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“Dead or Alive?” Assessment of the Binary End-of-Event Outcome
Indicator for the NEMSIS Public Research Dataset

OBJECTIVE: The broad absence of definitive patient outcomes in the NEMSIS
public release data hinders research that seeks to understand the impact of pre-
hospital care, operations, and overall patterns of population health — including
geospatial and demographic differences. This study evaluated the recently
proposed binary end-of-event outcome indicator to provide additional validity of
the method, to evangelize its employment for more studies to analyze survival
impact following an emergency medical event, and to identify appropriate use
and interpretation given imperfection in predicted outcomes. METHODS: A
recently published binary end-of-event outcome indicator was applied to datasets
for each year from 2017 to 2022. Produced indicators were adjusted to address
the method's inconsistencies. An array of established performance metrics from
the binary classification in the machine learning literature were applied and
interpreted. RESULTS: Over-fitting was detected for year 2018, as well as a
degradation in performance when applying the method for datasets from year to
year. Extended metrics revealed the method's weakness in accurately indicating
the minority class: e.g., after adjustments for conflicting labels, “Dead”
prediction accuracy was 77.7% for 2018 and 61.8% over the six-year NEMSIS
sub-sample, verses 98.8% overall. CONCLUSIONS: After reproducing and
then replicating a previously proposed method for predicting NEMSIS binary
end-of-event outcomes, this study shows that it produces reasonably good
“Dead” or “Alive” indicators. Reporting True Positive Rate (“Dead” prediction
accuracy) and True Negative Rate (“Alive” prediction accuracy) is recommended
whenever the method is used in NEMSIS analyses. For certain analyses,
outcomes at the individual-level may be more appropriately quantified as
probabilities using methods such as logistic regression, instead of predicted
binary indicators. In the field, more attention to PCR completion of NEMSIS
elements eOutcome.01 and eOutcome.02, whenever possible, can significantly

enhance the public research datasets. [288 words]

Keywords: binary classification, health outcome prediction, NEMSIS,

population health patterns,



INTRODUCTION

The National Emergency Medical Services Information System (NEMSIS)
project provides voluminous public research data consisting of nearly a quarter billion
events (1). To date, over one thousand scholarly articles have leveraged the dataset for
retrospective studies which analyze EMS operations and pre-hospital care (2), but only
a recent handful have considered survival/mortality outcomes (3,4,5,6). Unfortunately,
just a tiny fraction (<1%) of NEMSIS patient records include a definitive end-of-event
status indicating whether an individual survived a medical emergency, i.e. “lived” or
“died” (3). Confounding this is a rare event problem (7): on average, fatalities occur in
only 1.7% of patient care events (3). See Table 1.

(Insert Table 1 here)

By their nature, medical emergencies in need of 9-1-1 assistance are assumed to
involve potentially life-threatening health situations (8,9). The broad absence of
definitive patient outcomes hinders assessments that seek to understand the survival
impact of EMS care, operations, and overall patterns of population health — including
geospatial and demographic differences. Increased knowledge of patient outcomes
would enhance NEMSIS's research utility so that more studies are able to quantify the
impact of a pre-hospital intervention, situation, or population characteristic on
likelihood of survival to hospital discharge — for example, manual verses mechanical
chest compression (10); the effect of intubation (11) or bystander cardiopulmonary
resuscitation (CPR) (12); race, ethnicity, age, sex, and geographic differences (5,13,14);
advanced verses basic life support (15); mortality from traumatic penetrations including
gunshot wounds (16); use of lights and sirens (17); and many others.

In a recent study, researchers developed and evaluated a method for predicting

an EMS patient's end-of-event outcome — presumptively dead or presumptively alive —



using a combination of NEMSIS element and code combinations (3). It is referred to
here as the MLB prediction method for its authors Miller, Lincoln, and Brown, or MLB
for short. Their study was pivotal because it meant the NEMSIS public research dataset
could include a predicted binary end-of-event outcome for each patient care record,
increasing the dataset's utility for evaluating the most consequential aspect of EMS:
mortality and survival patterns subsequent to pre-hospital care.

To date, despite a seemingly important contribution and the open availability of
STATA code, only three published studies have leveraged the MLB method in their
analysis. These include: a study characterizing patterns of pre-hospital care for cardiac
arrests related to trauma (4); comparison of cardiac arrest outcomes in rural, suburban,
and urban settings (5); and an assessment of dispatch protocols on survival rates for
cardiac arrest (6).

The purpose of the present study is to evangelize MLB's significance to support
future studies leveraging NEMSIS data, while providing a broader assessment of the
MLB method's validity. This paper also provides recommendations for appropriate use,
interpretation of outcomes predicted by the MLB method, and future study limitations
given the inherent but quantifiable imperfection of predicted binary end-of-event

outcome indicators for the NEMSIS dataset.

METHODS

Data Source and Instance Selection

This study analyzed the public research dataset for six consecutive years, from 2017 to
2022, from the NEMSIS project (1). NEMSIS is a national project funded by NHTSA’s
Office of EMS and hosted by the University of Utah. The project centralizes,

standardizes, maintains, and publishes de-identified event records, originating from



patient care reports (PCRs) compiled by EMS responders from agencies across U.S.
states and territories.

The sub-sample used in the present study, summarized in Table 1, was extracted
following the MLB inclusion logic; see Table 2 and Figure 1. That is, only 9-1-1
dispatched EMS ground responses with patient contact were considered. Excluded, for
example, were helicopter and airplane transports, cancelled dispatches, responses where
no patient was found at the scene, etc. Further, the isolated instances were retained only
if they included a definitive emergency room or hospital disposition —i.c., “lived” or
“died” — following the same MLB logic.

