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“Dead or Alive?” Assessment of the Binary End-of-Event Outcome 

Indicator for the NEMSIS Public Research Dataset 

OBJECTIVE: The broad absence of definitive patient outcomes in the NEMSIS 

public release data hinders research that seeks to understand the impact of pre-

hospital care, operations, and overall patterns of population health – including 

geospatial and demographic differences.  This study evaluated the recently 

proposed binary end-of-event outcome indicator to provide additional validity of 

the method, to evangelize its employment for more studies to analyze survival 

impact following an emergency medical event, and to identify appropriate use 

and interpretation given imperfection in predicted outcomes.  METHODS: A 

recently published binary end-of-event outcome indicator was applied to datasets 

for each year from 2017 to 2022. Produced indicators were adjusted to address 

the method's inconsistencies.  An array of established performance metrics from 

the binary classification in the machine learning literature were applied and 

interpreted.  RESULTS:  Over-fitting was detected for year 2018, as well as a 

degradation in performance when applying the method for datasets from year to 

year.  Extended metrics revealed the method's weakness in accurately indicating 

the minority class:  e.g., after adjustments for conflicting labels, “Dead” 

prediction accuracy was 77.7% for 2018 and 61.8% over the six-year NEMSIS 

sub-sample, verses 98.8% overall.  CONCLUSIONS:  After reproducing and 

then replicating a previously proposed method for predicting NEMSIS binary 

end-of-event outcomes, this study shows that it produces reasonably good 

“Dead” or “Alive” indicators.  Reporting True Positive Rate (“Dead” prediction 

accuracy) and True Negative Rate (“Alive” prediction accuracy) is recommended 

whenever the method is used in NEMSIS analyses.  For certain analyses, 

outcomes at the individual-level may be more appropriately quantified as 

probabilities using methods such as logistic regression, instead of predicted 

binary indicators.  In the field, more attention to PCR completion of NEMSIS 

elements eOutcome.01 and eOutcome.02, whenever possible, can significantly 

enhance the public research datasets. [288 words] 

Keywords:  binary classification, health outcome prediction, NEMSIS, 

population health patterns,  



 

INTRODUCTION 

The National Emergency Medical Services Information System (NEMSIS) 

project provides voluminous public research data consisting of nearly a quarter billion 

events (1).  To date, over one thousand scholarly articles have leveraged the dataset for 

retrospective studies which analyze EMS operations and pre-hospital care (2), but only 

a recent handful have considered survival/mortality outcomes (3,4,5,6).  Unfortunately, 

just a tiny fraction (<1%) of NEMSIS patient records include a definitive end-of-event 

status indicating whether an individual survived a medical emergency, i.e. “lived” or 

“died” (3).  Confounding this is a rare event problem (7): on average, fatalities occur in 

only 1.7% of patient care events (3).  See Table 1. 

(Insert Table 1 here) 

By their nature, medical emergencies in need of 9-1-1 assistance are assumed to 

involve potentially life-threatening health situations (8,9).  The broad absence of 

definitive patient outcomes hinders assessments that seek to understand the survival 

impact of EMS care, operations, and overall patterns of population health – including 

geospatial and demographic differences.  Increased knowledge of patient outcomes 

would enhance NEMSIS's research utility so that more studies are able to quantify the 

impact of a pre-hospital intervention, situation, or population characteristic on 

likelihood of survival to hospital discharge – for example, manual verses mechanical 

chest compression (10); the effect of intubation (11) or bystander cardiopulmonary 

resuscitation (CPR) (12); race, ethnicity, age, sex, and geographic differences (5,13,14); 

advanced verses basic life support (15); mortality from traumatic penetrations including 

gunshot wounds (16); use of lights and sirens (17); and many others. 

In a recent study, researchers developed and evaluated a method for predicting 

an EMS patient's end-of-event outcome – presumptively dead or presumptively alive – 



using a combination of NEMSIS element and code combinations (3).  It is referred to 

here as the MLB prediction method for its authors Miller, Lincoln, and Brown, or MLB 

for short.  Their study was pivotal because it meant the NEMSIS public research dataset 

could include a predicted binary end-of-event outcome for each patient care record, 

increasing the dataset's utility for evaluating the most consequential aspect of EMS:  

mortality and survival patterns subsequent to pre-hospital care.   

