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The roles of particle-wall and particle-particle interactions are examined for suspensions of

spherical particles in a viscous fluid being confined and sheared at low Reynolds numbers by two

parallel walls moving with equal but opposite velocities. Both particle-wall and particle-particle

interactions are shown to decrease the rotational velocity of the spheres, so that in the limit of

vanishingly small gaps between the spheres and the walls, the spheres acquire a rotational slip

relative to the walls. The presence of the walls also increases the particle stresslet and, therefore,

the total viscous dissipation. In the limit of vanishingly small gaps, the increased viscous

dissipation in the gaps between pairs of spheres aligned in the flow direction is largely

compensated by the reduction in the dissipation in the gaps between the spheres and the walls due

to a reduction in the rotational velocity of the spheres. As a result, the effect of short-range particle

interactions on the stresslet is generally insignificant. On the other hand, the channel-scale particle

interactions in the shear flow induced by the moving walls decrease the particle stresslet, primarily

because the fraction of pairs of spheres that are aligned parallel to the flow (the presence of which

in a shear flow reduces the stresslet) is relatively higher than in unbounded suspensions.

Expressions are also derived for the total stress in dilute random suspensions that account for both

the particle-wall and the channel-scale particle-particle interactions in determining the rotational

velocities and stresses. The latter are shown to be consistent with recent numerical [Y. Davit and P.

Peyla, Europhys. Lett. 83, 64001 (2008)] and experimental [P. Peyla and C. Verdier, Europhys.
Lett. 94, 44001 (2011)] findings according to which, for a range of sphere radius to gap width

ratios, the effect of particle-particle interactions is to decrease the total dissipation. VC 2011
American Institute of Physics. [doi:10.1063/1.3613972]

I. INTRODUCTION

Flows of suspensions of neutrally buoyant particles

through channels of width comparable to the particle dimen-

sion are of considerable interest because of their occurrence

in many experimental, biological, and technological systems

including blood flow in capillaries, porous media, and micro-

fluidic devices. Previous studies have generally focused on

the hydrodynamic mobility of either isolated or pairs of

spheres and on the pressure drop driven suspension flow

through a channel under conditions of vanishingly small

Reynolds numbers,1–7 with relatively little attention being

given to the case of a sphere or of pairs of spheres in another

type of flow, namely, the shear flow induced by two parallel

plane walls moving with equal and opposite velocities. Such

a flow occurs, for example, in a parallel plate viscometer

widely used for rheological measurements.

Ganatos et al.2 determined the force on a sphere of finite

size held fixed in a shear flow between two plane walls, but

did not address the effect of the walls on the rheology of sus-

pensions. Recently, Davit and Peyla8 and Swan and

Brady9,10 determined the relative change in the viscous dissi-

pation in such systems as a function of the particle volume

fraction / and a, with a being the radius of the sphere di-

vided by the half-width of the channel. Davit and Peyla used

their numerical results for various / and a to estimate the

Oð/Þ and Oð/2Þ terms in the expansion of the relative dissi-

pation in powers of / and found that although, as expected,

the Oð/Þ coefficient increased monotonically as a increased

from 0 to 1, the Oð/2Þ coefficient decreased. For example, at

a ¼ 0:5, their estimated Oð/Þ and Oð/2Þ coefficients were

found to equal, respectively, about 5 and� 5 compared with

the well-known values for the bulk suspensions ða ¼ 0Þ of

5=2 and about 5.0.11 More recently, Pelya and Verdier12

have determined experimentally the viscosity of suspensions

at various / and a and confirmed the finding by Davit and

Peyla that the Oð/2Þ coefficient decreases and becomes

negative as a is increased. The existence of a local maxi-

mum relative dissipation at / � 0:45� 0:50 has also been

found recently by Yeo and Maxey,13 which they attributed

to the particle ordering near the walls.

In order to gain more insight into how the extra dissipa-

tion of a suspension is affected by a and by the particle-parti-

cle interactions, we examine, using semi-analytical tools, a
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few relatively simple problems. Although, it is of course pos-

sible today with modern day computers and the powerful

algorithms that have been recently developed (e.g., Refs. 4,

5, 14, and 15) to perform direct numerical simulations that

fully account for multiparticle interactions in the presence of

walls, we believe that the analysis of the simple problems

chosen here provide valuable insight into the role of particle-

wall and particle-particle interactions in determining the rhe-

ology of highly confined sheared suspensions in addition to

providing estimates of the Oð/Þ and Oð/2Þ coefficients of

the relative dissipation.

The first problem concerns the motion of a single sphere

freely suspended in a simple shear flow bounded by two par-

allel plane walls a distance apart equal to 2, i.e., twice the

half-width of the channel, which has been set equal to unity

with no loss of generality and moving with equal and oppo-

site velocities of unit magnitude. This case was examined

previously by Ganatos et al.,2 who determined the torques on

a sphere held fixed in a simple shear flow and on a rotating

sphere with stationary walls but did not evaluate the extra

dissipation as given by the stresslet13 induced by the pres-

ence of the sphere. Even in this simple case, the analysis to

be presented leads to a rather interesting counter-intuitive

result concerning the way in which the rotational velocity of

the sphere changes with increasing confinement, in addition

to yielding an expression for the Oð/Þ coefficient of the extra

dissipation over the full range of a. For example, consider

the special case when the sphere is placed at the center of the

channel where its translational velocity is zero owing to sym-

metry. One expects that, in the limit of vanishingly small

gaps between the sphere and the walls, the velocities of the

points on the surface of the sphere closest to the walls will

be equal to that of the walls and that the rotational velocity

X will, therefore, approach unity, i.e., twice its value at

a ¼ 0. In other words, one expects the walls to enhance the

value of X. But, as will be seen shortly, exactly the opposite

is the case in that the rotational motion is hindered by the

walls with its value approaching 1=4 in the limit of vanish-

ingly small gap. This result arises from a known, but not

well appreciated, consequence of the lubrication analysis of

the forces in small gaps, according to which, the torque on a

sphere moving with translational velocity V near a stationary

plane wall is roughly one-fourth of the torque on the same

sphere rotating with angular velocity V=a. We also examine

the case when the sphere is located off-center and determine,

via matched asymptotic expansions, the average rotational

velocity and stresslet in dilute suspensions of randomly dis-

tributed spheres. The predictions of this analysis are shown

to be in good agreement with the results obtained numeri-

cally. The result for the average stresslet also corrects one

given recently by Swan and Brady,9 as explained later (cf.,

see the discussion following Eq. (11)).

We next examine the role of particle-particle interac-

tions by analyzing separately the effect of short- and long-

range interactions. We first consider a pair or a row of an in-

finite number of equi-spaced spheres arranged parallel to the

flow direction. We show that the effect of particle interac-

tions is to further reduce the rotational mobility X of each

sphere and, hence, to enhance the rotational slip between

each sphere and the walls. This additional reduction in X,

however, decreases the viscous dissipation in the gap

between the walls and the sphere and offsets the viscous dis-

sipation arising from the hydrodynamic interaction between

the spheres, thereby yielding an overall stress per sphere

which is approximately the same as that for a single sphere

between the two walls. Thus, short-range, lubrication-domi-

nated particle interactions only modestly affect the stress

induced in the suspension. We then determine the effect of

long-range particle interactions on the relative viscous dissi-

pation in dilute random suspensions and show that their con-

tribution to the Oð/2) coefficient in the expansion of the

relative viscous dissipation decreases as a is increased from

0 to about 0.6 and, in fact, becomes negative for a > 0:3 in

agreement with the findings by Davit and Peyla.8 This nega-

tive influence of the pair interactions on the overall stress in

random suspensions is shown to arise primarily from the rel-

ative increase in the number of pairs of spheres that are

aligned parallel to the flow compared to those in unbounded

suspensions.