(Insert Table 2 here)

(Insert Figure 1 here)

Variables Relevant to Predicted Outcomes

Variables used to specify binary outcomes for each patient event were derived from the
same NEMSIS elements and code combinations used by the MLB method. The
elements, codes, and descriptions used in MLB's novel two table prediction logic (3),
for determining presumptively dead and presumptively alive, are recapitulated, and
condensed here in the Table 3. For example, when EMS responders note a cardiac arrest
patient with obvious signs of death, e.g. decapitation, dependent lividity, or rigor mortis
(8), and do not attempt CPR for that reason, then the patient's care record coded with the
value of 3016005 for NEMSIS element eArrest.16 is evidence supporting the predicted
status of presumptively dead, corresponding to row eleven in Table 3.

(Insert Table 3 here)



Data Preparation and Analysis Methods

The present study began by recognizing MLB as a custom-tailored binary classifier
where the output is one of two classes, “Dead” or “Alive.” Binary classification is a
well-known task in data science and supervised machine learning with a broad array of
metrics for evaluating performance (18,19,20).

Here, the approach first replicated and generalized the MLB logic (from STATA
to Python) to isolate the NEMSIS sub-sample for years 2017 through 2022. The MLB
logic for outcome prediction, i.e. presumptively dead or presumptively alive, was then
applied to all six NEMSIS years. Confusion matrix counts, Cohen's Kappa Coefficient,
and Overall Accuracy were computed for the 2018 dataset sub-sample. Counts, Cohen's
Kappa, and Overall Accuracy were compared against the original MLB assessment (3)
to verify that year 2018 results were correctly reproduced.

Next, MLB predicted outcomes were adjusted to remove “conflicts.” That is, a
PCR instance predicted as (simultaneously) both presumptively dead and presumptively
alive was considered a “conflicted” instance. Prediction conflicts were possible from
the MLB method's two table logic. The adjustment method dropped the “correctly
predicted” indicator from each “conflicted” instance and kept the “incorrectly
predicted” indicator, following the rationale that dual labelling was ambiguous and
therefore equivalent to being incorrect.

The result of the adjustments was: each instance was unambiguously labelled
either presumptively dead or presumptively alive, but not both. The resulting confusion
matrix (20,21) comprised of True Positive (TP, or truly “Dead”), True Negative (TN, or
truly “Alive”), False Negative (FN, or falsely labeled “Alive” when truly “Dead”), and

False Positive (FP, or falsely labeled “Dead” when truly “Alive”) included all instances



in the entire sub-sample and was comprised of counts from the four mutually exclusive
sets.

Figure 2 provides a general depiction of the confusion matrix for “Dead” or
“Alive” prediction. Note that this matrix is a special case of a contingency table: a well-
known construct used in epidemiology and biostatistics for organizing data and for
testing hypotheses that compare groups, interventions, or situations via risk and odds
ratios and their confidence intervals (22).

(Insert Figure 2 here)

Finally, counts and an extended array of assessment metrics from the binary
classification literature (18, 19, 20, 21, 23) were computed as a function of definitive
and predicted outcome vectors. Figure 3 describes the assessment metrics selected for
this study. The assessment results were organized by year and totals across the six-year
NEMSIS sub-sample, and were assessed for general prediction quality, possible sore
spots, over-fitting, and other general trends. Lastly, recommendations, mindful of
prediction imperfections, were formulated for use of the MLB method in future
retrospective studies involving the NEMSIS public release research datasets.

(Insert Figure 3 here)

RESULTS
NEMSIS Sub-Sample, 2017-2022

Table 4 summarizes the extracted NEMSIS sub-sample for years 2017 through 2022,
showing a total of 686,075 instances -- PCRs for ground transport, patient contact, and
definitive outcome by the MLB logic. Instances increased from year to year, but this
also coincides with progression of NEMSIS v3 standard adoption by U.S. states and
territories (1).

(Insert Table 4 here)



MLB Reproduction
Table 4, column two, shows the extracted NEMSIS sub-sample for 2018 that matched
the developed MLB isolated data (with published correction)(3) for their equivalent to
the confusion matrix, before adjustment for conflicts: 748 True Positives (TP, or truly
“Dead”), 34,247 True Negatives (TN, or truly “Alive”), 143 False Negatives (FN, or
falsely labeled “Alive” when truly “Dead”), and 152 False Positives (FP, or falsely
labeled “Dead” when truly “Alive”).

For the 2018 NEMSIS sub-sample year, Cohen's Kappa (COH =.831) and
Overall Accuracy (ACC =99.2%) matched the original MLB's assessment metrics

exactly. In summary, the present study correctly reproduced the MLB results for 2018.

Conflict Resolution Adjustment

In the 2018 sub-sample, the MLB method predicted both presumptively dead and
presumptively dead for 173 instances which were in truth “Alive” at end-of-event.
Similarly, MLB predicted both presumptively dead and presumptively dead for 72
instances that they were in truth “Dead.” That is, MLB produced 215 conflicts for the
2018 NEMSIS sub-sample; see Table 1 rows for Conflicting Labels.

Adjustments resulted in increased counts for False Positive and False Negative
categories accordingly. For example, for 2018, False Positives increased by 173
instances from 152 to 325 and False Negatives by 72 instances, i.e. from 143 to 215.
See Tables 4 and 5, corresponding rows for Conflicting Labels, False Negatives, and

False Positives.