To date, despite a seemingly important contribution and the open availability of 

STATA code, only three published studies have leveraged the MLB method in their 

analysis.  These include:  a study characterizing patterns of pre-hospital care for cardiac 

arrests related to trauma (4); comparison of cardiac arrest outcomes in rural, suburban, 

and urban settings (5); and an assessment of dispatch protocols on survival rates for 

cardiac arrest (6). 

The purpose of the present study is to evangelize MLB's significance to support 

future studies leveraging NEMSIS data, while providing a broader assessment of the 

MLB method's validity.  This paper also provides recommendations for appropriate use, 

interpretation of outcomes predicted by the MLB method, and future study limitations 

given the inherent but quantifiable imperfection of predicted binary end-of-event 

outcome indicators for the NEMSIS dataset. 

METHODS 

Data Source and Instance Selection 

This study analyzed the public research dataset for six consecutive years, from 2017 to 

2022, from the NEMSIS project (1).  NEMSIS is a national project funded by NHTSA’s 

Office of EMS and hosted by the University of Utah.  The project centralizes, 

standardizes, maintains, and publishes de-identified event records, originating from 



patient care reports (PCRs) compiled by EMS responders from agencies across U.S. 

states and territories. 

The sub-sample used in the present study, summarized in Table 1, was extracted 

following the MLB inclusion logic; see Table 2 and Figure 1.  That is, only 9-1-1 

dispatched EMS ground responses with patient contact were considered.  Excluded, for 

example, were helicopter and airplane transports, cancelled dispatches, responses where 

no patient was found at the scene, etc.  Further, the isolated instances were retained only 

if they included a definitive emergency room or hospital disposition – i.e., “lived” or 

“died” – following the same MLB logic. 

(Insert Table 2 here) 

(Insert Figure 1 here) 

 

Variables Relevant to Predicted Outcomes 

Variables used to specify binary outcomes for each patient event were derived from the 

same NEMSIS elements and code combinations used by the MLB method.  The 

elements, codes, and descriptions used in MLB's novel two table prediction logic (3), 

for determining presumptively dead and presumptively alive, are recapitulated, and 

condensed here in the Table 3. For example, when EMS responders note a cardiac arrest 

patient with obvious signs of death, e.g. decapitation, dependent lividity, or rigor mortis 

(8), and do not attempt CPR for that reason, then the patient's care record coded with the 

value of 3016005 for NEMSIS element eArrest.16 is evidence supporting the predicted 

status of presumptively dead, corresponding to row eleven in Table 3. 

(Insert Table 3 here) 

 

  



Data Preparation and Analysis Methods 

The present study began by recognizing MLB as a custom-tailored binary classifier 

where the output is one of two classes, “Dead” or “Alive.”  Binary classification is a 

well-known task in data science and supervised machine learning with a broad array of 

metrics for evaluating performance (18,19,20). 

Here, the approach first replicated and generalized the MLB logic (from STATA 

to Python) to isolate the NEMSIS sub-sample for years 2017 through 2022.  The MLB 

logic for outcome prediction, i.e. presumptively dead or presumptively alive, was then 

applied to all six NEMSIS years.  Confusion matrix counts, Cohen's Kappa Coefficient, 

and Overall Accuracy were computed for the 2018 dataset sub-sample. Counts, Cohen's 

Kappa, and Overall Accuracy were compared against the original MLB assessment (3) 

to verify that year 2018 results were correctly reproduced. 

Next, MLB predicted outcomes were adjusted to remove “conflicts.”  That is, a 

PCR instance predicted as (simultaneously) both presumptively dead and presumptively 

alive was considered a “conflicted” instance.  Prediction conflicts were possible from 

the MLB method's two table logic. The adjustment method dropped the “correctly 

predicted” indicator from each “conflicted” instance and kept the “incorrectly 

predicted” indicator, following the rationale that dual labelling was ambiguous and 

therefore equivalent to being incorrect.   

The result of the adjustments was:  each instance was unambiguously labelled 

either presumptively dead or presumptively alive, but not both.  The resulting confusion 

matrix (20,21) comprised of True Positive (TP, or truly “Dead”), True Negative (TN, or 

truly “Alive”), False Negative (FN, or falsely labeled “Alive” when truly “Dead”), and 

False Positive (FP, or falsely labeled “Dead” when truly “Alive”) included all instances 



in the entire sub-sample and was comprised of counts from the four mutually exclusive 

sets. 

