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Average run length of two-span moving sum algorithms

Swarnendu Kar∗, Kishan G. Mehrotra, Pramod K. Varshney

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY, 13244

Abstract

Among the various procedures used to detect potential changes in a stochastic process the moving
sum algorithms are very popular due to their intuitive appeal and good statistical performance.
One of the important design parameters of a change detection algorithm is the expected interval
between false positives, also known as the average run length (ARL). In this paper, we have
derived closed form expressions of ARL for two special cases - namely the two-span moving sum
and filtered derivative algorithms. We have assumed that the random variables are uniformly
distributed.

Key words: Average Run Length, Change Detection, Moving Average, Filtered Derivative,
Control Charts

1. Introduction

The problem of detecting a change in the mean value of a process, when both the change
point and change magnitude are unknown, is of great importance in various disciplines such as
econometrics, engineering and quality control. The optimal scheme, which involves Maximum-
Likelihood estimation of both the change point and the change magnitude, is computationally
prohibitive. Hence, various simple but suboptimal methods like ordinary moving average (MA)
and filtered derivative (FD) are used in practice. For data streams of dynamic nature, MA and
FD algorithms are particularly useful in generating synopses that approximate the most recent
data to answer queries or discover patterns. For example, MA has been used in the context of
speech recognition (Li et al., 2002) and technical analysis of financial data (Murphy, 1999). FD
has been used in the context of edge detection (Basseville, 1981).

Change detection schemes are assessed on the basis of the statistical distribution of the run
length, i.e., the number of test samples taken before a false positive is detected. For most prac-
tical purposes, the distribution function of run length is adequately summarized by its expected
(or average) value, also known as the average run length (ARL) (e.g. see Basseville and Nikiforov
(1993)). Unfortunately, for most practical schemes closed form expression for ARL is difficult
to obtain. For the MA scheme, the bulk of the research so far has been dedicated to either tab-
ulating numerical results through Monte Carlo simulations (SAS/QCR© 9.1 User’s Guide, 2004)
or deriving bounds using multivariate probability distribution functions (MPDFs) (Bohm and
Hackl, 1990). Very little work has been done to date regarding the ARL of the FD scheme. If
there are closed form expressions to be found, the most logical place to look for them is in the
simplest problem. For this, our proxy is the class of algorithms with span k = 2. The random
variables are assumed to be uniformly distributed. Since the cumulative distribution function of
any random variable is uniformly distributed, this assumption may not be too restrictive.

The ARL can be written, as we shall see in Section 2, as the sum of an infinite number
of MPDFs of increasingly higher dimensions. But MPDFs, in general, can be computed only
numerically and the computational intensity increases with the dimension of the multivariate
vector. While addressing the problem of approximating the ARL, it was observed by Robinson
and Ho (1978) that the ratio of the successive MPDFs converge as the dimension increases. This
fact was used to propose a series based approach of approximating the ARL. For the moving sum
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algorithm with positive weights and by using only kth order MPDFs, upper and lower bounds
were proposed by Lai (1974) and improved by Bohm and Hackl (1990). This was based on
the idea that an MPDF of dimension larger than k can be bound (both above and below) by
products of lower order MPDFs. Kar et al. (2009) derived the ARL for two-span MA and FD
algorithms, where the threshold is the mean of the test statistic. In this paper, we generalize this
result further, considering arbitrary thresholds. For uniformly distributed random variables, we
derive closed form expressions for the multivariate probabilities and subsequently the ARLs.

2. Main Results

Let X1, X2, . . . Xm, . . . be a sequence of observations obtained from a discrete time random
process. We assume that Xi’s are independently distributed random variables with variance σ2.
It is assumed that the mean of Xi’s possibly changes from ν to θ at some point, here σ2, ν
and θ > ν are unknown parameters and possible time of change is also unknown. For detecting
a change in the mean value of Xi we need to formulate an appropriate linear test statistic,
say Ym =

∑m
i=m−k+1 cm−iXi, where ci are constants and compare it against some threshold.

Roberts (1959) has considered MA where all the weights are equal. A generalization of MA was
considered by Bohm and Hackl (1990), where ci ≥ 0 for all i’s. There are other applications
where all the weights need not be positive. For example, in the context of edge detection,
Basseville (1981) uses the following test statistic

Ym =
m−k/2∑

i=m−k+1

Xi −
m∑

i=m−k/2+1

Xi,

where k is assumed to be an even number. This is also known as the filtered derivative (FD)
algorithm, since we take the difference of averaged (filtered) blocks of samples.

