmgu, and thus the indefinite expansion of h which
non-termination would reguire 1is impossible. With some
added trouble, h could be made to accumulate all pairs of
first two arguments to runi which had been seen so far, but
this would be only a half-measure towards representing the
whole equivalence relation obtaining at any point between
pairs of terms which it is known must be unified with each
other.

Two points should be checked before we feel happy about
the correctness of mgu and rmgu. First, since the use of
ult ensures that uni and runi never see any variables which
are defined by the current table s (that is, which are
altered by the current implicit substitution), the
expressions extend|x,y,s] and extend|[y,x,s] always give rise
to well-defined substitutions, which do not assign two term
sStructures to the same variable. For the same reason, the
implicit substitutions created cannot contain cyclic
assignments of variables to each other (e.g., {Uu = v, V>
u}); therefore they correspond to well-defined explicit
substitutions. This freedom from direct cycles is also
necessary to ensure that ult terminates.

The second point is a 1little more complicated: we
would 1like to know that the calls of extend create implicit
representatives of the right substitutions; that is, given
that a substitution {Vl#==T1l, .., Vk#2> Tk} - call it ¢ -
is such that¢@* =0~ , and that we form Y= {X 2 Y, Vir—>
Tl, ..., Vke—? Tk}, doesy* =0oT , where T = {X+—?YOo T }?
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To see that it does, first note that w* = ¢ey*, since ¢ is
only doing ahead of time work that y* would quickly get to
anyway; hence w* = *a}p* = Oew*. But since O
eliminates the variables V1, ..., VK, we can replace y* on
the right by a substitution which changes only X; that is,
we have y/* = Fe{X—» Xy*}. Now

{Xr—2 XY Y*}

{Xp——2Y 4o*}
{Xr—3Yoy*}
(X2 Y O {X—PXy*}]}

uu—»x\y*}

hence {X#+—®Xy*} is precisely the required T.

we now have programs which, in a sense, compute most
general unifiers; in fact, however, they produce tabular
representations of the corresponding implicit substitutions,
and to see 1if these representation tricks have been
worthwhile we shoula investigate the task of applying
substitutions, given in various tabular representations, to
term structures. Let us consider first the application of a
tabulated explicit substitution to a bounded term structure,
as a straightforward paradigm for the other variants:

dosubst|x,s] =
gg atom[x] th
;£~defined[x,sj then assoc[x,s] else x
else (oosubstlgx,s] . dosubst[gx,s]) .

i

Note that dosubst produces a tree as "copy" of the structure
X, and though by hypothesis this will be finite it may be
exponentially larger than x.

The simplest analogous function which will work for a
term structure which may be unbounded again produces
basically a tree-shaped duplicate of its argument,
introducing cycles only as pointers from certain pairs to
ancestors of themselves:

rtreesubst|x, sl rtreesub[x,s,nilal]]

rtreesub|x,s,u]
if atom(x] ¢
if defined|x,s] ¢ assoc{x,s] else x

elgse if definedlx,u]l thep assoc{x,u]

else letrec u' = extendix,newx,uj ’
and newx = (rtreesub[gx,s,u'].rtreesubLgx,s,u'])

m newx .

As long as we have been obliged to introduce the table u in
order to ensure termination, however, we can get a more
economical function by imitating copy, and producing a
result isomorphic to the argument structure, save for the
replacement of variables defined in s by their values:
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rdosubst|x,s] = substract|x,s,rdosub(x,s,nilaf]}]]

substract|x,s,h] = if defined(x,s] thep assocl|x,s]
else ;g atom{x] then x
else associ{x,h]

rdosubix,s,h}] =
if defined(x,s] V atom|x] V definedix,h] then h

else
etrec h' = rdosub[gx,s,rdosub[g},s,extend[x,x',h]]]
and x' = (substract{ax,s,h'] . substract[dx,s,h'])
in h' . - -
g

Note that substract and rdosub are written so as to follow
any prescriptions made by the table s, even if these should
include, contrary to the representation of implicit
substitutions by tables developed so far, assignments of
values to pairs as well as to atoms. This precaution will
assume significance in Section 6.

It is straightforward to write analogues of dosubst and
rdosubst for the application of implicit substitutions; as
usual, we have to call ult in the right places. For bounded
term structures:

appsubst|x,s] = appsubf{ult(x,s},s]
appsubix,s] =

if atom[x] ¢ X

else (appsubstlax,s] . appsubst(dx,s]) .

