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Approximation of Average Run Length of Moving Sum Algorithms
Using Multivariate Probabilities

Swarnendu Kar∗, Kishan G. Mehrotra, Pramod K. Varshney

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY, 13244

Abstract

Among the various procedures used to detect potential changes in a stochastic process the moving
sum algorithms are very popular due to their intuitive appeal and good statistical performance.
One of the important design parameters of a change detection algorithm is the expected interval
between false positives, also known as the average run length (ARL). Computation of the ARL
usually involves numerical procedures but in some cases it can be approximated using a series
involving multivariate probabilities. In this paper, we present an analysis of this series approach
by providing sufficient conditions for convergence and derive an error bound. Using simulation
studies, we show that the series approach is applicable to moving average and filtered derivative
algorithms. For moving average algorithms, we compare our results with previously known
bounds. We use two special cases to illustrate our observations.

Key words: Average Run Length, Change Detection, Moving Average, Filtered Derivative,
Control Charts

1. Introduction

The problem of detecting a change in the mean value of a process, when both the change
point and change magnitude are unknown, is of great importance in various disciplines such as
econometrics, engineering, quality control, technical analysis of financial data, and edge detection
in image processing. The optimal scheme, which involves Maximum-Likelihood estimation of
both the change point and the change magnitude, is computationally prohibitive. Hence various
simple but suboptimal methods like ordinary moving average (MA), exponentially weighted
moving average (EWMA), and filtered derivative (FD) are used in practice. For example, MA is
used in technical analysis of financial data, like stock prices, returns or trading volumes (Murphy,
1999).

To apply the MA scheme a finite, (say k), immediate past samples are added with equal
weights 1/k, while in EWMA, the past samples are combined with exponentially decreasing
weights. A generalization of the MA scheme is where the past k samples are combined with
arbitrary positive weights (see (Lai, 1974; Bohm and Hackl, 1990)). In other applications, e.g.,
filtered derivative in edge detection (Basseville, 1981), the past k samples are combined with
both positive and negative weights. In this paper, such generalizations are referred to as moving
sums (MOSUM). In this paper, we study the most commonly used MOSUM algorithms - namely
the MA and FD schemes.

Change detection schemes are assessed on the basis of the statistical distribution of the run
length, i.e., the number of test samples taken before a false positive is detected. For most practical
purposes, the distribution function of run length is adequately summarized by its expected (or
average) value, also known as the average run length (ARL). Unfortunately, for most practical
schemes closed form expression for ARL is difficult to obtain. For the MA scheme, the bulk
of the research so far has been dedicated to either tabulating numerical results through Monte
Carlo simulations (SAS/QCR© 9.1 User’s Guide, 2004) or deriving bounds using multivariate
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probability distribution functions (MPDFs) (Bohm and Hackl, 1990). Very little work has been
done to date regarding the ARL of FD scheme.

The ARL can be written as the sum of an infinite number of MPDFs of increasingly higher
dimensions. But MPDFs, in general, can be computed only numerically and the computational
intensity increases with the dimension of the multivariate vector. While addressing the problem
of approximating the ARL for EWMA algorithms, it was observed by Robinson and Ho (1978)
that the ratio of the successive MPDFs converge as the dimension increases. This fact was used
to propose a series based approach of approximating the ARL. For the MOSUM algorithm with
positive weights and by using only kth order MPDFs, upper and lower bounds were proposed by
Lai (1974) and improved by Bohm and Hackl (1990). This was based on the idea that an MPDF
of dimension larger than k can be bound (both above and below) by products of lower order
MPDFs. Consistent with the name of the authors, we refer to those results as LBH bounds.

In this paper, we analyze the series approach of Robinson and Ho (1978) by laying out
sufficient conditions for convergence and also provide an error bound. With simulation stud-
ies, we demonstrate the versatility of this approach by showing that the conditional survival
probabilities also converge for MA and FD algorithms. For MA algorithms, we compare the
actual convergence vis-a-vis the LBH bounds. Through simulation studies for both MA and FD
schemes, we demonstrate that a satisfactory approximation of the ARL can be obtained by using
only dk/2eth order MPDFs. Compared to kth order MPDFs as required by the LBH bounds,
this provides a significant saving in computation for the MA scheme.