To test whether the process mean is ν or has shifted to θ, the test statistic Ym is monitored
for successive values of m and compared against an upper threshold, say t. The time elapsed
before Ym exceeds the thresholds for the first time is also known as the run length (RL) or
stopping time.

RL(t) = max{m : Ym < t}

In this paper, we are interested in the average run length (ARL), namely the expectation of RL,
i.e., in

L(t) = E(RL(t)).

Let

• pn(t) denote the probability that RL= n, i.e., the test passes n− 1 consecutive times but
fails at the nth instant, i.e.

pn(t) = P(Yk+1, Yk+2, . . . , Yk+n−1 < t, Yk+n > t).

• qn(t) denote the probability that the test passes n consecutive times, i.e.

qn(t) = P(Yk+1, Yk+2, . . . , Yk+n < t).

Throughout the paper, we refer to qn(t) as the nth survival probability. It follows from these
definitions that pn(t) = qn−1(t)−qn(t). Since the evaluations start at index k, the ARL function
can be represented as

L(t) = k − 1 +
∞∑

n=1

npn(t)

= k +
∞∑

n=1

qn(t). (1)

In this paper, we use (1) to derive closed form expressions for two-span moving sum algorithms,
i.e., when k = 2. In particular, we consider two cases, namely the moving average algorithm,
where c0 = c1 = 1, and the filtered derivative algorithm, where c0 = 1, c1 = −1. The results are
stated in the following section.
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2.1. The Survival Probabilities
In this section, we obtain closed form expressions for the survival probabilities.

Theorem 1. Let X1, X2, . . . Xn, . . . be independent and uniformly distributed in [0, 1] random
variables. Then,

1. For the two-span filtered derivative algorithm with threshold t ∈ [−1, 0),

qn(t) =

{
(1+nt)n+1

(n+1)! if n < |t|−1

0 if n ≥ |t|−1
(2)

2. For the two-span moving average algorithm with threshold t ∈ [0, 1],

qn(t) = tn+1G
(n+1)(0)

(n+ 1)!
(3)

where G(z) = sec(z) + tan(z)

Proof. 1. Consider any t < 0. From the definition of filtered alternatives for k = 2, it follows
that

qn(t) = P(Xi −Xi+1 < t for i = 1, . . . , n).

For qn(t) to be non-zero, since all the inequalities must be satisfied, therefore, we get Xi+1 ≥
Xi − t for i = 1, . . . , n. In addition, because all variables are uniform between [0, 1] we have
0 ≤ Xi ≤ 1 for all i. Consequently, for qn(t) to be non-zero, the following must be satisfied:

1 ≥ Xn+1 > Xn − t > Xn−1 − 2t > · · · > X1 − nt, and − nt ≤ 1 (4)

Hence qn(t) = 0 for n ≥ |t|−1. To derive the non-zero expression for qn(t), assume n < |t|−1.
From (4), we get the following integral representation of qn(t)

qn(t) =
∫ 1

0

. . .

∫ 1

0

∫ 1

0

I(x1 − x2 < t, x2 − x3 < t, . . . , xn − xn+1 < t) dx1 dx2 . . . dxn+1

=
∫ 1

−nt

∫ xn+1+t

−(n−1)t

. . .

∫ x4+t

−2t

∫ x3+t

−t

∫ x2+t

0

dx1 dx2 dx3 . . . dxn dxn+1, (5)

where I(.) denotes the identity function. Let us define q′n(y, t) by

q′n(y, t) =
∫ y

−nt

∫ xn+1+t

−(n−1)t

. . .

∫ x4+t

−2t

∫ x3+t

−t

∫ x2+t

0

dx1 dx2 dx3 . . . dxn dxn+1. (6)

Clearly, we can easily obtain q′n(1, t) = qn(t). To prove (2), it suffices to show that

q′n(y, t) =
(y + nt)n+1

(n+ 1)!
, (7)

which we shall prove now by mathematical induction.
The base case q′1(y, t) is readily verified as

q′1(y, t) =
∫ y

−t

∫ x2+t

0

dx1 dx2 =
(y + t)2

2
.