Note that, for the 2018 NEMSIS sub-sample year, Cohen's Kappa and Overall
Accuracy both decreased with this adjustment, which was expected since False
Negatives and Positives are both increased while there was no change to True Positives
and Negatives. That is, Cohen's Kappa decreased from .831 to .727 and Overall
Accuracy from 99.2% to 98.5%. See Tables 4 and 5, rows for Cohen's Kappa and
Overall Accuracy.

(Insert Table 5 here)

Extended Assessment of MLB

Results of the MLB prediction method to the six years of NEMSIS datasets, 2017 to
2022, are summarized in Table 4 and, after the adjustment correcting for conflicts,
Table 5. Not surprisingly, all performance metrics worsened after the adjusting
correction was applied. Still, metric values were consistent collectively at respectable

levels signally reasonably good performance across years.

DISCUSSION

Interpretation of Cohen's Kappa and Accuracy for the Extended Sub-Sample

Cohen's Kappa Coefficient (COH)

Cohen's Kappa is a correlation-type of measure designed to help assess how closely one
data set resembles another (24). When first proposed in 1960, the aim was to improve
on approaches that were criticized for being too purely percent agreement (25). As
such, it allowed for comparison that was statistical in nature, and thus more forgiving of

random differences while considering non-discrete datasets.



Use of Cohen's Kappa to compare two deterministic binary vectors, as is the
case in binary classification, was not its original intention. Even so, it has become
somewhat widely used as a metric of comparison. Its value ranges from minus one to
plus one, as per usual correlation metrics — closer to one (+, -) indicating similarity and
zero indicating no similarity. Apparently, absolute values of Cohen's Kappa that are
greater than .41 are considered acceptable for concluding reasonable similarity (24).

The value of Cohen's Kappa assessed on outcomes generated by MLB applied to
all years was .638 (Table 5) and ranged from .597 for year 2022 to .727 for year 2018.
Overall, this indicates reasonably good prediction performance. That year 2018 is much
larger than other years, and given the development of MLB's prediction criteria,
suggests there is over-fitting (26, 27) by the method. That is, the prediction rules may
be overly customized for the year 2018. This is analogous to the problem in machine
learning tasks whereby predictions are better for data used in model training than for

other data (19).

Overall Accuracy (ACC)
Table 5 shows that MLB produces consistently high Overall Accuracy, in the range .983
to .993 across years and .988 for all years. The year-to-year pattern of these
measurements is different than that of Cohen's Kappa, which peaked in 2018 and
exhibited much more year to year variation. While Overall Accuracy may be considered
a de facto measure of performance, it is known to be misleading in classification
assessment when there is class imbalance (28).

For “Dead” or “Alive” prediction from the NEMSIS datasets, the class
imbalance is evidenced in Table 1. For example, for the year 2018 NEMSIS sub-

sample there are almost thirty-six times the number of patients who lived than died



following an EMS event — and almost sixty times overall. This concern is addressed
next, in examining the individual class accuracy scores presented as extended
assessment metrics: True Positive Rate (TPR), which measures the accuracy of
predicting “Dead” instances, and True Negative Rate (TNR), which measures the

accuracy of predicting the “Alive” instances.

Interpretation of Extended Assessment Metrics for MLB

True Positive Rate (TPR)
The True Positive Rate, also known as Recall or Sensitivity, is essentially accuracy
measured only for the “Dead” (positive) category. Values are fractions between zero
and one, with higher values reflecting better accuracy. Table 5 reveals that MLB's
“Dead” accuracy ranges from a low of .521 in 2022 to a high of .777 in 2018, with an
average of .618 across all years. Note that True Positive Rate is significantly lower than
the Overall Accuracy, which is a commonly encountered plight in binary classification
when there is a minority class, such as the case with “Dead” and “Alive.”

That True Positive Rate in year 2018 is much larger than other years, and given
the development of MLB's prediction criteria, adds to the suggestion that there is over-

fitting by the MLB method.

True Negative Rate (TNR)

The True Negative Rate, also known as Specificity or Selectivity, measures the accuracy
of the “Alive” (negative) category. Values are fractions between zero and one, with
higher values reflecting better accuracy. Table 5 reveals that MLB's “Alive” accuracy

ranges from a low of .989 in 2017 to a high of .996 in 2019 and 2022, with an average



of .995 across all years. Overall accuracy is essentially a convex combination of True
Negative Rate and True Positive Rate.

When the “Alive” category is the majority class, by the principle of random
incidence (29) it is easier to predict accurately. It's value and the plenitude of instances
in this class pull the value of Overall Accuracy higher. If, instead of using the MLB
prediction method, all instances were labelled as presumptively alive, then True
Negative Rate would be equal to one (i.e. 100% accuracy for the “Alive” category), the
True Positive Rate would be zero (i.e. 0% accuracy for the “Dead” category), and the
Overall Accuracy would be equal to the survival rate in Table 1; for example, 98.3%
over all years. This demonstrates how an alternative and trivial prediction method can
be very accurate even when ignoring the minority category when it involves a rare
event. Clearly, this would not be helpful if the intent of providing “Dead” and “Alive”

predicted outcomes is to evaluate mortality and survival EMS patterns.

Balanced Accuracy (BACC)

The Balanced Accuracy is a direct average of True Positive Rate and True Negative
Rate, which reflect “Dead” and “Alive” category accuracy respectively. Thus,
Balanced Accuracy is an accuracy metric with equal weights between the two
categories even though “Dead” has many fewer instances than “Alive.” This results in
Balanced Accuracy being less optimistic than Overall Accuracy in its accuracy
assessment, as seen in Table 5 where its values range from a low of .759 in 2022 to a

high of .884 in 2018.