II. A SINGLE SPHERE AT THE CHANNEL CENTER

Let us first consider the simple case of a neutrally buoy-

ant spherical particle freely suspended in a viscous fluid, the

viscosity l of which is set equal to unity without loss of gen-

erality ðl ¼ 1Þ. The fluid is being sheared by two plane walls

separated by a distance equal to 2 and moving with velocities

61, thereby generating a simple shear flow with shear rate

c ¼ 1 away from the sphere. Furthermore, the sphere is

placed midway between the two walls so that, because of

symmetry, its translational velocity is zero. We shall deter-

mine the rotational velocity and the stresslet induced by the

sphere as functions of a, its radius divided by the half-width

of the channel, by modifying the method recently developed

by Ozarkar and Sangani,17 who determined the mobility and

resistivity of a sphere placed in a thin film of liquid bounded

on one by a rigid wall and a stress-free planar interface on

the other, by expressing the flow induced by the sphere in

terms of Lamb’s multipoles located at the center of the

sphere plus an image system that ensures that the boundary

conditions at the wall and at the gas-liquid interface are satis-

fied. The accuracy of the method in the present case depends

on two parameters for a given value of a; the order Ns of

Lamb’s multipoles used to represent the flow induced by the

particle, and the number of reflections Nr of these multipoles

on the two sides of the film to account for the no-slip bound-

ary conditions on the plane walls.17 We used up to Ns ¼ 20

and Nr ¼ 32 which gave accurate results, say within 5%, for

a up to about 0.9.

A. Results for the rotational velocity

The computed results for the angular velocity X of a

freely suspended particle are shown in Fig. 1, where, as

expected, in the limit a! 0, the rotational velocity is seen

to approach 1=2, i.e., the vorticity of the imposed shear flow.

On the other hand, the results for larger a are surprising since
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one expects intuitively that the velocity of the points on the

surface of the sphere closest to the walls should approach

that of the walls due to the no-slip condition, i.e., one antici-

pates that X! 1 as a! 1. Instead, the effect of the walls is

to hinder the rotation of the particle, and in fact, as shown

below, X! 1=4 as a! 1. This hindrance effect of the walls

is better understood by examining separately the two limiting

behaviors of X for small and for large a, respectively.

We start by recalling that, as e � 1� a approaches zero,

the flow is dominated by the lubrication stresses in the narrow

gap between the walls and the sphere. But since, due to sym-

metry, the net force on the particle is zero, we need to con-

sider only the lubrication contributions to the torque on the

sphere. The torque on a sphere rotating with an angular veloc-

ity X in a quiescent liquid film bounded by two walls is given

by

Lr ¼ �8pa3XRLR with

RLR ¼
4

5
ln e�1 � 0:47þ 132

125
e ln e�1 þ 1:18e; (1)

where the coefficients multiplying the O(ln e�1) and

O(e ln e�1) terms were taken from the analysis of O’Neill and

Majumdar18 and Jeffrey and Onishi,19 while those multiplying

the Oð1Þ and OðeÞ terms were determined by fitting Eq. (1) to

the numerical results for RLR for values of a in the range 0.80–

0.92 as obtained using the method of Ozarkar and Sangani.17

Similarly, the torque on the sphere held fixed in a shear

flow with c ¼ 1 is given by

Ls ¼ 8p a3RLS with

RLS ¼
1

5
ln e�1 þ 0:02þ 68

125
e ln e�1 þ 0:26e; (2)

where the coefficients multiplying the O(ln e�1) and

O(e ln e�1) terms were obtained from the analysis of torque

on a fixed sphere near a moving wall by O’Neill and Stewart-

son.20 Figure 2 shows a comparison between the numerical

results for RLR and RLS and the expressions given by Eqs. (1)

and (2). The coefficients RLR and RLS determined here are

also in very good agreement with those obtained previously

by Ganatos et al.2

The angular velocity of a freely rotating sphere obtained

by requiring that the net torque on the sphere must be equal

to zero is, therefore, given by

X ¼ RLS

RLR
¼

1

5
ln e�1 þ 0:02þ 68

125
e ln e�1 þ 0:26e

4

5
ln e�1 � 0:47þ 132

125
e ln e�1 þ 1:18e

¼ 1

4
þ 0:17

ln e�1
þ � � � (3)

from which it is evident that, since the coefficient of the

leading Oðln eÞ term in RLR for a rotating sphere is four times

that of a sphere fixed in the shear flow, we have that

X! 1=4 as e! 0. In other words, the hindrance due to

walls arises because the magnitude of the torque on a sphere

rotating with angular velocity X is, to leading order, four

times greater than that due to a sphere translating with veloc-

ity Xa near a stationary wall. It is interesting to note that the

opposite is the case for the force on a sphere, in that the mag-

nitude of the force on a sphere rotating with angular velocity

V=a near a stationary wall is, to leading order, four times

smaller than that on a sphere translating with velocity V.

Now, let us consider the opposite limit, i.e., a! 0, for

which the rotational velocity can be determined from the ve-

locity gradient near the center of the channel induced by the

images of a point stresslet which, in this limit, is determined

from Eq. (33) in Ozarkar and Sangani17 with

n ¼ 2; m ¼ 1; k ¼ 0. One must, however, first determine

numerically the coefficients /0;r
21 (related to the rate of

strain), P0;r
21 , and T1;r

11 (related to the vorticity) in terms of the

stresslet coefficient P0
21, use Eq. (33) to solve for P0

21 and

FIG. 1. Rotational velocity X of a sphere, freely suspended at the center of

a channel, as a function of a, the radius of the sphere divided by the half-

width of the channel. The circles represent the numerical results and the

curves the limiting forms as given below by Eqs. (3) and (4).

FIG. 2. The coefficients RLR and RLS representing non-dimensional torques

on, respectively, a rotating sphere at the center between stationary walls and

a fixed sphere in a shear flow. The circles represent the numerical results

and the curves the limiting forms as given by Eqs. (1) and (2).
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then substitute the result into Eq. (35) in Ref. 17. This analy-

sis yields

X ¼ 1

2
� a3ðc1 � c2a2Þ

1� c3a3 þ c4a5
þ Oða10Þ (4)

with c1 ¼ 0:213, c2 ¼ 0:221, c3 ¼ 1:78, and c4 ¼ 1:86. The

leading order correction in the above equation arises from

the coefficient c1 which is related to the vorticity induced by

the wall images of a point stresslet placed at the center of the

channel. The coefficient c3 is related to the rate of strain

induced by these images and, as we shall see later, this coef-

ficient is important in determining the leading order correc-

tion to the stresslet (cf. Eq. (6)). The coefficients c2 and c4

arise from two separate contributions of equal magnitude.

The first is related to the Laplacians of the vorticity and the

rate of strain induced by the wall images, while the second is

due to the leading order contributions to the vorticity and

strain rate from the source quadrupole (/0
21 ¼ ða2=10ÞP0

21 in

Ref. 17). As seen in Fig. 1, the computed results are in excel-

lent agreement with the two limiting cases described above

within their respected ranges of applicability.

Several studies have investigated the behavior of a parti-

cle near a single wall or between two walls. Goldman et al.21

and Chaoui and Feuillebois22 considered a freely suspended

sphere placed in a simple shear flow near a plane wall and

found that, in the limit of vanishingly small gap between the

particle and the wall, the ratio Xa=V of the rotational to

the translational velocity V of the sphere approaches

0.4218=0.7431¼ 0.5676. On the other hand, according to

Ozarkar and Sangani,17 for a freely suspended sphere in a

pressure gradient driven flow in a film bounded by a plane

wall on one side and a stress-free plane interface on the

other, the ratio Xa=V approaches 0.25=0.775¼ 0.290. In

both cases, the determination of this ratio required that the

flow field be first obtained in the outer region, i.e., away

from the gap between the wall and the sphere, which can

only be achieved from a detailed numerical analysis. This is

in contrast to the present case where the value of the leading

coefficient, 1=4, follows solely from the lubrication analysis.

Finally, Staben et al.6 examined the case of a sphere freely

suspended at the center of two plane walls in a pressure-

driven flow, where the rotational velocity of the particle is

zero because of symmetry but the translational velocity is

not. In all three cases, however, the velocity of the sphere

becomes vanishingly small as the gap between the sphere

and the wall decreases to zero, so that there is no slip

between the sphere and the wall in contrast to the problem

examined here where the corresponding slip velocity

between the particle surface and the walls approaches a non-

zero value.

To assess the accuracy of the Fluid Particle Dynamics

(FPD) method proposed by Tanaka and Araki23 and further

developed by Peyla24 and Davit and Peyla,8 calculations

were also carried out for different values of a=d, d being the

grid size. In the study cited earlier (Ref. 8), Davit and Peyla

used a=d ¼ 3 to simulate confined suspensions at various

particle volume fractions and sphere radii to wall gap ratios.

It was found that much higher values of a=d, equal to about

12 or greater, were required to obtain accurate results in

agreement with our method, especially for large a.