Figure 2 provides a general depiction of the confusion matrix for “Dead” or 

“Alive” prediction. Note that this matrix is a special case of a contingency table: a well-

known construct used in epidemiology and biostatistics for organizing data and for 

testing hypotheses that compare groups, interventions, or situations via risk and odds 

ratios and their confidence intervals (22). 

(Insert Figure 2 here) 

Finally, counts and an extended array of assessment metrics from the binary 

classification literature (18, 19, 20, 21, 23) were computed as a function of definitive 

and predicted outcome vectors. Figure 3 describes the assessment metrics selected for 

this study.  The assessment results were organized by year and totals across the six-year 

NEMSIS sub-sample, and were assessed for general prediction quality, possible sore 

spots, over-fitting, and other general trends.  Lastly, recommendations, mindful of 

prediction imperfections, were formulated for use of the MLB method in future 

retrospective studies involving the NEMSIS public release research datasets. 

(Insert Figure 3 here) 

RESULTS 

NEMSIS Sub-Sample, 2017-2022 

Table 4 summarizes the extracted NEMSIS sub-sample for years 2017 through 2022, 

showing a total of 686,075 instances -- PCRs for ground transport, patient contact, and 

definitive outcome by the MLB logic.  Instances increased from year to year, but this 

also coincides with progression of NEMSIS v3 standard adoption by U.S. states and 

territories (1). 

(Insert Table 4 here) 



 

 

MLB Reproduction 

Table 4, column two, shows the extracted NEMSIS sub-sample for 2018 that matched 

the developed MLB isolated data (with published correction)(3) for their equivalent to 

the confusion matrix, before adjustment for conflicts:  748 True Positives (TP, or truly 

“Dead”), 34,247 True Negatives (TN, or truly “Alive”), 143 False Negatives (FN, or 

falsely labeled “Alive” when truly “Dead”), and 152 False Positives (FP, or falsely 

labeled “Dead” when truly “Alive”). 

For the 2018 NEMSIS sub-sample year, Cohen's Kappa (COH =.831) and 

Overall Accuracy (ACC =99.2%) matched the original MLB's assessment metrics 

exactly.  In summary, the present study correctly reproduced the MLB results for 2018. 

 

Conflict Resolution Adjustment 

In the 2018 sub-sample, the MLB method predicted both presumptively dead and 

presumptively dead for 173 instances which were in truth “Alive” at end-of-event.  

Similarly, MLB predicted both presumptively dead and presumptively dead for 72 

instances that they were in truth “Dead.”  That is, MLB produced 215 conflicts for the 

2018 NEMSIS sub-sample; see Table 1 rows for Conflicting Labels. 

Adjustments resulted in increased counts for False Positive and False Negative 

categories accordingly. For example, for 2018, False Positives increased by 173 

instances from 152 to 325 and False Negatives by 72 instances, i.e. from 143 to 215.  

See Tables 4 and 5, corresponding rows for Conflicting Labels, False Negatives, and 

False Positives. 



Note that, for the 2018 NEMSIS sub-sample year, Cohen's Kappa and Overall 

Accuracy both decreased with this adjustment, which was expected since False 

Negatives and Positives are both increased while there was no change to True Positives 

and Negatives. That is, Cohen's Kappa decreased from .831 to .727 and Overall 

Accuracy from 99.2% to 98.5%.  See Tables 4 and 5, rows for Cohen's Kappa and 

Overall Accuracy. 

(Insert Table 5 here) 

 

Extended Assessment of MLB 

Results of the MLB prediction method to the six years of NEMSIS datasets, 2017 to 

2022, are summarized in Table 4 and, after the adjustment correcting for conflicts, 

Table 5.  Not surprisingly, all performance metrics worsened after the adjusting 

correction was applied. Still, metric values were consistent collectively at respectable 

levels signally reasonably good performance across years. 

 

DISCUSSION 

 

Interpretation of Cohen's Kappa and Accuracy for the Extended Sub-Sample 

 

Cohen's Kappa Coefficient (COH)   

Cohen's Kappa is a correlation-type of measure designed to help assess how closely one 

data set resembles another (24).  When first proposed in 1960, the aim was to improve 

on approaches that were criticized for being too purely percent agreement (25).  As 

such, it allowed for comparison that was statistical in nature, and thus more forgiving of 

random differences while considering non-discrete datasets. 