Precision (PRE)



Precision measures the fraction of predicted presumptively dead that were indeed dead.
Precision measurements take on values between zero and one, with higher values
reflecting better quality. Table 5 reveals that MLB's Precision ranges from a low of
.593in 2017 to a high of .714 in 2022, with an average of .672 across all years. The
rare event nature of the “dead” (positive) class together with the inaccuracy of many
“alive” (i.e. the False Negatives) pushes these measurements to lower values, as is the

case here.

F1 Score
As illustrated in Figure 3, F1 is a function of Precision and True Positive Rate: it is the
harmonic mean of these two metrics. The F1 Score became popular with information
systems, where it was used to measure retrieval performance (20). F1 Scores can range
from zero to one, with better performance indicated by higher values. This metric is
helpful when category imbalance is present such as the case of “Dead” and “Alive.”
Table 5 reveals that MLB's F1 ranges from a low of .602 in 2022 to a high of
.735 in 2018, with a value if .644 measured across all years. That year 2018 has a

significantly higher F1 is further evidence to suggest over-fitting.

Matthew's Coefficient (MAT)

Matthew's Coefficient is a correlation-type of measure, with possible values ranging
from minus one to plus one: a value of one indicates a perfect match, minus one a
perfect inverse match, and zero indicates no correlation. Matthew's Coefficient is
generally “liked” in binary classification because high (absolute value) scores are
believed to align with confusion matrix values where “Trues” are maximized and

“Falses” are minimized (30). There is some published empirical evidence suggesting



that Matthew's Coefficient has advantages over several other assessment metrics, such
as F1, Balanced Accuracy and Cohen's Kappa (30,31,32).

Table 5 reveals that MLB's Matthew's Coefficient ranges from a low of .604 in
2022 to a high of.728 in 2018 in 2018, mirroring the pattern of Cohen's Kappa within
early identical values. Comparison of the formulae for computing Matthew's
Coefficient and Cohen's Kappa, shown in Figure 3, gives some insight to why these
values are close: they differ by a constant multiplier in the numerator and a slight
variance in combination of same terms in the denominator. However, Matthew's
Coefficient and Cohen's Kappa are not always completely aligned, as illustrated in work
that compared them based on simulated datasets (32). That Matthew's and Cohen's
Kappa Coefficients are both closer to one than zero, as well as like each other in value
and pattern, is stronger evidence that the MLB predictions are consistently well-

correlated with the definitive outcomes.

Hamming Loss (HL)
Hamming's Loss measures the fraction of predictions that are incorrect. As a fraction,
its values can range from zero to one with lower values indicating better performance.
Hamming's Loss can be interpreted as a measure of overall inaccuracy. As such, it is
equivalent in value to one minus Overall Accuracy, which can be observed by
inspecting Table 5 rows for the two metrics. For example, Overall Accuracy over all
years is 98.8% while Hamming's Loss is 1.2%, which is 1-Overall Accuracy.
Hamming's Loss has its origins in computer science and was used for bit
checking to assess information loss in digital communications (33). It was included in

the MLB extended assessment to illustrate the connection — in this case, equivalence —



between assessment metrics for binary classifiers, and to bring attention to their

historical context.

Jaccard Similarity (J)

Jaccard Similarity is also known as the Jaccard Index, Jaccard Metric, or the Jaccard
Coefficient. The metric measures the ratio of the intersection and union of the
predicted and definitive label sets.

Like Hamming's Loss, the metric has a history with other domains -- in this
case, ecology (used to compare plant species) and engineering (facility location) (34).
Jaccard Similarity is re-emerging as a metric in the machine learning field, for example
to guide a search algorithm to achieve a maximized similarity (35).

Possible values for Jaccard range from zero to one, with larger values indicating
better performance. For the MLB, assessment with Jaccard revealed in Table 5 shows it
ranging from .431 in year 2022 to .581 in year 2018. Compared to other assessment
metrics, Jaccard gives a less optimistic view of the MLB's performance. However, the
pattern across years is consistent with several other metrics: showing a common pattern
of achieving a low and high in the same years as the Balanced Accuracy, True Positive

Rate, F1, Matthew's Coefficient, and Cohen's Kappa.

Summary of Assessment Results

In general, the results from an assemblage of assessment metrics applied to MLB — the
accuracy rates and similarity measurements of Overall Accuracy, True Positive
Rate, True Negative Rate, Hamming's Loss, and Jaccard; the combination metrics of
Balanced Accuracy, Precision, and F1; the correlation coefficients Cohen's Kappa and

Matthew's — showed agreement on reasonably good prediction quality.



The extended assessment metrics and year to year trends revealed a subtle
deficiency in the MLB performance in terms of minority accuracy — i.e. the accuracy of
correctly predicting instances as “Dead” is only 61.8% across the six-year data set, in
comparison to Overall Accuracy of 98.8% after (99.2% before) the conflict adjustment.
Diminished accuracy for one category is of concern whenever the number of instances
is far outnumbered by the other category. MLB's prediction does a much better at
indicating truly alive than truly dead instances, i.e. 99.5% verses 61.8%, and therefore
this is a valid concern. Veritably, “Dead” should be the more important class to predict
accurately in any study based on NEMSIS data were outcomes and patterns of interest
relate to potential fatalities.