Figures 3(a) and 3(c) show the velocity profiles obtained

using the FPD method for two different a. The disturbance

flows generated by the presence of the sphere obtained by

subtracting the imposed shear flow are shown in Figs. 3(b)

and 3(d). We see clearly the formation of vortices ahead and

behind the sphere at the higher value of a (Fig. 3(b)). (The

upper wall moves from right to left so that the vorticity of

the imposed shear is counter-clockwise.) These vortices act

counter to the imposed vorticity, which explains why the

presence of the walls leads to the reduction in the angular ve-

locity of the sphere.

The velocity fields shown here are similar to those

shown by Bikard et al.,25 who used a finite element method

for the purpose of computing the velocity and stress distribu-

tions. These investigators also determined the rotational

speed of the sphere for a < 0:9. Their results, presented in

terms of the time required for a sphere to complete one rota-

tion, given by curve 2 in their Figure 10 are also in reasona-

ble agreement with ours, although their expression

X ¼ 1=½2ð1� 2:212aþ 0:64a2Þ� (cf. their Eq. (9)) is incon-

sistent with their own results in Figure 10 and predicts an

increase in the rotational velocity with an increase in a for

small particle radii. The rotational velocity of the sphere was

also computed by D’Avino et al.26 for a � 0:83 for both

Newtonian as well as viscoelastic fluids using a method of fi-

nite elements. Once again, their results for Newtonian fluids

are in agreement with ours.

B. Induced stresslet

Highly confined suspensions also lead to large stresses.

The stress resulting from the presence of a rigid spherical

particle can be determined from the induced stresslet Sij

which is related to the traceless, symmetric part of the first

moment of the traction at the particle surface13

Sij ¼ ð1=2Þ ½Kij þ Kji � ð2=3ÞKkkdij� with Kij ¼
ð
@D

rifj dA;

(5)

where ri is the position vector of a point on the surface of the

sphere relative to its center, fj is the traction (force per unit

area) exerted by the fluid, and @D is the surface of the parti-

cle. For the special case of an unbounded simple shear flow

given by u1i ¼ x2 di1, the only nonzero components of the

stresslet for a force-free sphere are S12 and S21, both of which

are equal to 10pa3=3.13 Now, in the presence of the walls,

we let these non-zero components of the stresslet be denoted

by S� times this infinite dilution value, so that S� depends

only on a with S�ð0Þ ¼ 1 when particle-particle interactions

are negligible. Consequently, the dissipation rate in the chan-

nel divided by that in the absence of the spherical particles

(sometimes referred to as the relative effective viscosity of

the suspension) equals 1þ ð5/=2ÞS�, with / being the vol-

ume fraction of the spheres, which reduces to Einstein’s well

known expression for the relative viscosity when a ¼ 0.

Note that here, and henceforth, the volume fraction is defined
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as the total volume occupied by the spheres divided by the

channel volume.

Figure 4 shows the numerical results for S�, as obtained

using the method of Ozarkar and Sangani,17 as well as their

comparison with Eqs. (6) and (9) given below for a small

and a! 1, respectively.

The small a analysis that led to Eq. (4) also yields

S� � 3S12

10pa3
¼ 1

1� c3a3 þ c4a5 þ Oða7Þ 0 < a	 1; (6)

where c3 and c4 are as in Eq. (4). In the opposite limit,

a! 1, the stresslet is determined, once again, by examining

separately two problems: (i) the sphere held fixed in the

shear flow generated by the two moving walls and (ii) in

which the sphere rotates in the presence of stationary walls.

For the first case, the stresslet is given by 10p a3Ss=3, with

Ss ¼ 12

5

7

10
log e�1 � 0:9þ 198

125
e log e�1 þ 0:24e

� �
(7)

and for the second case by 10pXa3Sr=3, where, as can be

shown by applying the reciprocal theorem, Sr is given by

Sr ¼ 12

5

RLR

2
� RLS

� �
(8)

with RLR and RLS being the coefficients appearing in the

expressions for the torques introduced earlier (cf. Eqs. (1)

and (2)). The coefficients of the log e�1 and e log e�1 terms in

Eq. (7) were taken from the expression given by Jeffrey27 for

the stresslet induced on a fixed sphere in the presence of a

moving wall. Combining the results for the above two prob-

lems, we see that the stresslet induced by a freely suspended

sphere between the two moving walls is given by 10pa3S�=3

with

FIG. 3. (Color online) The velocity fields are shown in the plane of the shear flow that cuts the sphere in the middle: (a) total velocity field for a ¼ 0:706, (b)

disturbance field for the same a, and (c) and (d) correspond to a ¼ 0:3. The upper wall is moving to the left and the lower one to the right.

FIG. 4. Normalized stresslet of a freely suspended sphere at the center of a

channel in the shear flow generated by the moving walls as a function of the

sphere of radius a. The circles represent the numerical results and the curves

the limiting forms given by Eqs. (6) and (9).
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S�¼SsþXSr�12

5

7

10
loge�1�0:9þ198

125
eloge�1þ0:24e

� �

þ12X
5

1

5
loge�1�0:25� 2

125
eloge�1þ0:33e

� �
;

ð9Þ

with X being given by Eq. (3).

As seen in Fig. 4, the numerical results for S� compare

very well with the limiting expressions given by Eqs. (6)

and (9).

Note that, since X! 1=4 in the limit of vanishingly

small e, S� diverges as ð9=5Þ log e�1. Note also that, in this

limit, the contribution from the wall motion is 14 times

that due to the particle rotation. Finally, it is also interest-

ing to point out that, although the contributions to the total

torque from the wall shear and the particle rotation are of

opposite signs and cancel each other for a freely suspended

sphere, both contribute positively to the total stress which

becomes smaller as X decreases due to the presence of

the wall. In particular, the total stress would have been

greater if X had been equal to unity—a case one might

have thought would contribute the least to the lubrication

stresses given the absence of slip between the velocities of

the walls and the points on the sphere closest to the walls.

III. DILUTE RANDOM SUSPENSIONS

When the center of the sphere is no longer at the mid-

plane of the channel, its stresslet, S�, as well as its transla-

tional and rotational velocities will be functions of its posi-

tion in addition to a. In order to evaluate the extra

dissipation of a very dilute random (hard sphere) suspension,

we consider, therefore, the problem of determining the aver-

age values of S� for the special case when the probability

density for the sphere position is uniform throughout the

channel except, of course, for distances from the walls that

are less than one radius. We shall examine the limiting cases

of small and large spheres separately and compare the ana-

lytical results with those obtained numerically for selected

values of a.

A. The small sphere limit: a 	 1

The correction to the stresslet of a sphere, relative to its

value when a! 0, is either Oð1Þ or Oða3Þ depending on

whether its center is OðaÞ or Oð1Þ from one of the walls.

Therefore, for a suspension having a uniform probability of

finding a sphere anywhere in the channel, the coefficients of

the leading OðaÞ corrections to the average stresslet and rota-

tional velocity can be determined from the detailed calcula-

tions involving the interaction of the sphere with a single

wall, and the method of matched asymptotic expansions may

then be used to evaluate the next few corrections as shown in

Appendix A to yield

hS�i ¼ 1þ0:435aþ0:435a2þ0:417a3�0:006a4þOða5Þ;
(10)

hXi¼ 1=2�0:078a�0:078a2þ0:109a3�0:312a4þOða5Þ:
(11)

Swan and Brady9 have also obtained the coefficient of the

OðaÞ term for the average stresslet, but unfortunately their

estimate 0.12 for the value of this coefficient is incorrect

owing to two errors in their calculations. First, in determin-

ing the stresslet from their formula for a linear shear flow,

these authors substituted an incorrect strain rate tensor—they

substituted eij ¼ ðdi1dj3 þ di3dj1Þ=2 instead of eij ¼ ðdi1dj2

þ di2dj1Þ=2 for the simple shear flow. Second, to determine

the average stresslet, these authors integrated the Oða3Þ outer

region approximation (cf. Appendix A) for the stresslet all

the way from the center of the channel to a distance y ¼ a
from the wall. This outer region approximation, however, is

not valid for distances from the wall that are comparable to

a. The first error can be corrected by replacing g3 in their Eq.

(64) by hES
3 , whereas the second one requires that an inner

region approximation be constructed as we have done in Ap-

pendix A. Note that the OðanÞ outer region approximations

are singular and behave as (a=y)n as y! 0 for n 
 3, so that,

in principle, all higher-order outer region approximations

must be determined to obtain a correct estimate of the coeffi-

cient of the OðaÞ correction to hXi from the outer region

analysis alone.