Use of Cohen's Kappa to compare two deterministic binary vectors, as is the 

case in binary classification, was not its original intention.  Even so, it has become 

somewhat widely used as a metric of comparison. Its value ranges from minus one to 

plus one, as per usual correlation metrics – closer to one (+, -) indicating similarity and 

zero indicating no similarity.  Apparently, absolute values of Cohen's Kappa that are 

greater than .41 are considered acceptable for concluding reasonable similarity (24). 

The value of Cohen's Kappa assessed on outcomes generated by MLB applied to 

all years was .638 (Table 5) and ranged from .597 for year 2022 to .727 for year 2018.  

Overall, this indicates reasonably good prediction performance.  That year 2018 is much 

larger than other years, and given the development of MLB's prediction criteria, 

suggests there is over-fitting (26, 27) by the method.  That is, the prediction rules may 

be overly customized for the year 2018.  This is analogous to the problem in machine 

learning tasks whereby predictions are better for data used in model training than for 

other data (19). 

 

Overall Accuracy (ACC) 

Table 5 shows that MLB produces consistently high Overall Accuracy, in the range .983 

to .993 across years and .988 for all years.  The year-to-year pattern of these 

measurements is different than that of Cohen's Kappa, which peaked in 2018 and 

exhibited much more year to year variation. While Overall Accuracy may be considered 

a de facto measure of performance, it is known to be misleading in classification 

assessment when there is class imbalance (28). 

For “Dead” or “Alive” prediction from the NEMSIS datasets, the class 

imbalance is evidenced in Table 1.  For example, for the year 2018 NEMSIS sub-

sample there are almost thirty-six times the number of patients who lived than died 



following an EMS event – and almost sixty times overall.  This concern is addressed 

next, in examining the individual class accuracy scores presented as extended 

assessment metrics:  True Positive Rate (TPR), which measures the accuracy of 

predicting “Dead” instances, and True Negative Rate (TNR), which measures the 

accuracy of predicting the “Alive” instances. 

 

Interpretation of Extended Assessment Metrics for MLB 

 

True Positive Rate (TPR) 

The True Positive Rate, also known as Recall or Sensitivity, is essentially accuracy 

measured only for the “Dead” (positive) category.  Values are fractions between zero 

and one, with higher values reflecting better accuracy. Table 5 reveals that MLB's 

“Dead” accuracy ranges from a low of .521 in 2022 to a high of .777 in 2018, with an 

average of .618 across all years.  Note that True Positive Rate is significantly lower than 

the Overall Accuracy, which is a commonly encountered plight in binary classification 

when there is a minority class, such as the case with “Dead” and “Alive.” 

That True Positive Rate in year 2018 is much larger than other years, and given 

the development of MLB's prediction criteria, adds to the suggestion that there is over-

fitting by the MLB method.  

 

True Negative Rate (TNR) 

The True Negative Rate, also known as Specificity or Selectivity, measures the accuracy 

of the “Alive” (negative) category.  Values are fractions between zero and one, with 

higher values reflecting better accuracy.  Table 5 reveals that MLB's “Alive” accuracy 

ranges from a low of .989 in 2017 to a high of .996 in 2019 and 2022, with an average 



of .995 across all years.  Overall accuracy is essentially a convex combination of True 

Negative Rate and True Positive Rate. 

When the “Alive” category is the majority class, by the principle of random 

incidence (29) it is easier to predict accurately.  It's value and the plenitude of instances 

in this class pull the value of Overall Accuracy higher.  If, instead of using the MLB 

prediction method, all instances were labelled as presumptively alive, then True 

Negative Rate would be equal to one (i.e. 100% accuracy for the “Alive” category), the 

True Positive Rate would be zero (i.e. 0% accuracy for the “Dead” category), and the 

Overall Accuracy would be equal to the survival rate in Table 1; for example, 98.3% 

over all years.  This demonstrates how an alternative and trivial prediction method can 

be very accurate even when ignoring the minority category when it involves a rare 

event. Clearly, this would not be helpful if the intent of providing “Dead” and “Alive” 

predicted outcomes is to evaluate mortality and survival EMS patterns. 