While values and computation for individual metrics are different, Balanced
Accuracy, True Positive Rate, F1, Matthew's, and Cohen's Kappa were all significantly
higher in 2018 than for other years. As mentioned earlier, that original MLB
development was anchored in 2018. However, that prediction performance is not as
stellar for all other years suggests over-fitting by the method. The implication is that
the measured accuracy reported for year 2018 (3) cannot be guaranteed for prediction
use in other years. In machine learning, there are standard approaches to resolve over-
fitting such as tuning of model hyper-parameters (e.g., learning rate or epochs (20),
removing or penalizing (regularization) some variables (36), or changing model
architectures (e.g., from a random forest to a logistic regression (19), or from a deep to a
shallow neural network (37)). Resolving MLB's over-fitting likely means a deeper
investigation of the two-tabled criteria with respect to years beyond 2018, with the
objective of achieving equivalent assessments from year to year. This is left for future

research.



The array of metrics considered in the extended assessment of MLB gives a
broader perspective and adds to the credibility of the MLB prediction method by
showing consistent and reasonably good performance. The advantage of considering a
broader set of binary classification assessment metrics is that one or just a few can
potentially show MLB to be overly optimistic or pessimistic, for example the Jaccard
Similarity. There is also the possibility of missing a trend that indicates a deficiency
such as minority class inaccuracy.

Other binary classification metrics from the literature, but not considered here,
include: False Negative Rate (FNR), which is equivalent to one minus True Positive
Rate; False Positive Rate (FPR), which is equivalent to one minus True Negative Rate;
Average Precision Score (APS), which combines Precision and True Positive Rate;
Receiver Operating Characteristic/Area Under the Curve (ROC/AUC) (38), which is
equivalent to Balanced Accuracy in the discrete case; and Zero One Loss, which is
equivalent to the Hamming Loss when normalized. Other less commonly used binary
classification metrics, also not considered here, include Brier score, error rate,
geometric mean, bookmaker score, informed-ness, and marked-ness (21).

Finally, it is noted that “Dead” is the usual minority class in the NEMSIS dataset
because most people, fortunately, survive their medical emergencies in the United
States. However, for out-of-hospital cardiac arrests (OHCA), “Alive” is the minority
class. For example, in the NEMSIS sub-sample for 2018 there were 732 (67%)

definitive instances of “Dead” and 358 (33%) definitive instances of “Alive” (3).

Recommendations for Applying MLB in NEMSIS Analyses
When using MLB to infer binary “Dead” or “Alive” outcome indicators for NEMSIS,

the author recommends reporting the True Positive (“Dead”) and True Negative



(“Alive”) rates from the appropriate NEMSIS sub-sample. Reporting these, for
example in study limitations, provides quantified information about uncertainty — that
is, the accuracy for prediction of presumptively dead (True Positive Rate) or
presumptively alive (True Negative Rate) may be interpreted as the probability of a
predicted binary outcome indicator being correct. For example, for out-of-hospital
cardiac arrests (OHCA), for 2018 TP=694, FN=121, FP=38, and TN=237 (3) which
results in True Positive Rate=.948 and True Negative Rate=.662. In other words, the
probability of a predicted outcome “Dead” (“Alive”) being accurate is 94.8% (66.2%).
As a probability, it can also be used to estimate a confidence interval for the number in

“Dead” or “Alive” categories, as the parameter of a binomial distribution (39,40).

LIMITATIONS

The analyses, results, and conclusions in this study rely on the accuracy and
completeness of the NEMSIS public research dataset and, ultimately, the patient care
reports completed by EMS providers. More frequent and unambiguous documentation
of eOutcome.01 and eOutcome.02 elements — i.e., patient disposition from the
emergency department and, if admitted, from the hospital, respectively — would
significantly enhance the public research dataset by increasing the size of the sub-
sample for “learning" criteria and for assessing quality of the predicted indicators.
Currently, however, there is a noteworthy practical challenge for this data improvement:
lessened visibility by EMS providers to patient status after transfer-of-care to the

emergency department.

CONCLUSION

The proposed MLB method for predicting NEMSIS binary end-of-event outcomes



produces reasonably good “"Dead" or ~"Alive" binary outcome indicators, even after an
adjustment for conflicts that recategorized them as incorrect predictions. After
reproducing the MLB method, and then replicating it for several more NEMSIS dataset
years, this study provided an extended assessment that adds to the validity of the MLB
prediction method with an aim of inspiring more NEMSIS analysis to use it to analyze
survival and mortality patterns related to EMS situations. These potential studies would
add to the understanding of population health and of EMS' contribution to health and
wellness in the United States.

It is recommended that researchers using MLB in their analysis should clearly
state the True Positive Rate and True Negative Rate for the NEMSIS sub-sample with
definitive outcomes that correspond to their study extract. This makes transparent that
predicted outcomes are imperfect and provides the best-known quantifications
describing the imperfections. In the field, EMS practitioner completion of PCR
documentation related to NEMSIS eOutcome.01, .02, eArrest.01, .03, .12, .16, .17, .18,
eDisposition.12, .19, .21, eScene.08, and eSituation.13 elements would significantly
enhance the public research dataset.

Minority class accuracy and evidence of over-fitting of MLB suggest there is
room for improving the prediction quality of the method. A next study examines
alternatives to the MLB method by seeking probabilistic indicators of the end-of-event
outcome instead of the deterministic binary indicator using Logit and Probit regression

models.
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TABLES

Table 1. Summary of NEMSIS patient care reports (PCR events) from years 2017,
2018, 2019, 2020, 2021, and 2022 that involved ground transport and patient contact,

and where a definitive end of event (""Died" or “"Lived") is indicated (3).