The rest of this paper is organized as follows. We introduce some notations in Section 2.
In Section 3, we summarize the main results of this paper. We examine the convergence of
conditional survival probabilities for MOSUM algorithms in Section 4. In Section 5, we compare
the convergence of ARL for MA algorithms with the LBH bounds. We also demonstrate that
MPDFs of dk/2eth order provides a reasonable approximation of the ARL. Concluding remarks
are provided in Section 6.

2. Notations

Let X1, X2, . . . Xm, . . . be a sequence of observations obtained from a discrete time random
process. We assume that Xi’s are independently distributed random variables with variance
σ2. It is assumed that the mean of Xi’s possibly changes from µ to θ at some point, here
σ2, µ and θ > µ are unknown parameters and possible time of change is also unknown. For
detecting a change in the mean value of Xi’s from we need to formulate an appropriate linear
test statistic, say Ym =

∑m
i=m−k+1 cm−iXi, where ci are constants and compare it against some

threshold. Roberts (1959) has considered both the MA and EWMA schemes for appropriately
chosen weights. A generalization of MA was considered by Bohm and Hackl (1990), where ci ≥ 0
for all i’s. There are other applications where all the weights need not be positive. For example,
in the context of edge detection, Basseville (1981) uses the following test statistic

Ym =
m−k/2∑

i=m−k+1

Xi −
m∑

i=m−k/2+1

Xi

where k is assumed to be an even number. This is also known as the filtered derivative (FD)
algorithm, since we take the difference of averaged (filtered) block of samples.

To test whether the process mean is µ or has shifted to θ, the test statistic Ym is monitored
for successive values of m and compared against an upper threshold, say h. The threshold is
sometimes also specified as multiples of the standard deviation in excess of the mean of the test
statistic, i.e. by the quantity δ defined by

δ =
h−E(Ym)√

Var(Ym)
,

=
h− µ∑ ci

σ
√∑

c2i
.

In this paper, MOSUM ([c0, c1, . . . , ck−1], δ) denotes a moving sum algorithm with weights c0, c1, . . . , ck−1

and threshold δ.
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The time elapsed before Ym exceeds the thresholds for the first time is also known as the run
length (RL) or stopping time.

RL = max{m : Ym < h}

In this paper, we are interested in the average run length (ARL), namely the expectation of RL,
i.e., in

L = E(RL)

To show that L can be represented as an infinite sum of probability distributions we define:

• pn, the probability that RL= n, i.e., the test passes n − 1 consecutive times but fails at
the nth instant;

pn = P (Yk+1, Yk+2, . . . , Yk+n−1 < h, Yk+n > h).

• qn, the survival probability is the probability that the test passes n consecutive times

qn = P (Yk+1, Yk+2, . . . , Yk+n < h)

• rn, the conditional survival probability that the test survives at a particular instant given
that it has already survived the past n− 1 times,

rn = P (Yk+n < h|Yk+1, Yk+2, . . . , Yk+n−1 < h)

It follows from these definitions that pn = qn−1 − qn and rn = qn/qn−1. Since the evaluations
start at index k, the ARL function can be represented as

L = k − 1 +
∞∑

n=1

npn

= k +
∞∑

n=1

qn (1)

In this paper, we use (1) to either derive closed form expressions or provide approximate results.

3. Main results

In Theorem 1, we obtain closed form expressions for L for two special cases.

Theorem 1 (Two special cases). Let X1, X2, . . . Xn, . . . be zero-mean i.i.d. random variables
with symmetric pdf. Then the following results apply,

1. For MOSUM([−1, 1], 0), L = exp(1) ≈ 2.7183.
2. For MOSUM([1, 1], 0), L = sec(1) + tan(1) ≈ 3.4082.

Proof. 1. For c0 = 1 and c1 = −1, the qn is given by

qn = P (X1 −X2 < 0, X2 −X3 < 0, . . . , Xn −Xn+1 < 0) ,
= P (X1 < X2 < X3 · · · < Xn+1) . (2)

We recall that X1, X2, . . . , Xn+1 are i.i.d. random variables. If we draw n+ 1 independent
samples from the same distribution and order them, they can result in any one of the
(n+1)! possible orderings with equal probability. Since (2) denotes only one such ordering,
we conclude that

qn =
1

(n+ 1)!
.