B. The large sphere limit: 1� a 	 1

In this limit, the expressions for hS�i and hXi are similar

to Eqs. (3) and (9), respectively, provided they are modified

to account for the fact that the center of the sphere is, gener-

ally, no longer on the mid-plane. Let then the gap between

the sphere and one of the walls be eð1� aÞ with �1 < a < 1

and e ¼ 1� a	 1. Now the translational velocity of the

sphere is nonzero and we must use both the force and torque

balances on the sphere to determine its translational and rota-

tional velocities. For this purpose, we need to first determine

the force F � �6paf tU on a sphere translating with velocity

U along the center-plane of a channel with stationary walls,

a problem already examined by Ganatos et al.,2 Staben

et al.,6 and Bhattacharya et al.4 Results obtained with

Nr ¼ 20 using the method of Ozarkar and Sangani17 are in

very good agreement with those in the literature and can be

fitted quite well by means of the following expression for a
ranging from 0.3 to 0.9:

f t ¼ 16

15
ln e�1 þ 1:45þ 128

375
e ln e�1 � 0:9e: (12)

The translational and rotational velocities of the off-center

sphere are then given by

Uo ¼
2B

15f t
o

4� Xa½ �; Xoa ¼ RLS � A=10� 4B2=ð75f t
oÞ

RLR � 2A=5� B2=ð75f t
oÞ
;

(13)

with A ¼ lnð1� a2Þ, B ¼ lnðð1þ aÞ=ð1� aÞÞ, and

f t
o ¼ f t � 8A=15. Here, X, RLS, and RLR correspond to the

results for the sphere placed at the mid-plane, while those

denoted with the subscript o refer to the corresponding
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quantities when the sphere is placed off-center. The non-

dimensional stresslet may be subsequently estimated using

S�o ¼ S� � ð21þ 6XoaÞðA=25Þ � Uoð21=25ÞB; (14)

where S� is given by Eq. (9). To leading order,

f t ¼ ð16=15Þ ln e�1 and 4� Xa ¼ Oð1= ln eÞ, and therefore,

the off-center translational velocity given by Eq. (13) is

Oðln eÞ�2
. Since the center of the sphere is shifted from the

channel center-plane by ae, the coefficients of the OðeÞ terms

in RLS, RLR, and f t etc., which were determined for the sphere

placed at the center of the channel, will now be the functions

of a. Nevertheless, neglecting this dependence on a will lead

to relative errors of only Oðe= ln eÞ in the estimates of the

angular velocity and of the stresslet. For the special case of

randomly placed spheres with uniform probability distribu-

tion for a, we obtained the average values by numerically

integrating Eqs. (13) and (14) with a varying from zero to

unity. For a equal to 0.85, 0.9, 0.95, and 0.99, we found that

the ratio of hXi to its center line value equals, respectively,

0.92, 0.93, 0.95, and 0.97, indicating that the average rota-

tional velocity of large spheres randomly placed in off-center

positions is slightly smaller than if the spheres were placed

at the center of the channel. The values for the ratios of the

corresponding stresslets are slightly higher and are given by,

respectively, 1.1, 1.09, 1.08, and 1.06. Note that this differs

from what was found earlier in the case of the sphere cen-

tered along the mid-plane, where a decrease in X was fol-

lowed by a decrease in S�.

C. Comparison with numerical results

For selected values of a, the stresslet and rotational

velocities of the sphere were also evaluated using the method

of Ozarkar and Sangani17 at ten different positions of the

sphere and the corresponding average values were thereby

computed. As shown in Figs. 5 and 6, the numerical results

are in good agreement with those obtained analytically for

small and for large spheres. Also shown are the results for a

sphere placed at the channel center. The channel-centered

spheres have smaller stresslets and greater rotational veloc-

ities, although the differences are minor for a greater than

say 0.7.

IV. PARTICLE-PARTICLE INTERACTIONS

We shall now investigate the effect of particle-particle

interactions by first analyzing, in Sec. IV A, the lubrication-

dominated, short-range interactions of relatively large

spheres for the special case when the spheres are placed on

the mid-channel plane, to be followed, in Sec. IV B, by an

analysis for small spheres, separated by a distance compara-

ble to the channel width but, otherwise, arbitrarily placed

within the channel. The results of such an analysis will then

be compared in Sec. IV C with those obtained by direct nu-

merical computations for a few selected cases of medium-

sized spheres. Finally, in Sec. IV D, we shall examine the

more general case of random dilute suspensions and thereby

arrive at an explanation of why the Oð/2Þ coefficient in the

expansion of the relative viscous dissipation in powers of /
may be expected to decrease as a is increased.

A. Lubrication-dominated, short-range interactions

Let us first consider two freely suspended equi-sized

spheres, placed at the mid-plane with their center to center

distance equal to R, the channel width being equal to 2 as

before. To assess the importance of the lubrication-domi-

nated, short-range interactions, we examine the limit a! 1

and R! 2. Since, when the pair of spheres is aligned in the

vorticity direction, there are no lubrication effects in the gap

between the spheres, we focus our attention mainly to the

case when the pair of spheres is aligned in the flow direction.

Now, the lubrication effects in the gap between the two

FIG. 5. Average stresslet of a sphere in dilute random suspensions. The stars

represent the numerical results, the solid curve the results obtained by aver-

aging Eq. (14), and the dashed-and-dotted curve the limiting form given by

Eq. (10). The circles represent the results for a sphere placed at the mid-

plane of the channel.

FIG. 6. Average rotational velocity of a sphere in dilute random suspen-

sions. The stars represent the numerical results, the solid curve the results

obtained by averaging Eq. (13), and the dashed-and-dotted curve the limiting

form given by Eq. (11). The circles represent the results for a sphere placed

at the center of a channel.
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spheres cause an additional torque on each sphere both of

which are rotating with the same angular velocity X. This

extra torque equals 8pa3XLp with Lp ! ð1=4Þ ln e�1
p as

ep � R=2� a! 0.19 Therefore, to the leading order, the tor-

que balance on a sphere gives (cf. Eq. (3)) that

X! ð1=5Þ ln e�1

ð1=4Þ ln e�1
p þ ð4=5Þ ln e�1

(15)

with e � 1� a representing the gap between a sphere and

the walls as before. For the special case, when the gap

between the spheres equals that between the sphere and the

walls, i.e., ep ¼ e, the coefficient of the torque contribution

due to particle-particle interaction is 1=4 compared to 4=5

from the moving walls and X! 4=21. Comparing this result

with X! 1=4 for the single particle case, we see that the

short-range, lubrication-dominated, particle-particle interac-

tion reduces the rotational velocity by about 24%. On the

other hand, the corresponding effect of the particle-particle

interactions to the total stresslet is negligible because, by

adding the relevant contribution from the rotating particles

to the expression given by Eq. (7), one finds that

S� ! 42

25
ln e�1 þ X

3

10
ln e�1

p þ
12

25
ln e�1

� �
(16)

with X given by Eq. (15). For the special case ep ¼ e, this

yields S� ! c ln e�1 with c ¼ 64=35 compared to 9=5 for the

single sphere case, a net increase of only 1.6%. Thus, we see

that the increase in the stresslet due to the particle-particle

interaction is offset by the corresponding reduction in the

contribution from the particle-wall gaps as a result of the

reduced rotational velocity.

In the extreme case of nearly touching spheres, i.e.,

ep 	 e, the rotational velocity of each sphere vanishes as

X! ð4=5Þ ln e�1= ln e�1
p and S� ! ð48=25Þ ln e�1, a modest

increase of about 12% from the single sphere result.

The lubrication forces arising from the rotation of the

spheres also induce a translational motion of each sphere

towards the opposite walls which, by means of a force bal-

ance in the direction normal to the walls, is found to be

Oðe ln eÞ, too small to influence the leading order analysis for

the rotational velocity and the stresslet given above by Eqs.

(15) and (16).

Next, let us consider the case of a periodic row of spheres

aligned in the flow direction with the centers of the spheres on

the mid-plane and with the center-to-center distance between

two adjacent spheres fixed at R ¼ 2. The lubrication analysis

for this case yields X! 2=13 and S� ! ð24=13Þ ln e�1 as

a! 1, and hence, here, the particle interactions reduce the

rotational velocity very significantly (38%) while increasing

the stresslet, although by less than 5%. The increase in the vis-

cous dissipation in the gap between the particles is again

mostly compensated by the decrease in the dissipation in the

gaps between the particles and the walls.