EMS Activations (1)
PCRs*

Definitive Outcome
Died
Lived
Definitive Outcome
Mortality Rate***
Survival Rate***

NEMSIS DATASET YEAR

s**

%

2017 2018 2019 2020 2021 2022 ALL
7,907,829 22,532,890 34,203,087 43,488,767 48,982,990 53,179,492 210,295,055
4,728,800 13,299,079 19,567,334 24,818,400 27,542,665 30,478,236 120,434,514

36,877 35,535 87,497 118,617 137,367 280,172 696,065
591 963 957 1,484 2,836 4,733 11,564
26,296 34,572 86,540 117,133 134,531 275,439 674,511
0.78% 0.27% 0.45% 0.48% 0.50% 0.92% 0.58%
2.20% 2.70% 1.10% 1.30% 2.10% 1.70% 1.70%
97.80% 97.30% 98.90% 98.70% 97.90% 98.30% 98.30%

*From 9-1-1 calls, EMS ground transport responses with patient contact (3).
**“Dead" or "Alive" determined from NEMIS data elements eOutcome.01 and eOutcome.02 (3).
***Definitive sub-sample of PCRs.

Table 2. Summary of instance inclusion/exclusion logic in the data preparation step of
the MLB prediction method (1,3).

NEMSIS Element @ Code Value (Supported Indicator) Description

eDisposition.12  # 4212001 (Exclusion Logic) NPTT - assist, agency.

eDisposition.12  # 4212005 (Exclusion Logic) NPTT - assist, unit.

eDisposition.12 # 4212007 (Exclusion Logic) NPTT - canceled prior to arrival at scene.

eDisposition.12 # 4212009 (Exclusion Logic) NPTT - canceled on scene with no patient contact.

eDisposition.12  # 4212011 (Exclusion Logic) NPTT - canceled on scene with no patient found.

eDisposition.12 # 4212039 (Exclusion Logic) NPTT - standby-no services or support provided.

eDisposition.12 # 4212041 (Exclusion Logic) NPTT - standby-public safety, fire, or EMS operational support provided.

eDisposition.12  # 4212043 (Exclusion Logic) NPTT - transport non-patient, such as organs, etc.

ePayment.50 # 2650011 (Exclusion Logic) Transport by fixed wing (airplane).

ePayment.50 # 2650015 (Exclusion Logic) Paramedicintercept.

ePayment.50 # 2650017 (Exclusion Logic) Transport by rotary wing (helicopter).

eResponse.05 = 2205001 (Inclusion Logic) 911 response (scene); ground transport.

eResponse.07 = 2207003 (Inclusion Logic) Ground transport.

eOutcome.01 in [01-09, 21, 43-70] (Inclusion Logic; D-Alive) The known disposition from the ED, i.e. admitted, transferred, discharged or left AMA.&
eOutcome.01 = 20 (Inclusion Logic; D-Dead) The known disposition from the ED, i.e. deceased.?

eOutcome.02 in [01-09, 21, 43-70] (Inclusion Logic; D-Alive) The known disposition from the hospital, if admitted, i.e. transferred, discharged or left AMA.B
eQutcome.02 = 20 (Inclusion Logic; D-Dead) The known disposition from the hospital, if admitted, i.e. deceased.B

Table Abbreviations:

AMA = Against medical advice

ED = Emergency department

NPTT = Non-patient transport or transfer
Exclusion Logic = Used to exclude instances}
Inclusion Logic = Used to exclude instances

D-Alive = Definitive outcome, "Alive"
D-Dead = Definitive outcome, "Dead"




Table 3. Summary of NEMSIS elements and codes used by the MLB prediction

method (1,3).

NEMSIS Element Code Value (Supported Indicator) Description

eArrest.01 = (presumptively alive) No indication of a cardiac arrest at any time during this EMS event.&

eArrest.01 # (presumptively alive) No indication of a cardiac arrest at any time during this EMS event prior to EMS arrival

eArrest.01 # 30010058 (presumptively alive) No indication of a cardiac arrest at any time during this EMS event after EMS arrival.B

eArrest.03 = 30030072 (presumptively dead) Indication of attempt to resuscitate the patient who is in cardiac arrest was: not attempted-considered futile.?l
eArrest.03 = 30030092 (presumptively dead) Indication of attempt to resuscitate the patient who is in cardiac arrest was: not attempted-DNR orders.
eArrest.03 # (presumptively alive) No Indication of attempt to resuscitate the patient who is in cardiac arrest using Defibrillation.B
eArrest.03 # (presumptively alive) No Indication of attempt to resuscitate the patient who is in cardiac arrest using Ventilation.®

eArrest.03 # (presumptively alive) No Indication of attempt to resuscitate the patient who is in cardiac arrest using Chest Compressions.2
eArrest.12 = (presumptively dead) Indication of whether or not there was any ROSC was: NO.&I

eArrest.16 = 30160012 (presumptively dead) Reason that CPR or the resuscitation efforts were discontinued was: DNR.B

eArrest.16 = 30160050 (presumptively dead) Reason that CPR or the resuscitation efforts were discontinued was: obvious signs of death.B

eArrest.16 = 30160112 (presumptively alive) Reason that CPR or the resuscitation efforts were discontinued was: ROSC, i.e. pulse or BP noted.
eArrest.17 = 99010012 (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: Agonal/ldioventricular.