This result is well known for the Gaussian random variables (Barlow, Barthoromew, Brem-
ner, and Brunk, 1972). Using (1), we obtain

L = 2 +
∞∑

n=1

1
(n+ 1)!

= exp(1)
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2. Next we consider c0 = 1, c1 = 1. The MPDF qn was derived in the context of Gaussian
random variables in (Moran, 1983), but a careful analysis of the proof reveals that the
argument is valid for any symmetric distribution. Thus, quoting (Moran, 1983), qn is
given by the coefficient of zn+1 in the power series expansion of sec(z) + tan(z) around the
point z = 0. Since,

sec(z) + tan(z) = 1 + z +
∞∑

n=1

qnz
n+1

Evaluating the above series at z = 1 and using (1), we obtain

L = sec(1) + tan(1).

These two special cases may not be of any practical use, nevertheless, we use these cases as
illustrative examples in our discussions in Section 4.

3.1. Previous work on approximating ARL using MPDFs
We observe that qn is an MPDF of n-dimensions involving correlated variables Yk+1, Yk+2, . . . , Yk+n.

In general, closed form expressions for qn are not available; the values are computed numerically.
The intensity of these computations increases with n. As a result, the summation in the form of
(1) can seldom be used to compute the ARL. Various methods for approximating the ARL have
been proposed by the researchers; we briefly describe two such approaches due to Lai (1974) and
Robinson and Ho (1978) below.

For EWMA, and using simulations, Robinson and Ho (1978) observed that as n increases the
conditional survival probabilities {rn} appear to converge. If we assume that ri ≈ rn,∀i > n,
then the future survival probabilities can be approximated as qi ≈ qi−1rn,∀i > n. By using (1),
we obtain the nth order approximation of L as:

Ln = k +
n−1∑
i=1

qi + qn(1 + rn + r2n + . . .)

= k +
n−1∑
i=1

qi +
qn

1− rn
. (3)

Thus, in (3), the ARL is approximated by using only a few lower order MPDFs. Another
significant result due to Lai (1974) and improved by Bohm and Hackl (1990) provides an upper
and a lower bound on ARL for MOSUM algorithms with positive weights, as follows:

1 +
qk
pk
≤ L ≤ k +

qk
pk
. (4)

We denote the lower and upper bounds (together we call them LBH bounds) in (4) by Ll and Lu

respectively. These bounds are significant because they are asymptotically the same, i.e., when
(L) is large compared to the span k, the upper and lower bounds are almost equal. The ARL
can then be approximated as L ≈ qk/pk, which requires the computation of MPDFs of order k.

Very little work can be found in the literature, if any, regarding the approximation of ARL
for the FD scheme.

3.2. Convergence analysis of {rn} and {Ln}
In Theorem 2, we present an analysis of the series in (3). In particular, we derive an error

bound that relates the convergence of Ln to that of rn.

Theorem 2 (Convergence and error bound). Assume L <∞, rn → r for some r ∈ [0, 1). Then

1. Ln → L.

4



2. Choose ε such that 0 < ε < 1− r. If |rn − r| < ε for all n ≥ m, then∣∣∣∣Ln − L
L

∣∣∣∣ < 2ε
(1− r − ε)2 for all n ≥ m (5)

and if, in particular, convergence {rn}∞m+1 is monotonic, then

|Ln − L| <
ε

(1− r − ε)2 for all n ≥ m (6)

Proof. 1. If L <∞, then from equation (1) it follows that qn → 0. Taking limits on the right
hand side of (3), we complete the first result. That is:

lim
n→∞

Ln = L+
limn→∞ qn

1− r = L.

2. Choose ε > 0. Since {rn} → r, there is an index m such that

|ri − r| < ε, ∀i ≥ m. (7)

To obtain the desired bounds on L we first note that L = limn→∞ Ln and write this
limiting value as a telescopic sum to obtain:

L ≡ Lm + (Lm+1 − Lm) + (Lm+2 − Lm+1) + · · ·

= Lm +
∞∑

i=m+1

(Li − Li−1) (8)

For i ≥ 2, we use (3) to obtain

Li − Li−1 = qi−1 +
qi

1− ri
− qi−1

1− ri−1

=
qi−1

1− ri
− qi−1

1− ri−1

= qi−1
ri − ri−1

(1− ri)(1− ri−1)
(9)