For n > 1, assume that (7) is true for n− 1. From (6) and (5), we obtain

q′n(y, t) =
∫ y

−nt

q′n−1(xn+1 + t, t) dxn+1

=
∫ y

−nt

(xn+1 + nt)n

n!
dxn+1

=
(y + nt)n+1

(n+ 1)!
,
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thereby proving the first part of the Lemma.

2. For t = 1, the following result was derived in (Kar et al., 2009).

qn(1) =
G(n+1)(0)
(n+ 1)!

Hence, to prove (3), it suffices to show that

qn(t) = ctn+1 (8)

for some constant c that depends only on n and not on t. From the definition of qn it follows
that for the moving average case,

qn(t) = P(X1 +X2 < t,X2 +X3 < t, . . . ,Xn +Xn+1 < t)

=
∫ t

0

∫ t−xn+1

0

. . .

∫ t−x3

0

∫ t−x2

0

dx1 dx2 . . . dxn dxn+1. (9)

Let us define

q′n(y, t) =
∫ t−y

0

∫ t−xn+1

0

. . .

∫ t−x3

0

∫ t−x2

0

dx1 dx2 . . . dxn dxn+1. (10)

Clearly, we can find qn(t) by substituting y = 0 in q′n(y, t). To prove (8), it suffices to show that
q′n(y, t) is an (n+ 1)th order homogeneous polynomial in y and t, i.e.,

q′n(y, t) =
n+1∑
j=0

cjy
jtn+1−j , (11)

for some constants c1, c2, . . . , cn+1 that depend only on n and not on t. From (11), one can
readily obtain qn(t) as follows

qn(t) = q′n(0, t) = c0t
n+1,

thereby proving (8). We shall prove (11) by mathematical induction. The base case q′1(y, t) is
readily verified as

q′1(y, t) =
∫ t−y

0

∫ t−x2

0

dx1 dx2 =
t2 − y2

2
,

which is a homogeneous polynomial of order 2. For n > 1, we assume that (11) is true for n− 1,
i.e., q′n−1(y, t) is an nth degree homogeneous polynomial. From (10) and (11), we obtain

q′n(y, t) =
∫ t−y

0

q′n−1(xn+1, t) dxn+1

=
∫ t−y

0

 n∑
j=0

cjx
j
n+1t

n−j

 dxn+1

=
n∑

j=0

cjt
n−j

(∫ t−y

0

xj
n+1 dxn+1

)

=
n∑

j=0

cjt
n−j (t− y)j+1

j + 1
,

which is a (n+ 1)th order homogeneous polynomial, thereby completing the induction.

The following lemma relates values of qn(t) at two different points t and t′ in the case of
two-span moving sum algorithms. The result is applicable in general, as long as the distribution
of Xi is symmetric.
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Lemma 1. Let Xi, i ∈ {1, 2, . . .} be i.i.d. random variables, the pdf being symmetric w.r.t. mean
µ. Consider a two-span moving sum algorithm with weights c0, c1 and two thresholds t, t′ such
that t+ t′ = 2µ(c0 + c1). Then the survival probabilities at t and t′ are related by

qn(t′) =
n∑

m=0

(−1)mQn,m(t), where

Qn,m(t) =


∑

l1,l2,··· ,lm≥0∑
k

klk=m

l′=n−m+1−
∑

lk

(
n−m+ 1
l′, l1, · · · , lm

) m∏
k=1

qlk
k (t)


. (12)

In particular, when n = 1, 2, the above expression simplifies to the well known expressions
q1(t′) = 1− q1(t) and q2(t′) = 1− 2q1(t) + q2(t).

Proof. Recall that, in the moving average case we calculate Yi = c1Xi + c0Xi+1. By definition

qn(t′) = P [∩n
i=1 (c1Xi + c0Xi+1 < t′)] = P [∩n

i=1 (Yi < t′)] . (13)

Let us define the random variable X ′i = 2µ −Xi. We note that Xi and X ′i have identical pdf,
since

P(X ′i < t) = P(2µ−Xi < t)
= P(Xi > 2µ− t)
= P(Xi < t),

where the last equality is because Xi is symmetric w.r.t. mean µ. We also note that since
X1, X2, . . . , Xn are mutually independent, so are X ′1, X