eArrest.17 = 99010037 (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: Asystol

eArrest.17 = 99010072 (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Atrial Fibrillation.B

eArrest.17 = 99010097 (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Atrial Flutter.?l

eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: AV Block-1st Degree.?

eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Left Bundle Branch Block.Bl
eArrest.17 = (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: PEA.B

eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Right Bundle Branch Block.?
eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Arrhythmi

eArrest.17 = 99010477 (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Rhythm.@

eArrest.17 = 99010497 (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Tachycardia.®

eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Supraventricular Tachycardia.
eArrest.17 = (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: unknown AED shockable rhythm.2
eArrest.17 = (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: Ventricular Fibrillation.Bl

eArrest.17 = (presumptively alive) Patient's cardiac rhythm upon delivery/transfer to destination was: Ventricular Tachycardia(with pulse).?
eArrest.17 = (presumptively dead) Patient's cardiac rhythm upon delivery/transfer to destination was: Ventricular Tachycardia(pulseless).
eArrest.18 = (presumptively dead) Patient's outcome at the end of the EMS event: expired in the field.2

eArrest.18 = (presumptively alive) Patient's outcome at the end of the EMS event: ROSC in the field.B

eDisposition.12 = (presumptively dead) Disposition treatment/transport indicates patient dead at scene-no resuscitation attempted(with transport)
eDisposition.12 = (presumptively dead) Disposition treatment/transport indicates patient dead at scene-no resuscitation attempted(w/o transport).2
eDisposition.12 = (presumptively dead) Disposition treatment/transport indicates patient dead at scene-resuscitation attempted(w/o transport).2l
eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Evaluated; No Treatment/Transport Required.Bl
eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Refused Evaluation/Care(w/o Transport).2
eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Treated - released AMA.

eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Treated; Released(per protocol).

eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: patient treated; transported.

eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Treated; Transported by Law Enforcement.
eDisposition.12 = (presumptively alive) Disposition treatment/transport of patient: Patient Treated; Transported by Private Vehicle.
eDisposition.19 = (presumptively alive) Acuity of patient's condition after EMS care was: emergent(yellow).?

eDisposition.19 = (presumptively alive) Acuity of patient's condition after EMS care was: lower acuity(green).2

eDisposition.19 = 42190078 (presumptively dead) Acuity of patient's condition after EMS care is dead w/o resuscitation efforts(black).?

eDisposition.21 = 42210092 (presumptively dead) Type of destination the patient was delivered or transferred to is a morgue or mortuary.?l

eProcedure.03 # 4262200087 (presumptively alive) Procedure performed on the patient was NOT: External Ventricular Defibrillation.?l

eProcedure.03 # 4292830067 (presumptively alive) Procedure performed on the patient was NOT: Mechanically Assisted Chest Compression.&l
eProcedure.03 # 450661000124102% (presumptively alive) Procedure performed on the patient was NOT: Defibrillation using AED.E

eProcedure.03 # 896660002 (presumptively alive) Procedure performed on the patient was NOT: CPR.BI

eScene.08 = 27080092 (presumptively dead) Triage classification for an MCI patient is black

eSituation.13 = 28130078 (presumptively dead) Acuity of patient's condition upon EMS arrival at the scene is dead w/o resuscitation efforts(black).Bl

eTimes.11-eVitals.01 in [1,3]
eVitals.06 in [60,180]

(presumptively alive) Patient's vital was taken 1-3 minutes after the responding unit arrived with patient at the destination.
(presumptively alive) Patient's systolic blood pressure is between 60 and 280 (i.e., viable).

Table Abbreviations:

AED = Automated external (cardiac) defib
AMA = Against medical advice}

AV = Arteriovenous

BP =Blood pressure

CPR = Cardiopulmonary resuscitation

DNR = A do-not-resuscitate medical order

ED = Emergency department

MCI = Mass casualty incident

NPTT = Non-patient transport or transfer
PEA = Pulse-less electrical activity
presumptively alive = MLB imputed outcome
presumptively dead = MLB imputed outcome
ROSC = Return of spontaneous circulation




Table 4. Results of the MLB method applied to NEMSIS data-set years 2017, 2018,
2019, 2020, 2021, and 2022 before adjusting for conflicts.

Table 4. Results of the MLB method applied to NEMSIS data-set years 2017, 2018, 2019, 2020, 2021, and 2022 before adjusting

for conflicts.

Year
Total Instances

True Positive (TP)
False Negative (FN)
True Negative (TN)
False Positive (FP)

Conflicting Labels (Truly Dead)
Conflicting Labels (Truly Alive)

Cohen's Kappa Coefficient (COH)
Overall Accuracy (ACC)

2017

26,887

430
134
26,001
101

27
194

0.781
0.991

2018

35,535

748
143
34,247
152

72
173

0.831
0.992

2019

87,497

723
155
86,157
224

79
159

0.79
0.996

2020

118,617

1,046
306
116,547
359

132
227

0.756
0.994

2021

137,367

1,739
732
133,618
592

365
321

0.719
0.99

2022

280,172

2,466
1,716
274,449
473

551
517

0.689
0.992

ALL

686,075

7,152
3,186
671,019
1,901

1,226
1,591

0.734
0.993

Table 5. Results of the MLB method applied to NEMSIS data-set years 2017, 2018,
2019, 2020, 2021, and 2022 after adjusting for conflicts and adding extended evaluation

metrics.