Using (9) in (8), we can bound the approximation error as follows

|Lm − L| =
∣∣∣∣∣
∞∑

i=m+1

qi−1
ri − ri−1

(1− ri)(1− ri−1)

∣∣∣∣∣
(a)

≤
∞∑

i=m+1

qi−1
|ri − ri−1|

(1− ri)(1− ri−1)

(b)

≤ 1
(1− r − ε)2

∞∑
i=m+1

qi−1 |ri − ri−1| (10)

where (a) follows since qi, 1 − ri > 0, ∀i, and (b) is due to our initial assumption that
1− r − ε > 0 and from (7), we can obtain that 1− r − ε < 1− ri, ∀i ≥ m.
From (10), we can proceed to obtain (5) as follows∣∣∣∣Lm − L

L

∣∣∣∣ (a)
<

1
L

2ε
(1− r − ε)2

∞∑
i=m+1

qi−1

(b)
<

2ε
(1− r − ε)2

where (a) follows from the fact that for i ≥ m + 1, |ri − ri−1| ≤ |ri − r| + |ri−1 − r| < 2ε
and (b) follows from the infinite sum in (1).
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From (10), assuming {rn}∞m+1 to be monotonic, we can proceed to obtain (6) as follows

|Lm − L|
(a)
<

1
(1− r − ε)2

∞∑
i=m+1

|ri − ri−1|

(b)
=

1
(1− r − ε)2

∣∣∣∣∣
∞∑

i=m+1

(ri − ri−1)

∣∣∣∣∣
(c)
=

1
(1− r − ε)2 |r − rm|

(d)
<

ε

(1− r − ε)2

(a) is due to fact that qi < 1 ∀i, (b) follows from the monotonicity of {rn}∞m+1, (c) follows
from an argument exactly similar to the one used to derive (8) and (d) is due to assumption
(7).

Applicability of Theorem 2 relies on the convergence of {rn}. We discuss the convergence of
{rn} for some moving sum algorithms in the following section.

4. Convergence of {rn} for Moving Sums

We use simulation studies to examine the convergence properties of rn for MA and FD
algorithms. In all our simulations, it was assumed that the error variables Xi are normally
distributed. The MPDFs were calculated as multivariate normal CDFs using the technique in
(Genz, 1992). We have used the software available from the author’s website. We evaluate rn
for various values of the span k. We fix the standardized thresholds at δ = 0 and δ = 2. The
graphs are displayed in Figure 1.

In Figure 1(a) we observe that rn achieves its limiting value very quickly after some initial
zig-zag pattern. This limiting value, r, depends on k and it is observed that the length of zig-
zagedness depends on the value of k. This behavior is more pronounced for δ = 0. For the
case of filtered derivatives rn (see Figures 1(c) and 1(d)) monotonically decrease after initial
minor deviations. Consequently, for the filtered derivative model the tighter bound, given by
equation (6), can be applied. The monotonic convergence (rn → 0) follows for the special case
of MOSUM([−1, 1], 0) from Theorem 1 where we had observed that the survival probability
qn = 1

(n+1)! and therefore the conditional survival probability is rn = 1
n+1 which converges to

zero.
The zig-zag property, which is most pronounced in Figure 1(a), is easy to explain for the

special case of MOSUM([1, 1], 0). From Theorem 1 we know that qn is the coefficient of zn

in the power series expansion of sec(z) + tan(z) around z = 0. Thus, we obtain the survival
probabilities as:

{qn} =
{

1
2
,

1
3
,

5
24
,

2
15
,

61
720

, · · ·
}
.

The conditional survival probabilities can therefore be computed as {rn} =
{

2
3 ,

5
8 ,

16
25 ,

61
96 , · · ·

}
=

{0.667, 0.625, 0.640, 0.635, · · · }. It is a known result (Sloane, 2009) that rn converges to 2/π =
0.6366. Also {rn} decreases and increases alternately, giving the series a zig-zag appearance of
period 2. For moving averages of span k, we observe that the zig-zag pattern persists with period
k.

Based on the observations in Figure 1, several conjectures can be made about the convergence
of the conditional survival probabilities {rn} in MOSUM algorithms.