B. Long-range interactions

Now, let us consider the effect of long-range interac-

tions by examining the opposite limit a	 R ¼ Oð1Þ, R

being, once again, the center-to-center distance between the

two spheres, although now we do not restrict their centers to

lie on the mid-plane. As in the case of the single sphere anal-

ysis which yielded Eqs. (4) and (6), the disturbance flow cre-

ated by each sphere can be approximated in this limit by that

due to a point stresslet of magnitude 10pa3=3. The rotational

velocity and the normalized stresslet of each sphere can then

be shown to be given by

X ¼ 1=2� ½c1 þ Xp�a3 þ Oða6Þ
S� ¼ 1þ ½c3 þ Sp�a3 þ Oða6Þ;

(17)

with c1 and c3 representing, as before, the contributions from

the walls, and Xp and Sp the contributions from the other

sphere. For the special case of spheres located at the mid-

plane, c1 ¼ 0:218 and c3 ¼ 1:78. For more general case,

they are functions of the x2-coordinate of the center of the

sphere and their values can be determined from the outer

region analysis presented in Appendix A. XP and Sp, on the

other hand, are functions of the positions of the centers of

the two spheres, which will be denoted, henceforth, by x and

X (cf. Fig. 7).

Let us first consider the limiting case a	 R	 1 for

which the spheres are separated by a distance that is large

compared to their radius but small compared to the channel

width. Furthermore, let the centers of the spheres be also at

large distances from the either wall. This limit corresponds

to the well-examined case of two widely separated freely

suspended spheres in an unbounded shear flow for which11

Sp ! Sun
p ¼ �

5

2R3
R̂

2

1 þ R̂
2

2 � 10R̂
2

1R̂
2

2

h i
; (18)

Xp ! Xun
p ¼

5

4R3
R̂

2

1 � R̂
2

2

h i
; (19)

where R̂i are the components of the unit vector along the line

joining the centers of the two spheres ðrecall that Ri

� Xi � xiÞ. For the special case of the pairs of spheres

aligned in the flow direction, we have that R̂i ¼ di1 and,

therefore, Sun
p ¼ �5=ð2R3Þ and Xun

p ¼ 5=ð4R3Þ. Thus, the

FIG. 7. A sketch illustrating the coordinate system and the nomenclature

used in Appendices B and C. The excluded volumes introduced in Appendix

C are denoted by the shaded regions.
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stresslet of a sphere is decreased due to the presence of a dis-

tant second sphere in the flow direction. As in the case of the

short-ranged, lubrication dominated interactions, the pres-

ence of another sphere in the vorticity direction ðRi ¼ Rdi3Þ
does not affect the stresslet or the rotational velocity of a

sphere. Finally, the maximum contribution to Sp (for fixed R)

results from the presence of a second sphere along one of the

principal axes of the extensional flow, i.e., at 645� to the

flow direction in the plane of shear jRj1 ¼ jRj2 ¼ R=
ffiffiffi
2
p ��

,

where it is positive and equals 15=ð4R3Þ.
Next, let us consider the other limiting case correspond-

ing to R� 1 where the presence of the walls plays a signifi-

cant role as noted by Liron and Mochon,28 who obtained an

expression for the velocity induced by a point force in a fluid

bounded by two plane walls. These investigators showed that

the velocity due to a point force is screened by the walls, so

that the channel-width averaged velocity decays as R�2 for

large R compared to the slower decay, proportional to R�1,

in an unbounded Stokes flow. To obtain an expression for Sp

for a sphere centered at X due to a stresslet at the center x of

another sphere, one must determine the gradients of the ve-

locity induced by a point force at x with respect to both X
and x. This results in an expression for Sp which, as shown

in Appendix B, decays as R�2 rather than as R�3 (cf. Eq.

(18)) as is the case of an unbounded Stokes flow interaction

of two freely suspended spheres. In other words, the interac-

tions of freely suspended particles in wall-bounded sheared

flows are longer-ranged than their counterparts in unbounded

flows. This is a consequence of the fact that the velocity field

varies more rapidly in the direction normal to the walls

owing to the no-slip condition at the walls than in the direc-

tion parallel to them. Since the walls are separated by an

O(1) distance, both the velocity and its gradient normal to

the walls are of the same order of magnitude. As shown in

Appendix B, the detailed analysis gives

Sp ¼ �2Xp ¼ �
5

2
½x2X2 cos 2h q�2 þ Oðq�1=2e�bqÞ�

R� 1ð Þ;
(20)

where q2 ¼ R2
1 þ R2

3, ; h ¼ cos�1ðR1=qÞ, and R2 ¼ q2

þðX2 � x2Þ2. The exponential decay constant b equals p=2

when neither of the spheres is located on the mid-plane, and

equals 2.1062 otherwise. It is interesting to note that Sp and Xp

for both spheres are equal in the two extreme limits R	 1 and

R� 1. For intermediate separations, this is not the case.

Figures 8 and 9 show Sp and Xp as functions of q for

two special cases of pairs of spheres aligned in the direction

of the flow (h ¼ 0; x2 ¼ X2¼ 0, 1=2). The symbols represent

the results obtained by the method described by Ozarakar

and Sangani17 with Nr ¼ 24 (the number of reflections of the

point stresslet at x on the either side of the channel), while

the dashed curves represent the small q approximations as

given by Eqs. (18) and (19). (Note that q ¼ R for the special

case corresponding to X2 ¼ x2.) The computed results for Xp

and Sp are seen to agree well with the above asymptotes. We

also see that, in accordance with Eq. (20), both Xp and Sp

decrease more rapidly with increasing q for the case in which

the spheres are centered at the mid-plane, compared to that

in which they are off-centered. Also, when the spheres are

centered at the mid-plane, Xp changes its sign at q ffi 1:95;

from positive values at smaller q to small negative values for

larger with the minimum value of about� 0.017 attained at

q ffi 2:3: (Only the positive values of Xp for q < 1:95 are

shown in Fig. 9 because of the log scale used for plotting.) A

similar behavior was also observed for Sp for the mid-plane-

centered spheres with the sign change observed at q ffi 3:8.

Equation (20) suggests that both Sp and Xp must change

sign at sufficiently large q if the sign of either X2 or x2 is

changed. This prediction was verified numerically for

q ¼ 4:1 for which Sp equals �0.0454 for x2 ¼ X2 ¼ 1=2 and

0.0453 for x2 ¼ �X2 ¼ 1=2. Note that this is not the case for

FIG. 8. Reduction in the normalized stresslet of a sphere (divided by a3)

due to the presence of a second sphere at a distance q from it in the flow

direction. The circles represent the numerical results when the spheres are

centered at the mid-plane (x2 ¼ X2 ¼ 0) and the plus signs for the case when

the spheres are at x2 ¼ X2 ¼ 1
2
. The dashed curve represents the small q

approximation given by Eq. (18), and the solid curve represents the large q
approximation given by Eq. (20) for x2 ¼ X2 ¼ 1

2
.

FIG. 9. Reduction in the rotational velocity of a sphere (divided by a3) due

to the presence of a second sphere at a distance q from it in the flow direc-

tion. Refer to Fig. 8 for the captions.
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q ¼ 2 for which the corresponding values were,

respectively,� 0.216 and 0.134. Finally, the prediction that

Sp ¼ �2Xp for large q was also verified from the results for

q > 3:8.

C. Comparison with the numerical results for pairs of
spheres

Detailed numerical calculations for selected values of a
for a pair of freely suspended spheres with R ¼ 2 and aligned

in the flow direction x2;3 ¼ X2;3 ¼ 0
� �

were carried out using

the method developed by Ozarkar and Sangani17 using multi-

poles up to Ns¼ 9, and the results were compared with those

obtained for the single sphere with the same a and Ns. It was

found that the presence of the second sphere changed the

rotational velocity of the sphere by less than 1% for a � 0:8.

This is consistent with our analysis for small a which gave

Xp ffi �0:005 for R ¼ 2 and c1 ¼ 0:213, suggesting thereby

that the effect of the presence of a second sphere at this dis-

tance should have a negligible influence on the rotational ve-

locity of a sphere. The effect on the stresslet was somewhat

greater: the stresslets of pairs of spheres at a ¼ 0:6 and 0.8

were found to be lower than those for the single sphere by,

respectively, 6% and 8%. Note that for this case, c3 ¼ 1:78

and Sp ¼ �0.4 (for R ¼ 2Þ; hence, the small a analysis pre-

dicts a modest reduction in the stresslet due to the presence

of a second sphere. The large a analysis based on the lubrica-

tion effects, on the other hand, predicted a modest increase

in the stresslet. As a consequence, we expect the difference

between the stresslet of a pair of spheres aligned in the flow

direction and that for the single sphere with same a to remain

relatively modest for the entire range of values of a for

R ¼ 2.