To reproduce the sharing pattern of a possibly unbounded
term structure:

rappsubst|x,s] = extractlult(x,s],rappsubsi(x,s,nilal]]]

rappsubs|x,s,h] = rappsubf{ult(x,s],s,h]

rappsublx,s,h} =
if atom[x] V defined(x,h] then h
else
Tetrec h' = rappsubs(dx,s,rappsubsiax,s,extend[x,x',h]]]
and x' = (extract[ult[gy,s],h'] . extract[ult[g},s],h'])
in h' .

Rappsubst is as economical of storage as could be hoped:
rappsubst|x,s] creates at most one new dotted pair for each

istinct pair occurring in x or in one of the term
structures in s. Recall that if the implicit substitution s
was created by unification of term structures a and b, then
it contains only substructures of a and b.

Time and storage may still be wasted, however, if the
same 1implicit substitution 1is applied to a number of term
structures. 1In this case, the work of making explicit the
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values of the variables affected by the substitution will be
done over again each time. This duplication might be
averted by judicious direct use of rappsubs, which could
have the additional merit of profiting by any sharing among
the structures being subjected to the substitution. It is
convenient, however, to have a function at hand which will
convert any substitution from implicit to explicit form,
thereby getting as much as possible of the creation of new
structure done once and for all. This function will bear a
strong resemblance to rappsubst, but to define it we need an
additional primitive, domain, applicable to tabulated
functions. We require that, for any tabulated function s,
domain(s] yield a 1list of all those objects x such that
definedix,s] 1s true. Now WwWe can write our conversion

function:
convert|s] = convi|domainl|s],s,nilal]]

convil,s,h} =
if nl then nilall

else let h' = rappsubsigl,s,hl]
Lﬂ extendlg},extractlult[g},s,h'],conngl,s,h']] .

It is easily seen that convert(s] produces a structure in
which exactly one dotted pair has been created corresponding
to each distinct dotted pair in the term structures which
constitute s.

It is worth noting that our unification functions for
arbitrary term structures - rmgu, rappsubst, convert, and
rdosubst - have potentially much more economical running
times than do the straightforward mgu and appsubst for
bounded structures. As is well known, unification can
produce exponential growth in the size of terms. Mgu in
effect traces out almost the entire tree structure of the
unified term, and appsubst actually creates such a tree
structure, with no sharing whatever. The functions for the
unrestricted case, by contrast, produce output 1list
structures no bigger than their inputs, and thus are not
immediately debarred from running in linear time. In fact,
if one dare suppose that the primitive operations on tables
require constant time, one sees that rdosubst does indeed
run in time linearly proportional to the total size of its
inpgt structures, and 1if there are few enough distinct
variables present that ult may in practice be considered to
have running time bounded by a constant, then rappsubst and
convert are similarly linear. Rmgu appears to have
exponential running time if its inputs exhibit much sharing
of substructures, but the possibility mentioned above of
threading a single monotonically growing relation through
all calls of runi would hold down the running time to
quadratic at worst.
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The supposition of table access time which is constant
or very slowly growing does not seem unrealistic, because on
examination the programs developed so far are found nowhere
to exploit the continued existence of a table of which an

extension has been computed. Therefore, they could be
recast in an imperative form, using conventional
"side-effecting" symbol table technigques such as hashing in
place of extend, assoc, and their kin. No such

transliterations will be given here. One might hope them to
be performable by an automatic program transformation
system; alternatively, it may be that data structures can
be devised which realize the general side-effect-free table
operations specified here with acceptable efficiency. The
author regards the latter gquestion as an interesting
challenge to implementors.

The comparative economy in both space and time of our
programs for unrestricted unification prompts us to ask
whether they can be augmented to solve the «classical
unification problem without losing these virtues. The
answer 1is yes; the essential ingredient in the augmentation
is a function which will wverify that an arbitrary list
structure is bounded, in otner words that the quasi-order
"is a substructure of" among its parts is in fact a partial
order. One way of performing this verification is to embed
the guasi-order in a total order, which Knuth's "topological
sort" algorithm |8] shows can be done in linear time.
N.V.Murray has observed, however [11]), that checking
boundedness for list structures requires much less ingenuity
than does the general topological sort problem: the absence
of cycles can be verified by a simple depth-first search.
If the 1list structure does contain a cycle, then at some
point one of the previously visited pairs which, together
with atoms, cut off the tracing of the depth-first spanning
tree must be an ancestor of itself. This idea gives rise to
the following function, which causes an error 1if its
argument is unbounded, and otherwise returns true:

cyclefree(x) = £35 h = cflx,nils([],nils{]] in true

cflx,ancestors,relatives] =
if mems(x,ancestors] %hen error [CYCLE]