• The sequence {rn} converges to some r as n incresaes,

• the limit point r is an increasing function of both the k and the threshold δ,

• the convergence to r is faster for higher thresholds.
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(b) Moving average algorithm with high threshold
(δ = 2)
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(c) Filtered derivative algorithm with low threshold
(δ = 0)
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Figure 1: Convergence of conditional survival probability (rn) for one-sided moving average and filtered derivative
algorithms considering low (δ = 0) and high (δ = 2) thresholds.
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Figure 2: Convergence of {Ln} and comparison with Ll, Lu for span k = 8 and threshold given by q1 = 0.95

It was shown in Theorem 2 that convergence of {rn} is a sufficient condition for the applicability
of the series approach of approximating the ARL. In the next section, we apply the series
approach to MA and FD algorithms.

5. Comparison with LBH bounds and approximation of ARL

First we consider moving average algorithms and compare the convergence of the series
approach (1) with the LBH bounds given by (4). Since the filtered derivative algorithms have
negative weights, the LBH bounds are not applicable.

A representative example, demonstrating the convergence of {Ln}, is shown is Figure 2 for k =
8. We considered the threshold h such that that q1 = P (Y1 < h) = 0.95. We have also plotted the
ARL obtained via Monte-Carlo simulations. We observe that the series enters the region bounded
by Ll and Lu fairly rapidly. Though the LBH bounds could only be calculated using MPDFs of
8th order, reasonable approximation can be obtained using lower order MPDFs. In Figure 3, we
demonstrate this fact for different thresholds. Since the ARL varies with threshold, we compared
them with their respective LBH bounds. We plot the ARL in excess of the corresponding lower
LBH bound, i.e., we plot the quantity Lu−Ll. We note that Lu−Ll = k−1. The [0, k−1]-lines
(dotted) represent Ll and Lu respectively.

We tabulate the ARL for moving average and filtered derivative algorithms in Table 1 and
compare them with approximate values obtained using the series approach in (3). We show the
approximation Ldk/2e, which uses only dk/2eth order MPDFs. For moving average algorithm with
span k ≤ 10, the reference values of L were obtained from SAS/QCR© 9.1 User’s Guide (2004).
All other reference values were obtained using Monte-carlo simulations. We have considered
only one-sided tests and the ARLs are tabulated in Table 1. We conclude that Ldk/2e provides
a reasonable approximation of L.

6. Conclusion

In this paper, we have considered the approximation of ARL for moving sum algorithms
with arbitrary weights using multivariate probabilities. Specifically, we have considered moving
average and filtered derivative algorithms. We have applied a series approach that was originally
proposed by Robinson and Ho (1978) for geometric moving average algorithms. We have pre-
sented an analysis of the convergence of the series. We have shown using simulation studies that
multivariate probabilities of order dk/2e can provide reasonable approximations of the ARL. We
have also derived the ARL for two special cases of MOSUM algorithms, and have used them as
illustrative examples.
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(a) ARL for one-sided moving averages

δ → 2 2.5 3
k ↓ L Ldk/2e L Ldk/2e L Ldk/2e

3 63.0 62.5 206.4 204.5 869.6 866.8
4 73.6 71.0 233.3 227.7 967.0 947.4
5 84.2 84.0 263.3 261.4 1055.8 1057.6
6 94.8 93.2 292.1 286.8 1155.8 1147.5
8 115.7 114.7 346.7 344.2 1353.0 1345.2
10 136.5 135.6 403.4 401.0 1548.8 1547.3
13 167.0 166.9 487.1 484.1 1835.3 1832.8
16 196.7 196.9 568.5 567.0 2119.5 2110.5

(b) ARL for one-sided filtered derivatives

δ → 2 2.5 3
k ↓ L Ldk/2e L Ldk/2e L Ldk/2e

4 47.7 49.3 166.4 168.4 749.3 752.1
6 54.3 56.5 181.0 183.7 788.3 791.9
8 61.7 64.5 198.7 202.1 842.0 846.8
10 69.5 72.6 217.5 221.6 902.0 908.0
12 77.1 80.7 237.3 241.6 968.0 972.8
14 84.8 88.9 256.6 261.7 1033.6 1036.9
16 92.6 97.0 276.4 281.8 1098.6 1106.1

Table 1: Comparison of the ARL with its series approximation. For both moving average and filtered derivative
algorithms of span k, the dk/2eth order approximation is reasonably accurate.
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