Similar computations were also carried out for pairs of

spheres aligned in the vorticity direction. Both the short-

range lubrication analysis and the long-range asymptotic

expressions show that the presence of a second sphere should

has no effect on the stresslet or on the rotational velocity of a

sphere in accord with the computed values of both Xp and Sp

which were found to be generally small. For example, for

R ¼ 2 we obtained Xp ffi �0:008 and Sp ¼ 0:06. Therefore,

we expect the presence of a sphere in the vorticity direction

to have a negligible effect on both the rotational velocity and

the stresslet of a sphere. This was confirmed from the results

obtained by direct computations. For example, for a ¼ 0:8,

the stresslet was found to be only 2% greater in the presence

of a second sphere placed along the vorticity vector while

the angular velocity was 2% lower.

V. AN APPROXIMATE CALCULATION
OF THE STRESSLET TO O (/)

Let us now consider the problem of determining the

Oð/Þ correction to the average stresslet or, equivalently, the

Oð/2Þ correction to the relative viscous dissipation in dilute

random suspensions. Detailed calculations involving arbitra-

rily positioned pairs of spheres between two plane walls are

extremely cumbersome, and therefore, we shall be content

with only an approximate calculation using Eq. (17) which
ignores the effect of higher-order multipoles induced in each

sphere. Even this approximate calculation is nontrivial, but,

as we shall see, provides an interesting qualitative insight

into the role of particle interactions in highly confined

suspensions.

To determine the average stresslet of a sphere in a ran-

dom suspension, we must evaluate the following integral

a3

2 1� að Þ

ð1�a

a�1

ð1�a

a�1

ð1
o

ð2p

o

qSpP q; h; x2;X2ð Þdx2dX2dqdh;

(21)

where Pðq; h; x2X2Þ is the probability density for finding

another sphere near ðq cos h; x2; q sin hÞ given that the test

sphere is present at 0;X2;0
� �

.

In trying to evaluate integrals such as Eq. (21), one

encounters the difficulty, well-known in the suspensions lit-

erature, that such integrals are not absolutely convergent. For

example, for the case of unconfined, infinitely extended sus-

pensions examined by Batchelor and Green,11 Sp is given by

Eq. (18), hence the integrand in Eq. (21) decreases as R�3

while the volume of the suspension over which the integral

must be evaluated increases as R3, so that although the inte-

gral of Sp over a large but finite volume approaches a con-

stant, it depends, in general, on the shape of this domain.

Batchelor and Green11 observed that even though the aver-

age stresslet is dependent on the shape of the outer bounda-

ries, the rheology of bulk suspensions is not since the

average rate of strain is also similarly shape dependent. This

observation was then exploited by them to determine the

relation between the average stress and the rate of the strain

that involved an integral that is absolutely convergent and in-

dependent of the shape of the outer boundary (“infinity”) of

the suspension or the flow imposed at infinity.

In the present problem, the integrand decreases as q�2

(cf. Eq. (20)) while the volume of the suspension grows as

q2, so that, once again, the integral is, in general, non-abso-

lutely convergent and the integral as expressed in Eq. (21) is

ill-defined. However, for the special case in which the pair

probability density is symmetric around the mid-plane for

q� 1, the integration over x2 of the leading term in Eq. (20)

will vanish irrespective of how the integration over a finite

domain involving the other two dimensions is carried out.

Thus, the remaining integral—which depends on the remain-

der, i.e., the exponentially decaying terms—is absolutely

convergent and the expression (21) which extends the inte-

gration to infinity is justified. We must stress, however, that

for the more general case, in which the pair probability dis-

tribution is not symmetric around the mid-plane, e.g., when

all the spheres are confined in one, off-center plane, one

must examine carefully the implication of the long-range

interactions before proceeding further.

To simplify matters further, we shall consider here only

the case in which the probability density is uniform and

equal to 3/=½4pa3 1� að Þ� for all possible positions of the

second particle which do not lead to an overlap with either

of the walls or with the first particle.

The integral in Eq. (21) was evaluated numerically as

follows. First, we note that the dependence of the integrand

on h is of the form Aþ Bcos2h, with A and B being the
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functions of q; x2; and X2. Therefore, the integration with

respect to h simply equals 2pðAþ B=2Þ), which is the same,

incidentally, as the integrand evaluated at h ¼ p=4 multi-

plied by 2p. Next, since the integrand in Eq. (21), upon inte-

grating over x2, decays exponentially with q for h ¼ p=4 (cf.

Eq. (20)), the integration with respect to q can be truncated

to a finite qc; in the results presented below, we used

qc ¼ 3:5 given that no noticeable change was observed for a

few selected calculations with q ¼ 3 or qc ¼ 4:5. Further-

more, we note that, since the pair probability is zero when

the spheres overlap, the lower limit on the integration with

respect to q can be replaced by qlðx2;X2Þ which is given by

q2
l ¼ 4a2 �ðx2 � X2Þ2 for x2j � X2j < 2a and zero otherwise.

We then decomposed Sp into two parts: Sun
p given by Eq.

(18) which can become very large for very small a and q and

the remainder. The former was integrated analytically with

respect to q from q ¼ ql to q ¼ qc and subsequently inte-

grated numerically with respect to x2 and X2 using Simpson’s

rule with Dx2 ¼ DX2 ¼ 0:02. The triple integration of the re-

mainder part which varies over the channel width scale was

performed numerically with a coarser grid involving about

10 divisions with respect to each integration variable. Note

that this part is computationally intensive. We, therefore,

used the method of Ozarkar and Sangani with somewhat

smaller Nr (equal to 12) to evaluate the integrand.

The results of the numerical integration of Eq. (21) are

expressed as equal to kp/, and the computed values of kp as

a function of a are shown in Fig. 10. We see that these results

extrapolated to a ¼ 0 are in agreement with the result kp ¼ 1

obtained by Batchelor and Green11 (cf. their Eq. (7.2) but

without the integral which accounts for the effects or the

higher-order pair interaction reflections) for unbounded sus-

pensions using their renormalization method. Our computa-

tions, therefore, are consistent with this very significant

benchmark result without having to apply a renormalization,

albeit for a very specific geometry of confined suspensions

with the flow at “infinity” generated by the moving walls.

We should note that the modification of the particle interac-

tions due to the presence of the walls (for a	 R ¼ 0ð1ÞÞ
played a very important role in obtaining the correct result

since we would have obtained kp ¼ �3=2 as a! 0, if we

had simply used Sun
p , as given by Eq. (18), instead of Sp to

evaluate Eq. (21)—which is still an absolutely convergent in-

tegral since Sun
p decays as q�3.

Since Sp is related to the gradient of the velocity induced

at X due to a sphere located at x, the volume integration over

x (i.e., over q; :h, and x2) can be can be converted to surface

integrals involving the surfaces of the excluded volumes

using the divergence theorem as shown in Appendix C. The

alternate expression derived there is shown to lead more

readily to the result kp ! 1 as a! 0 and may have offered a

slight computational advantage in determining kp for other

values of a as well.

As seen in Fig. 10, the contribution from the long-range

pair-interactions becomes negative at a � 0:3. This is

because, the number of pairs aligned parallel to the walls

increases relative to the pairs that are obliquely oriented as a
increased and, as noted earlier, the contribution from such

pairs is negative, causing the overall contribution to the

stresslet from the pair-interactions to decrease. This trend

reverses at a � 0:6 since, for larger a; the volume over which

pair interactions are significant decreases due to an increase

in the excluded volume.

The computed results for kp are well fitted by the

relation

kp ¼
1� 3:3a

1� 6a2 þ 9a3
(22)

which is denoted by the solid line in Fig. 10. The coefficient

3.3 in the above equation was chosen such that kp vanishes

at a � 0:3, and the other two coefficients were subsequently

determined by trial and error.

Finally, we note that our analysis assumed that the nor-

malized stresslet of the sphere at x was simply equal to unity.

The normalized stresslet of the individual sphere in a random

suspension actually varies, of course, with x2 and this fact

may be approximately accounted for by multiplying kp by the

average stresslet in the absence of the other spheres. Thus, the

relative viscous dissipation may be approximated by

Ediss ¼ 1þ ð5=2ÞhS�ið/þ kp/2Þ: (23)

Our calculation of the Oð/2Þ coefficient is only approximate

since it does not account for the detailed pair interactions

among the spheres that are separated by distances R that are

comparable to the radius of the spheres. Batchelor and

Green11 have carried out such detailed calculations for the

special case of unconfined suspensions ða! 0Þ and obtained

kp ffi 5:0=ð5=2Þ ¼ 2:0, about twice the value we obtained.