′
2, . . . , X

′
n. Substituting X ′i for Xi in

(13), we can thus write

qn(t′) = P
[
∩n

i=1

(
c1X

′
i + c0X

′
i+1 < t′

)]
= P [∩n

i=1 (c1(2µ−Xi) + c0(2µ−Xi+1) < t′)]
= P [∩n

i=1 (c1Xi + c0Xi+1 > 2µ(c0 + c1)− t′)]
= P [∩n

i=1 (Yi > t)] . (14)

In order to relate qn(t′) to qn(t) it remains to apply the inclusion-exclusion principle (e.g. Stanley
(1997)) to equation (14). Therefore,

qn(t′) = 1− P[∪n
i=1(Yi < t)]

= 1−
n∑

m=1

(−1)m−1Qn,m, (15)

where Qn,m denotes the sum of the probabilities associated with selecting m distinct events out
of n in the union in equation (15). The selected events are some times contiguous and some
times there are not. A collection of j contiguous events will result in a qj(t), and in Qn,m(t) we
may have more than one such situation. In order to simplify Qn,m(t) we proceed as follow.

Define the index set I = {1, 2, . . . , n}. For a subset of indices (sorted for unique representa-
tion) J ⊆ I, define the probability qJ as follows

qJ (t) = P

⋂
j∈J

(Yj < t)

 .
This notation is not to be confused with qn(·) where the subscript n has to be an integer. We
shall see shortly that these notations are indeed related. For a contiguous subset J , it readily
follows that qJ (t) = q|J |(t). Any non-contiguous subset J ⊆ I can be uniquely decomposed

5



into sorted, disjoint and contiguous subsets. In general, we can have as many as lk sets of k
contiguous indices, such that lk ≥ 0 for all k = 1, 2, . . . ,m,

∑m
k=1 lk × k = m. The vectors

of random variables associated with distinct subsets of noncontiguous indices are independent,
leading to the factorization

Qn,m(t) =

 ∑
l1,l2,...,lm≥0∑

klk=m

N(l1, l2, . . . , lm)
m∏

k=1

qlk
k (t)

 . (16)

To compute N(l1, l2, . . . , lm), let us consider this combinatorial problem involving dots and bars.
Assume we have n−m dots and L bars of m different colors (lk each of same color). The bars are
to be placed in the space between the dots or at the sides so that no two bars are together. We
can chose the L places in

(
n−m+1

L

)
ways. These L places can be filled by l1, l2, . . . , lm identical

bars of m different colors in
(

L
l1,l2,...,lm

)
ways. Hence the number of choices are(

n−m+ 1
L

)(
L

l1, l2, . . . , lm

)
=
(
n−m+ 1
l′, l1, . . . , lm

)
,

where l′ = n−m+ 1−L. Once a choice is made, we replicate the kth color bar k times, so that
the total number of objects (dots and bars combined) are n −m +

∑m
k=1 klk = n. As per the

order of appearance, we assign an index to each of these objects. Denote the sorted index set
of the bars as J . It is easily seen that decomposing J yields exactly lk contiguous fragments of
size k, for 1 ≤ k ≤ m, and also that the two combinatorial problems are equivalent. Hence

N(l1, l2, . . . , lm) =
(
n−m+ 1
l′, l1, . . . , lm

)
,

which, along with (16), completes the proof of (12).

2.2. Exact Evaluation of ARL
In this section, we calculate the exact value of ARL for uniformly distributed random vari-

ables. Our results apply to the moving average and filtered derivative when the span is 2.
Let Xi, i ∈ {1, 2, . . .} be i.i.d. random variables, the pdf being symmetric w.r.t. mean µ.

Consider a two-span moving sum algorithm with weights c0, c1 and two thresholds t, t′ such that
t+ t′ = 2µ(c0 + c1) and L(t) <∞. Then, by Lemma 1,

L(t′) = 2 +
∞∑

n=1

qn(t′)

= 2 +
∞∑

n=1

n∑
m=0

(−1)mQn,m(t)

= 1 +
∞∑

n=0

n∑
m=0

(−1)mQn,m(t), (17)

where the last equality follows by defining Q0,0 , 1.

Conjecture 1.
∞∑

n=0

n∑
m=0

(−1)mQn,m(t) =
∞∑

n=0

∞∑
m=0

(−1)mQn+m,m(t) (18)

Discussion. The above assertion follows from the rearrangement described in Figure 1. The
series in (17) is only conditionally convergent. Despite that, we conjecture that the rearrangement
preserves the limiting value. We shall derive Lemma 2 based on this assumption and verify the
results for the uniform and normal random variables using simulation studies.