 

Balanced Accuracy (BACC) 

The Balanced Accuracy is a direct average of True Positive Rate and True Negative 

Rate, which reflect “Dead” and “Alive” category accuracy respectively.  Thus, 

Balanced Accuracy is an accuracy metric with equal weights between the two 

categories even though “Dead” has many fewer instances than “Alive.”  This results in 

Balanced Accuracy being less optimistic than Overall Accuracy in its accuracy 

assessment, as seen in Table 5 where its values range from a low of .759 in 2022 to a 

high of .884 in 2018. 

 

Precision (PRE) 

 



Precision measures the fraction of predicted presumptively dead that were indeed dead. 

Precision measurements take on values between zero and one, with higher values 

reflecting better quality.  Table 5 reveals that MLB's Precision ranges from a low of 

.593 in 2017 to a high of .714 in 2022, with an average of .672 across all years.  The 

rare event nature of the “dead” (positive) class together with the inaccuracy of many 

“alive” (i.e. the False Negatives) pushes these measurements to lower values, as is the 

case here. 

 

F1 Score 

As illustrated in Figure 3, F1 is a function of Precision and True Positive Rate: it is the 

harmonic mean of these two metrics.  The F1 Score became popular with information 

systems, where it was used to measure retrieval performance (20). F1 Scores can range 

from zero to one, with better performance indicated by higher values.  This metric is 

helpful when category imbalance is present such as the case of “Dead” and “Alive.” 

Table 5 reveals that MLB's F1 ranges from a low of .602 in 2022 to a high of 

.735 in 2018, with a value if .644 measured across all years.  That year 2018 has a 

significantly higher F1 is further evidence to suggest over-fitting. 

 

Matthew's Coefficient (MAT) 

Matthew's Coefficient is a correlation-type of measure, with possible values ranging 

from minus one to plus one:  a value of one indicates a perfect match, minus one a 

perfect inverse match, and zero indicates no correlation.  Matthew's Coefficient is 

generally “liked” in binary classification because high (absolute value) scores are 

believed to align with confusion matrix values where “Trues” are maximized and 

“Falses” are minimized (30).  There is some published empirical evidence suggesting 



that Matthew's Coefficient has advantages over several other assessment metrics, such 

as F1, Balanced Accuracy and Cohen's Kappa (30,31,32). 

Table 5 reveals that MLB's Matthew's Coefficient ranges from a low of .604 in 

2022 to a high of.728 in 2018 in 2018, mirroring the pattern of Cohen's Kappa within 

early identical values.  Comparison of the formulae for computing Matthew's 

Coefficient and Cohen's Kappa, shown in Figure 3, gives some insight to why these 

values are close:  they differ by a constant multiplier in the numerator and a slight 

variance in combination of same terms in the denominator. However, Matthew's 

Coefficient and Cohen's Kappa are not always completely aligned, as illustrated in work 

that compared them based on simulated datasets (32).  That Matthew's and Cohen's 

Kappa Coefficients are both closer to one than zero, as well as like each other in value 

and pattern, is stronger evidence that the MLB predictions are consistently well-

correlated with the definitive outcomes. 

 

Hamming Loss (HL) 

Hamming's Loss measures the fraction of predictions that are incorrect.  As a fraction, 

its values can range from zero to one with lower values indicating better performance.  

Hamming's Loss can be interpreted as a measure of overall inaccuracy.  As such, it is 

equivalent in value to one minus Overall Accuracy, which can be observed by 

inspecting Table 5 rows for the two metrics.  For example, Overall Accuracy over all 

years is 98.8% while Hamming's Loss is 1.2%, which is 1-Overall Accuracy. 

Hamming's Loss has its origins in computer science and was used for bit 

checking to assess information loss in digital communications (33).  It was included in 

the MLB extended assessment to illustrate the connection – in this case, equivalence –



between assessment metrics for binary classifiers, and to bring attention to their 

historical context. 

 

Jaccard Similarity (J) 

Jaccard Similarity is also known as the Jaccard Index, Jaccard Metric, or the Jaccard 

Coefficient.  The metric measures the ratio of the intersection and union of the 

predicted and definitive label sets.   

Like Hamming's Loss, the metric has a history with other domains -- in this 

case, ecology (used to compare plant species) and engineering (facility location) (34).  

Jaccard Similarity is re-emerging as a metric in the machine learning field, for example 

to guide a search algorithm to achieve a maximized similarity (35). 