élse if atom|{x} V mems{x,relatives]} then relatives
PPy PO Pigiuiang
else let anc = extends[x,ancestors]

;g cf[gx,anc,cf[g},anc,extendslx,relatives]]]

An economical way to perform classical unification is
to compute the entire (unrestricted) unifying substitution
first, and only then check it for boundedness. This seems
first to have been observed by Baxter (l], who, although he
failed to give a correct algorithm, appears to have
foreshadowed to some extent the idea behind almost linear
unification. Thus we need a function, expcyclefree,
analogous to cyclefree but applicable to an explicit
substitution. Much as convert finds it advantageous to use
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rdosubs directly rather than going through rdosubst, so
expcyclefree can get by with a single search over all the
list structure in a substitution by calling cf directly:

expcyclefree(s] = ecfrldomain(s],s,nils|]]

ecfr(vl,s, relatives] =
1£ [ hen
else ecfridv 'S, cflassoc[avl s],nils|]},relatives]]

If we prefer to work with implicit substitutions we can
perhaps do slightly better, for in the context of classical
unification we may suppose that the terms actually appearing
in an implicit substitution are finite; hence any cycle
introduced by a substitution must involve one of the
variables which the substitution eliminates. It follows
that the set "ancestors" can in the implicit case consist of
variables rather than of (presumably more numerous) dotted
pairs. Thus we have:

impcyclefree = icfr(domainis],s,nils{]]}

icfr|vl,s,relatives} =
if nvl then f;g
else 1cfrid ,s,1cf[avl s,nils|],relatives]]

icf[x,s,ancestors,relatives} =
kg defined|x,s] then
if mems|x,ancestors] thgn error [CYCLE]
else icflassoc|x,s],s,extends[x,ancestors],relatives]
else if atom(x] V defined(x,relatives] thepn relatives
else 1cfldx s, ancestors,lcflsg s,ancestors,
~ extends|[x,relatives]]] .

One may note that a correct version of impcyclefree
could Dpe written in which relatives also was a set of
variables, but that it would be liable to a running time
explosion in the presence of common substructures. Note
also that if any of the boundedness-checking algorithms is
to be realized by an imperative program using a single
mutable data structure to represent the set of ancestors,
tnen a deletion primitive for this structure will be
required.

b.U FAST UNIFICATION

We have now all the pieces in our hands which will
enable us to arrive at the almost 1linear unification
algorithm of Huet, Kahn, and Robinson. What we need is to
exploit fully at each point the equivalence relation
obtaining between those pairs of non-atomic substructures of
the inputs which must be unified if the computation is to
succeed. Fortunately, the algorithm of Fischer and Galler
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l4) solves exactly our problem: to represent an equivalence
relation in such a way that it may expeditiously be both
interrogated and progressively coarsened. The idea is to
represent each equivalence class by a rooted tree connecting
its elements, 1in which the only traversals that need be
performed are from an arbitrary node to the root. To test
the truth of the relation for two elements, one tests
identity of the roots of their trees; to coalesce two
equivalence classes, one attaches the root of one as an
immediate descendant of the root of the other.

Tarjan [lb] has given a full analysis of the running
time of this algorithm, taking into account two
modifications which are of great impor tance to the
theoretical behavior, but which are not necessarily worth
making in practice for equivalence relations of moderate
size, and which in any case need not be allowed to clutter
up the present attempt at high-level programming. (The
first of these, "patnh compression”, is the short-circuiting
by a single arc of every path to a root traversed 1in the
course of interrogation and coarsening. The second,
"balancing", is taking care that whenever trees are merged,
the smaller becomes a subtree of the larger.)

The information necessary to represent the
Fischer-Galler trees 1is simply a partial function mapping
each element not a root to its parent; merging two trees is
defining this function at an additional argument. Our
tabulateda functions, with their operation extend, are just
what 1s needed here; moreover the function ult is exactly
that which finds the root of a tree. Looking at our
impiicit substitutions in this light, we may see that they
are Fischer-Galler representations of relations in which at
most one non-variable occurs in each equivalence class and,
if it is present, forms the equivalence class
representative.

All this suggests a drastic simplification of rmgu by
making pairs and variables be arguments in the same table.
This yields the following functions:

fmgu(x,y] = funifylx,y,nilal]]
funify({x,y,s] = funijult(x,s),ultly,s],s]

funii{x,y,s} = ;g x=y then s
eise if =matom(x] A =matomly)
then funifyldx,dy,funify(gx,gy,extend(x,y,sll]]
else 1f varplx] then extend(x,y,s]
elgse if varply] then extendly,x,s]
lse error |CLASH] .