Next, we define by q̃(t), the limit of the alternating series

q̃(t) = 1− q1(t) + q2(t)− · · · = 1 +
∞∑

i=1

(−1)iqi(t). (19)

6



Q0,0

Q1,0 // Q1,1

Q2,0 // Q2,1 // Q2,2

Qn,0 // · · · // · · · // Qn,n

+3

Q0,0

""EE
EE

EE
EE

Q1,0

""EE
EE

EE
EE

Q1,1

""EE
EE

EE
EE

Q2,0

""

Q2,1

""

Q2,2

""
Qn,0 · · · · · · Qn,n

Figure 1: This rearrangement is conjectured to preserve the limiting value

We note that, by assumption, L(t) = 2 +
∑∞

i=1 qi(t) <∞. Hence (19) converges absolutely and
q̃(t) is well defined. It is easy to see that 0 ≤ q̃(t) ≤ 1. More generally, we conclude that (q̃(t))n

converges absolutely for 1 ≤ n <∞, and hence any rearrangement of the multinomial expansion
of (q̃(t))n converges. In particular, we define

L =

{
(l′, l1, l2, · · · , lm) :

m∑
k=1

klk = m, l′ = n−
∑

lk

}
,

and consider the following arrangement

(q̃(t))n = (1− q1(t) + q2(t)− · · · )n

=
∞∑

m=0

(∑
L

(
n

l′, l1, · · · , lm

) m∏
k=1

(
(−1)kqk(t)

)lk)

=
∞∑

m=0

(∑
L

(
n

l′, l1, · · · , lm

)
(−1)

∑
klk

m∏
k=1

qlk
k (t)

)

=
∞∑

m=0

(−1)m

(∑
L

(
n

l′, l1, · · · , lm

) m∏
k=1

qlk
k (t)

)

=
∞∑

m=0

(−1)mQn+m−1,m, (20)

where the last step follows from the definition in (12). Lemma 2 expresses L(t′) in terms of q̃(t).

Lemma 2. Let Xi, i ∈ {1, 2, . . .} be i.i.d. random variables, the pdf being symmetric w.r.t. mean
µ. Consider a two-span moving sum algorithm with weights c0, c1 and two thresholds t, t′ such
that t+ t′ = 2µ(c0 + c1) and L(t) <∞. Then

L(t′) =
1

1− q̃(t)
. (21)

Proof.

L(t′)
(a)
= 1 +

∞∑
n=1

∞∑
m=0

(−1)mQn+m−1,m(t)

(b)
= 1 +

∞∑
n=1

(q̃(t))n

=
1

1− q̃(t)
,

where (a) follows from (17) and (18) and (b) follows from (20), thereby completing the derivation
of (21).
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The following result is the main contribution of this paper.

Theorem 2. Let X1, X2, . . . Xn, . . . be independent random variables, all uniformly distributed
in [0, 1]. Then,

1. For the two-span filtered derivative algorithm (c0 = 1, c1 = −1),

L(t) =


2 +

∑b|t|−1c
n=1

(1+nt)n+1

(n+1)! if − 1 < t < 0
exp(1) if t = 0(∑bt−1c

n=1 (−1)n−1 (1−nt)n+1

(n+1)!

)−1

if 0 < t < 1

(22)

2. For the two-span moving average algorithm (c0 = c1 = 1),

L(t) =
{

sec(t) + tan(t) + 1− t if 0 < t ≤ 1
(sec(2− t)− tan(2− t) + 1− t)−1 if 1 < t < 2

(23)

Proof. The results follow mostly from the application of Theorem 1 and Lemma 2 to the definition
of ARL in (1). Note that the random variable Xi is symmetric w.r.t. mean µ = 1

2 .
1. For −1 < t < 0, the result follows by substituting (2) in (1). The result for t = 0, which

was obtained by Kar et al. (2009), can also be verified to be the limiting value of L(t) from both
directions. For 0 < t < 1, note that 2µ(c0 + c1) = 2 · 1

2 · (1 − 1) = 0 and we define t′ = −t so
that Lemma 2 can be applied. Also note that −1 < t′ < 0 so that qn(t′) can be calculated using
(2). Hence qn(t′) = (1− nt)n+1/(n+ 1)! and the result follows by interchanging t, t′ in (21).