Year 2017 2018 2019 2020 2021 2022 ALL

Total Instances 26,887 35,535 87,497 118,617 137,367 280,172 686,075

True Positive (TP) 430 748 723 1,046 1,739 2,466 7,152

False Negative (FN) 161 215 234 438 1,097 2,267 4,412

True Negative (TN) 26,001 34,247 86,157 116,547 133,618 274,449 671,019

False Positive (FP) 295 325 383 586 913 990 3,492

Conflicting Label (Truly “Dead") 0 0 0 0 0 0 0

Conflicting Label (Truly “Alive") 0 0 0 0 0 0 0

Cohen's Kappa Coefficient (COH) 0.645 0.727 0.697 0.667 0.626 0.597 0.638
Overall Accuracy (ACC) 0.983 0.985 0.993 0.991 0.985 0.988 0.988,
True Positive Rate (TPR, Recall, Sensiti 0.728 0.777 0.755 0.705 0.613 0.521 0.618
True Negative Rate (TNR, Specificity, S 0.989 0.991 0.996 0.995 0.993 0.996 0.995
Balanced Accuracy (BACC) 0.858 0.884 0.876 0.85 0.803 0.759 0.807
Precision (PER) 0.593 0.697 0.654 0.641 0.656 0.714 0.672
F1Score 0.653 0.735 0.701 0.671 0.634 0.602 0.644
Matthew's Coefficient (MCC) 0.648 0.728 0.699 0.668 0.627 0.604 0.639
Hamming Loss (HL) 0.017 0.015 0.007 0.009 0.015 0.012 0.012]
Jaccard Similarity (S\cal{J}$) 0.485 0.581 0.54 0.505 0.464 0.431 0.475]




FIGURES

Figure 1. Consort flow diagram for the analyzed NEMSIS sub-sample for

years 2017 to 2022.

EMS activations from the NEMSIS.org public research data set, by year:

2017: 7,907,829 2019: 34203087 2021: 48982930

2018: 22532890 2020: 43488.767 2022: 53179492
N =210,295055 total EM S activations (patient care reports)

Exclusion #1: Not ground
transport or no patient contact
2017: 3.179.029
2018: 9,233,811
* 2019: 14,635,753
2020: 18,670,367
2021:  21440,325
2022:  22701.256

M = 89,660,541
2017 4,728,800 2019 19567334 2021 27 542 665
2018: 13229079 2020: 24815400 2022: 30478236

M =120.434 514 total patient care reports, patient contact with ground transport

Exclusion #2: Mo definitive
end of event outcome
(dead or alive):
2017 4,701,913
2018: 13263544
2019: 19479837
2020: 24 699,783
2021: 27405 298
2022:  30193,064

N=119745.439

Dead Alive Total
2017: 591 26.296 26887
2018: 963 34572 35535
2015 957 66.540 87497
2020: 1,484 117.133 118.617
2021: 2,836 134,531 137,367
2022 4733 275439 280172
Total 11,564 674,511 686,075
M = 686,075 total patient care reports with a
definitive end of event (dead or alive) outcome




Figure 2. Generalization of the confusion matrix applied to “"Dead" or " Alive"

prediction; sklearn.metrics.confusion_matrix (23).
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Figure 3. Metrics used in the present study to assess MLB predictions (18,19,20,21);

computations via the scikit-learn Python development library (23).

Sub-Sample Mortality Rate (MR), Sub-Sample Survival Rate (SR) MR = TP +FN SR = TN + FP

(Prevalence) T TP+FN+TN+FP ’ " TP+FN+TN +FP
Overall Accuracy (ACC) ACC = TP +TN

sklearn.metrics.accuracy_score " TP+FN +TN +FP

True Positive Rate (TPR), “Dead” Category Accuracy TPR = TP

(Sensitivity, Recall, Hit Rate, Detected Rate) ~ TP+FN

True Negative Rate (TNR), “Alive” Category Accuracy _ TN

(Specificity, Selectivity) ~ TN +FP

Balanced Accuracy (BACC) BACC = TPR + TNR

sklearn.metrics.balanced_accuracy_score - 2

Precision (PRE) PRE = TP

(Positive Predictive Value, PPV), sklearn.metrics.precision_score ~ TP +FP

F1 Score (F1) F1 = 2XPREXTPR

(F1 Measure), sklearn.metrics.fI_score ~  PRE+TPR

Cohen’s Kappa Coefficent (COH) COH= 2 X [(TP X TN) — (FN X FP)]
sklearn.metrics.cohen_kappa_score ~ (TP + FP)(IN + FP)] + [(TP + FNXTN + FN)]

Matthews Coefficient (MAT) MAT = (TP X TN) — (FN x FP)
skiearn.metrics.matthews_corrcoef V(TP +FP)(TN + FP)(TP + FN)(TN + FN)

Hamming Loss (HL) HL = T (n#H) e 1 if def, presumpt “Dead”
sklearn.metrics.hamming_loss = M Yi» 1= 0  if def, presumpt “Alive”
Jaccard Similarity (J) T (&) . _ f 1 ifdef, presumpt “Dead”
sklearn.metrics.jaccard_score . T2 (w19 Yi>¥1=Y 0 if def, presumpt “Alive”

TP = Number of True Positives; i.e. truely “Dead” and imputed “Dead”; FN = Number of False Negatives; i.e. truely “Dead” but imputed “Alive”™;
TN = Number of True Negatives; i.c. truely “Alive” and imputed “Alive”; FP = Number of False Positives; i.e. truely “Alive” but imputed “Dead".
M = Total number of instances in sub-gample.
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