We expect that the error for moderately large values of a
will be smaller since for such suspensions the inter-particle

distances will be comparable to the channel width and we

have shown that on such length scales: (i) the particle-parti-

cle interactions do not affect the lubrication effects signifi-

cantly and (ii) the average stresslet induced by other spheres

decays rapidly. For larger a, for which kp is negative, a

FIG. 10. Long-range particle-interaction contribution to the oð/Þ coefficient

in the expansion of the average stresslet of a sphere in a dilute random sus-

pension as a function of the radius a. The circles represent the numerical

results and the curve represents Eq. (22).
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possibility exists for the relative viscous dissipation to have a

local maximum at / =� 1=(2kp), which for a¼ 0.5 occurs at

/ � 0:5. Of course, this estimate is very approximate consid-

ering that our calculation of the Oð/2Þ coefficient only

accounts for the leading order term in the particle-particle

interactions and that the suspension at / � 0:5 is anything but

dilute. Finally, it is also interesting to compare the above result

with that given by Davit and Peyla8 and quoted in the intro-

duction of the present study. The numerical results obtained

by these investigators for a ¼ 0:5 correspond to hS�i¼ 2 and

kp ¼ �1 which are in good agreement with the values hS�i �
1.5 and kp ¼ �1 (cf. Figs. 5 and 10) obtained here.

VI. CONCLUSIONS

Particulate suspensions sheared in the presence of walls

show rheological and mobility behavior that is strikingly dif-

ferent from those in the absence of walls. Particle-wall inter-

actions reduce the rotational velocity of the individual

particles and increase the stress induced by the particles,

with the short-range, lubrication-dominated, particle-particle

interactions appearing to play a relatively insignificant role

in highly confined suspensions. The particle-particle interac-

tions in the presence of walls are long-ranged in that, the

presence of a second particle changes the induced stresslet of

a test particle by an amount that is proportional to the inverse

of the distance squared compared to the inverse cubed rela-

tion in unbounded suspensions. For the special case consid-

ered here of random suspensions with uniform probability

density, these very long-range interactions, however, do not

contribute to the average stress in the suspension. In contrast,

when the separation distance between pairs is comparable to

the channel width, pair interactions play the most significant

role in determining the pair contribution to the total stress

and may contribute negatively to the total stress.
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APPENDIX A: MATCHED ASYMPTOTIC ANALYSIS FOR
SMALL SPHERES

Let the center of the sphere lie in the lower half of the

channel at a distance y from the lower wall, with a � y � 1.

Note that y is related to x2 introduced in the main text by

y ¼ x2 þ 1. We shall develop expansions for the stresslet and

the rotational velocity in: (i) the outer region, where

y ¼ Oð1Þ, and (ii) the inner region, where y ¼ OðaÞ, a dis-

tance from the wall comparable to the particle radius. Let us

denote the terms of OðakÞ in the inner and outer expansions

of the normalized stresslet by, respectively, Sk;in and Sk;out

and those of the corresponding terms for X by Xk;in and

Xk;out, respectively.

The leading behavior in the outer region corresponds to

the trivial case where the walls exert no influence on the

freely suspended sphere. This yields S0;out ¼ 1 and

X0;out ¼ 1=2. Let us, therefore, consider the inner region in

more detail where the stretched distance Y � y=a between

the center of the sphere and the lower wall is Oð1Þ and where

one must account for the influence of the lower wall.

Calculations for a simple shear flow around a sphere

freely suspended near a single wall have been carried out by

several investigators (e.g., Refs. 1, 2, 14, 17–19). Particularly

noteworthy are those by Chaoui and Feuillebois22 who com-

puted, with remarkably high precision to 16 significant dig-

its, the translational and rotational velocities of the sphere

but not the stresslet. We used the method of Ozarkar and

Sangani17 to determine both the rotational velocity and the

stresslet as functions of Y. The results for the stresslet and

the rotational velocity were found to be well approximated

by the following expressions:

For 0 < 1=Y < 0:85,

S0;in ¼ 1� 15

16Y3
þ 1

Y5
� 0:65

Y7

� ��1

; (A1)

X0;in ¼
1

2
� 5

32Y3
þ 1

8Y5
� 75

512Y6
þ 0:005

Y7
: (A2)

For 0:85 < 1=Y ¼ 1=ð1þ eÞ < 1,

S0;in ¼
0:847 ln e�1 � 0:41þ 1:44e ln e�1 � 0:3e

ð1=5Þ ln e�1 þ 0:6376
; (A3)

X0;in ¼
0:4218� 0:025e

ð1=5Þ ln e�1 þ 0:6376
: (A4)

Note that the stresslet approaches an Oð1Þ constant equal to

0:847� 5 � 4:23 in the limit of vanishingly small gap

between the sphere and the wall while the rotational velocity

approaches zero.

The expression for the stresslet in the inner region

expressed in terms of the outer region variable y is given by

Sin ! 1þ 15a3=ð16y3Þ þ Oða5Þ, hence the matching require-

ment yields that S1;out ¼ S2;out ¼ 0 and S3;out ! 15=ð16y3Þ as

y! 0. Similarly, Xt
1;out ¼ Xt

2;out ¼ 0 and Xt
3;out !�5=ð32y3Þ

as y! 0. The Oða3Þ corrections to the stresslet and rotational

velocity are determined next by treating the particle as a point

stresslet with magnitude corresponding to its value for an infin-

itely wide channel and computing at that point the rate of strain

and vorticity induced by its images on the two sides of the

channel. Such computations were already made for the special

case of the sphere placed at the mid-plane in Sec. II where we

gave the corrections in terms of c1 and c3 (cf. Eqs. (4) and (6)).

These calculations were repeated now as functions of y, and

the results were expressed as given by

S3;out ¼
15

16y3
þ C3;regðyÞ; X3;out ¼ �

5

32y3
� C1;regðyÞ:

(A5)

Figure 11 shows the results for C3;reg and C1;reg obtained

using 32 reflections on each side of the channel and subtract-

ing from them the contribution from the first reflection from

the lower wall which has already been accounted for by the

first terms on the right-hand side of the above expressions.
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At y ¼ 1, we obtained C3;regð1Þ ¼ 0:84 and C1;regð1Þ ¼
0:057, so that S3;outð1Þ ¼ ð15=16Þ þ 0:84 ¼ 1:78 ¼ c3 and

X3;outð1Þ ¼ �ð5=32Þ � 0:057 ¼ �0:213 ¼ �c1 in agree-

ment with the result for the sphere placed at the mid-plane

quoted in Sec. II. At the other end, we find that

C3;reg ! 0:729� 0:96y; C1;reg ! �0:364þ 0:99y

as y! 0:
(A6)

The above results expressed in terms of the inner region vari-

able Y ¼ y=a suggest that the matching requirement is

S1;in ¼ S2;in ¼ 0 and S3;in ¼ 0:729 as Y !1. Similarly,

X1;in ¼ X2;in ¼ 0 and X3;in ¼ 0:364 as Y !1. To determine

the Oða3Þ term in the inner expansion, we must solve, there-

fore, for a sphere freely suspended at a distance Y from a

wall in an undisturbed flow having a rate of strain 0.729

times that of the undistrubed shear flow and a vorticity, that

is, 0:364=0:5 or 0.728 times that of the undisturbed shear

flow. The two numbers are essentially the same and within

the numerical accuracy used in the computations, so that the

undisturbed flow is essentially the same as the simple shear

flow. It can be shown, therefore, that the Oða3Þ terms of the

inner expansions are given by

S3;in � 0:729S0;in;

X3;in � 0:729ðX0;in � 1=2Þ þ 0:364 ¼ 0:729X0;in:
(A7)

Finally, we note that Eq. (A6) suggests that the Oða4Þ correc-

tions in the inner region will be nonzero and require solving

for the case in which the rate of strain and vorticity of the

undisturbed flow increase linearly with Y. We shall not pursue

this calculation here but note that it can be shown that its

solution will force a correction of only Oða6Þ in the outer

region. Therefore, the Oða4Þ corrections in the outer region are

zero.