2. For 0 < t < 1, we proceed by substituting (3) in (1) and complete the derivation as
follows

L(t) = 2 +
∞∑

i=1

ti+1G
(i+1)(0)

(i+ 1)!

= 2 +
∞∑

i=2

ti
G(i)(0)
i!

= 2− (G(0) + tG′(0)) +
∞∑

i=0

ti
G(i)(0)
i!

(a)
= 2− (G(0) + tG′(0)) +G(t)
(b)
= 1− t+G(t)
= sec(t) + tan(t) + 1− t,

where (a) follows from the Taylor series expansion of G(t) and (b) is because G(0) = 1 and
G′(0) = 1, both of which can be easily verified from the definition of G(·). For 1 < t < 2, note
that 2µ(c0 +c1) = 2 · 12 ·(1+1) = 2 and we define t′ = 2−t so that Lemma 2 can be applied. Also
note that 0 < t′ < 1 so that qn(t′) can be calculated using (3). We proceed by interchanging t, t′

in (21) and complete the derivation as follows

(L(t))−1 =
∞∑

i=1

(−1)i−1qi(t′)

=
∞∑

i=1

(−1)i−1(t′)i+1G
(i+1)(0)

(i+ 1)!

=
∞∑

i=1

(−t′)i+1G
(i+1)(0)

(i+ 1)!

= −(G(0)− t′G′(0)) +
∞∑

i=0

(−t′)iG
(i)(0)
i!

(a)
= −(1− t′) +G(−t′)
= sec(2− t)− tan(2− t) + 1− t,

where (a) is because G(0) = 1, G′(0) = 1 and also because of the Taylor series expansion of
G(−t′).
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3. Simulation studies

We have performed simulation studies that provide further evidence in support of Conjecture
1. We have run simulations for various thresholds and using uniform U [0, 1] and normal N (0, 1)
random variables and displayed the results in Table 1. We have specified the thresholds as p1(t),
i.e. the tail probability of the random variable Yi. The Monte carlo estimate of ARL, denoted by
L̂(t), was obtained as the mean of 107 sample runs. For uniform random variables, we compare
L̂(t) with the closed form expressions derived in Theorem 2. For normal random variables, we
compute qn(t) numerically using the technique in (Genz, 1992) and the software available from
author’s website. Since we can obtain only finite number of terms this way, we have chosen to
compute qn(t) for n = 1, 2, . . . , 6 only. We use the following formula L6 = (q1−q2+· · ·−q6)−1. By
Conjecture 1, Ln(t) converges to L(t) for large n. Since we use n = 6 only, for the approximation
L6(t) ≈ L(t) to be valid, qn(t) has to converge rapidly. This is the reason we have shown the
results only for sufficiently high thresholds (small p1(t)) for normally distributed case.

(a) ARL for uniform distributed random variables

FD MA
p1(t) L̂(t) L(t) L̂(t) L(t)
0.99 2.01 2.01 2.01 2.01
0.9 2.10 2.10 2.14 2.14
0.7 2.33 2.33 2.60 2.60
0.5 2.72 2.72 3.41 3.41
0.3 3.67 3.67 5.13 5.12
0.1 10.00 10.00 13.05 13.04
0.01 99.98 100.00 109.53 109.49
0.001 998.78 1000.00 1029.00 1029.87
0.0001 9905.75 10000.00 9988.02 10094.34

(b) ARL for normal distributed random variables

FD MA
p1(t) L̂(t) L6(t) L̂(t) L6(t)
0.1 10.07 10.07 13.64 13.64
0.01 99.96 100.00 113.98 114.05
0.001 998.70 1000.00 1055.55 1056.67
0.0001 9900.86 10000.00 10130.66 10238.03

Table 1: Comparison of Monte carlo ARL with those predicted by Conjecture 1.

4. Conclusion

In this paper, we have derived closed form expressions of the ARL for two-span moving
sum algorithms. Though final expressions for ARL are only derived for uniformly distributed
random variables, some intermediate theorems are applicable to a more general class of symmetric
distributions. A likely future research direction is to investigate algorithms with higher span sizes
(k = 3, 4 . . .). Together, these expressions of ARL are likely to be useful to practitioners designing
change detection algorithms for diverse applications.
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