"

1]

At first glance, while it appears plausible that £fmgu
computes the desired equivalence relation, one supposes that
some complicated decoding process will be necessary in order
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to extract from it a corresponding substitution. To the
author's surprise, this proved not to be the case: a table
produced by fmgu can be applied by rappsubst, or passed
through convert and the result applied by rdosubst, just as
it it were an honest implicit substitution. Thus there is
no more programming to be done; merely replacing rmgu by
fmgu gives us a complete suite of functions for the rapid
computation and application of wunifiers. The mapping of
pairs to pairs which these new tables prescribe in addition
to their action on variables turns out to be a purely
peneficial redundancy. The benefit is increased sharing:
the common image of the input terms under their wunifying
substitution can now be produced by creating exactly one new
pair for each equivalence <class of substructures which
contains a pair.

It remains to give some support to the assertions of
the preceding paragraph. Inspection of funi makes it
evident that every merging of two equivalence <classes 1is
necessary, that is, happens only 1if the terms in both
classes must indeed be mapped to one term by any unifying

supstitution. Thus any clash obtained does <correctly
inaicate that wunification 1is impossible. (This same
property, tnat no unnecessary merging is done, also

indicates that any unifying substitution obtained will be a
most general one, as argued by Paterson and Wegman [12] in
the context of classical wunification. One might perhaps
show this more rigorously by establishing inductively that
any equivalence relation obtained by a successful
computation with £mgu is the same as the relation implicit
in the aata structures which rmgu, or its suggested
quadratic-time variant, would construct for the same pair of
inputs.)

What is not so evident is that a table returned by
fmgu, although not covered by our account of the
representation of substitutions by tables, does indeed act
like a unifying substitution when it is "applied" by
rappsubst. Actually, the unifying part is easy: the result
of fmgu has the two input term structures in the same
equivalence class, and so rappsubst, which accesses its
"substitution" argument only via ult, cannot distinguish the
two and is bound to map them to isomorphic structures. The
only real work 1is to verify that the function on terms
computed by rappsubst for a given "substitution" s continues
to nave the homomorphism property characteristic of
substitutions.

Although the point is somewhat obscured by the use of
the table h and the function extract (indeed the reader may
prefer at this point to contemplate appsubst in place of
rappsubst) it 1is not too hard to see that all will be well
provided s enjoys the following property, which might be
elevatea into a definition of "redundant tabular implicit
substitution": If s is defined at a pair x then ult|x,s] is
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another pair, x', such that
(*) ult(ax,s]=ult(ax’,s] and ult|dx,s]=ultidx',s] .

The sufficiency of (*) is readily verified in the case of
appsubst; we have, for example,

a appsubst|(x,s] 2 appsub(x' ,s]
appsubst[ax ,S]
appsub[ult[gx ¢Sl,s]
(*) appsubfultlax, s] s}
appsubst(gx, s]™

oo onn

which is half the homomorphism property.

But (*) is guaranteed by the determination of £fmgu,
whenever it merges the equivalence classes of two pairs, to
merge also the classes of their respective car's and cdr's.

Continuing to regard the running time of ult as "almost
constant", we readily see that fmg runs in almost linear
time, for funi can proceed past 1its first 1line only by
either finding a clash or else reducing the number of
remaining equivalence classes, which initially were only as
numerous as the distinct pairs and variables in the inputs,
by one.

Our original notion of an implicit substitution would
suggest viewing what goes on in fmgu as the transformation
of certain pairs into variables by fiat. It may be that an
abstract version of the unification algorithm can be found
which allows from time to time the replacement of one or
more 1instances of a composite subterm by a fresh variable,
and which will provide a much more direct and satisfactory
demonstration of the correctness of fmgu.

One further remark on programming may be of interest:
the device of path compression can be introduced without
abandoning the notion of tables as inviolable entities. One
may define:

trace[x,s] =
if defined|(x,s] fhen
t x' = assoc|[x,s]
in let s' = trace(x"' ,s]
-~ %3'££ defined|x',s']
then extend|x,assoc(x',s'],s']
else s'
else s .

L e aaad
Then one nas the eguivalence
ultlx,s] = ;g defined[x,s] then assoc(x,trace(x,s]] else x ,

but the usefulness of trace is that each modified table it
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produces can pe saved and become the input to the next table
lookup. An extensive but straightforward reconstruction of
all the unification functions would be required in order to
exploit tnis idea.
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