We now turn to the evaluation of the average stresslet and

rotational velocity. For this purpose, we need expressions for

these quantities that are applicable for an arbitrary position of

the particle. A good approximation to these quantities for the

entire range of particle positions can be obtained by adding the

inner and outer expansion results and subtracting from the sum

the overlapping part. Keeping in mind that the inner region

expression is in terms of the stretched coordinate, we write

hS�i¼ 1

1�a

ð1

a

S�ðyÞdy¼ 1

1�a

ð1

a

½1þa3C3;regðyÞþOða5Þ�dy

þ a

1�a

ða�1

1

½S0;in�1þa3ðS3;in�0:729ÞþOða4Þ�dY:

(A8)

Now substituting the following results obtained by a combi-

nation of the numerical and analytical integrationsða�1

1

ðS0;in � 1Þ dY ¼ 0:435� 15a2

32
þ Oða4Þ;ð1

a

C3;reg dy ¼ 0:451� 0:729aþ Oða2Þ;
(A9)

we obtain

hS�i ¼ 1þ 1

1� a
0:435 a� 0:018 a3 � 0:411 a4 þ Oða5Þ
� �

which, on simplifying, yields Eq. (10) in the main text.

An expression for the average rotational velocity can be

obtained in a similar manner, and the resulting expression is

given by Eq. (11) which made use of the integrals

ða�1

1

ðX0;in � 1=2Þ dY ¼ �0:078þ 5a2

64
þ Oða4Þ;ð1

a

C1;regdy ¼ �0:109þ 0:364aþ Oða2Þ:
(A10)

APPENDIX B: LONG-RANGE PARTICLE INTERAC-
TIONS BETWEEN FREELY SUSPENDED SPHERES

Let Vj
iðx;XÞ be the xi-component of the velocity at X

due to an applied force of unit magnitude at x along the xj-

axis. A complete expression for this velocity may be found

in Liron and Mochon.28 In turn, the velocity induced by a

freely suspended sphere with its center at x can be approxi-

mated by that due to a point stresslet Sjk when the radius of

the sphere is very small (compared to the channel width and

the distance from any other particle) and is given by

uiðXÞ ¼ �
1

2
Sjk

@Vj
i

@xk
þ @Vk

i

@xj

" #
: (B1)

For the case of shear flow of interest to us in the present study,

Sjk ¼ 10=3pa3ð Þ½dj1dk2 þ dj2dk1�. The stresslet induced in a

freely suspended sphere at X due to this velocity induced by

the sphere at x can be determined from the symmetric part of

the velocity gradient. In particular, the 1,2-component of the

induced stresslet is given by Sp
12 ¼ ð20=3Þpa3e12 with

e12 ¼
1

2

@ui

@Xj
þ @uj

@Xi

� �
: (B2)

FIG. 11. Regular parts of the Oða3Þ corrections to the stresslet and rotational

velocity as functions of the distance y in the outer region.
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Note that Sp, the particle-particle interaction contribution to

the normalized stresslet introduced in the main text (cf.

Eq. (17)) is related to Sp
12 by means of the relation

Spa3 ¼ 3Sp
12=ð10pa3Þ, and therefore,

Sp ¼
2e12

a3

¼ � 10p
3

@2V2
1

@x2@X1

þ @2V1
1

@x2@X2

þ @2V2
2

@x1@X1

þ @2V1
2

@x1@X2

� �
:

(B3)

For jX � xj 	 1, Vj
i can be approximated by the velocity

induced by a point force in an unbounded medium which is

given by

Vj
i ¼

1

8p
dij

R
þ RiRj

R3

� �
; (B4)

where Ri ¼ Xi � xi. On substituting Eq. (B4) into Eq.

(B3), one obtains the expression for the induced stresslet

in the unbounded shear flow as given by Eq. (18) in the

main text.

For jX � xj � 1, the point-force velocity is given by

(cf. Eq. (51) in Liron and Mochon28)

Vj
i ¼� 3=ð8pÞbf ðx2Þ f ðX2Þq�2 ð1=2Þdab � r̂ar̂b

	 

diadjb

þ di2dj2 Oðq�1=2e�2:1062qÞ
þ ðdi2dja þ dj2diaÞOðr̂aq

�1=2 e�2:1062qÞ
þ diadjb Oðr̂ar̂bq

�1=2e�pq=2Þc; (B5)

where f ðx2Þ ¼ 1� x2
2, ra ¼ r̂aq ¼ Xa � xa, q2 ¼ R2

1 þ R2
3,

and a and b are indices that take values 1 and 3 (but not 2).

Now, noting that

V1
1 ¼ 3=ð16pÞ bf ðx2Þ f ðX2Þ cos 2h q�2 þ Oðq�1=2e�pq=2Þc;

V2
2 ¼ 3=ð16pÞ bOðq�1=2e�2:1062qÞc

V2
1 ¼ V1

2 ¼ 3=ð16pÞ bOðq�1=2e�2:1062qÞc; (B6)

where h ¼ cos�1ðc2=qÞ, and substituting for the various ve-

locity components in Eq. (B3), one obtains Eq. (20) in the

main text.

Finally, the corresponding expression for Xp, the parti-

cle-interaction contribution to the rotational velocity of a

particle (cf. Eq. (17)), can be derived in a similar manner to

yield Xp ¼ �Sp=2, a relatively simple relationship since the

leading terms, of oðq�2Þ for large q, in both Sp and Xp are

related to the partial derivative of ð@2V1
1=@x2@X2Þ.

The complete expression for Vj
i involves two infinite se-

ries, both of which decay exponentially with q—one series

decays as q�
1
2e�npp=2 n ¼ 1; 2; :::Þ while the other decays as

q�
1
2e�ImðzmÞp=2 ðm ¼ 1; 2; :::Þ, where zm satisfies the equation

z ¼ sinh z and Im stands for the positive imaginary part. For

large q, therefore, the leading exponentially decaying term

is q�
1
2e�pp=2. For the special case, x2 ¼ X2 ¼ 0, however,

this term is identically zero, and the leading exponentially

decaying term is Oðq�1=2e�Imðz1Þq=2) with Imðz1Þ=2¼
2.1062.

APPENDIX C: AN ALTERNATE EXPRESSION FOR kp

We begin with the expression for the average particle

contribution to the normalized stresslet as given by

/kp ¼
a3

2ð1� aÞ

ð1�a

a�1

hSpiðXÞdX2 (C1)
with

hSpiðXÞ ¼
ð

V

½spðX; xÞpðx;XÞdV: (C2)

Here, pðx;XÞ is the probability of finding a sphere at x given

that a sphere is present at X and a3SpðX; xÞ is the induced nor-

malized stresslet on the sphere centered at X due to the stress-

let on the sphere centered at x. The volume integration over x
must be carried over the domain V which is the entire volume

of the suspension minus the excluded volumes Vw (defined by

1� jx2j < aÞ near each wall and Vp near the sphere centered

at X (cf. Fig. 7). For the special case of a uniform pair proba-

bility distribution considered in the main text, we have

pðx;XÞ ¼ 3/=½4pa3ð1� aÞ� � po and, therefore, upon substi-

tuting for sp from Eq. (B3) into Eq. (C2), we obtain

hSpiðxÞ ¼ 2poa�3

ð
V

e12ðx;XÞdV: (C3)

Our calculations in the main text involved the direct evalua-

tion of the above volume integral followed by the integration

indicated by Eq. (C1).

Substituting for e12 from Eq. (B2) and applying the

divergence theorem to the volume integral in Eq. (C3), we

obtain

hSpiðXÞ ¼ 2Poa�3

ð
Sw

ðu1n2 þ u2n1ÞdA

�

þ
ð

B

ðu1n2 þ u2n1ÞdA�
ð

sp

ðu1n2 þ u2n1ÞdA

#
;

(C4)

where B represents outer boundary of the suspension and Sw

and Sp represent the surfaces of the excluded regions (cf.

Fig. 7). Now, at the outer boundary B, n2 ¼ 0 and u2 is expo-

nentially small and, therefore, the middle integral on the right-

hand side of Eq. (C4) can be neglected. Thus, one needs to

evaluate only the first and third integrals which must be done

numerically as in the method described in the main text.

Note that in the limit of small particles ða! 0Þ, the first

integral being OðaÞ (since u1 ¼ OðaÞ near the walls) can be

neglected, and if 1� jX2j � a, then the integral over Sp can

be evaluated using Eq. (B4) to determine ui, and hence,

hSpiðXÞ in a straightforward manner to yield kp ¼ 1—the

same result as one obtained by Batchelor and Green11 in the

absence of higher order interactions between the spheres,

i.e., in the absence of the integral in their Eq. (7.2).
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