Possible values for Jaccard range from zero to one, with larger values indicating 

better performance.  For the MLB, assessment with Jaccard revealed in Table 5 shows it 

ranging from .431 in year 2022 to .581 in year 2018. Compared to other assessment 

metrics, Jaccard gives a less optimistic view of the MLB's performance.  However, the 

pattern across years is consistent with several other metrics: showing a common pattern 

of achieving a low and high in the same years as the Balanced Accuracy, True Positive 

Rate, F1, Matthew's Coefficient, and Cohen's Kappa. 

 

Summary of Assessment Results 

In general, the results from an assemblage of assessment metrics applied to MLB – the 

accuracy rates and similarity measurements of Overall Accuracy, True Positive 

Rate, True Negative Rate, Hamming's Loss, and Jaccard; the combination metrics of 

Balanced Accuracy, Precision, and F1; the correlation coefficients Cohen's Kappa and 

Matthew's – showed agreement on reasonably good prediction quality. 



The extended assessment metrics and year to year trends revealed a subtle 

deficiency in the MLB performance in terms of minority accuracy – i.e. the accuracy of 

correctly predicting instances as “Dead” is only 61.8% across the six-year data set, in 

comparison to Overall Accuracy of 98.8% after (99.2% before) the conflict adjustment.  

Diminished accuracy for one category is of concern whenever the number of instances 

is far outnumbered by the other category.  MLB's prediction does a much better at 

indicating truly alive than truly dead instances, i.e. 99.5% verses 61.8%, and therefore 

this is a valid concern.  Veritably, “Dead” should be the more important class to predict 

accurately in any study based on NEMSIS data were outcomes and patterns of interest 

relate to potential fatalities. 

While values and computation for individual metrics are different, Balanced 

Accuracy, True Positive Rate, F1, Matthew's, and Cohen's Kappa were all significantly 

higher in 2018 than for other years.  As mentioned earlier, that original MLB 

development was anchored in 2018.  However, that prediction performance is not as 

stellar for all other years suggests over-fitting by the method.  The implication is that 

the measured accuracy reported for year 2018 (3) cannot be guaranteed for prediction 

use in other years. In machine learning, there are standard approaches to resolve over-

fitting such as tuning of model hyper-parameters (e.g., learning rate or epochs (20), 

removing or penalizing (regularization) some variables (36), or changing model 

architectures (e.g., from a random forest to a logistic regression (19), or from a deep to a 

shallow neural network (37)).  Resolving MLB's over-fitting likely means a deeper 

investigation of the two-tabled criteria with respect to years beyond 2018, with the 

objective of achieving equivalent assessments from year to year.  This is left for future 

research. 

 



The array of metrics considered in the extended assessment of MLB gives a 

broader perspective and adds to the credibility of the MLB prediction method by 

showing consistent and reasonably good performance.  The advantage of considering a 

broader set of binary classification assessment metrics is that one or just a few can 

potentially show MLB to be overly optimistic or pessimistic, for example the Jaccard 

Similarity.  There is also the possibility of missing a trend that indicates a deficiency 

such as minority class inaccuracy.   

Other binary classification metrics from the literature, but not considered here, 

include:  False Negative Rate (FNR), which is equivalent to one minus True Positive 

Rate; False Positive Rate (FPR), which is equivalent to one minus True Negative Rate; 

Average Precision Score (APS), which combines Precision and True Positive Rate; 

Receiver Operating Characteristic/Area Under the Curve (ROC/AUC) (38), which is 

equivalent to Balanced Accuracy in the discrete case; and Zero One Loss, which is 

equivalent to the Hamming Loss when normalized.  Other less commonly used binary 

classification metrics, also not considered here, include Brier score, error rate, 

geometric mean, bookmaker score, informed-ness, and marked-ness (21).  

Finally, it is noted that “Dead” is the usual minority class in the NEMSIS dataset 

because most people, fortunately, survive their medical emergencies in the United 

States.  However, for out-of-hospital cardiac arrests (OHCA), “Alive” is the minority 

class.  For example, in the NEMSIS sub-sample for 2018 there were 732 (67%) 

definitive instances of “Dead” and 358 (33%) definitive instances of “Alive” (3). 

 

Recommendations for Applying MLB in NEMSIS Analyses 

When using MLB to infer binary “Dead” or “Alive” outcome indicators for NEMSIS, 

the author recommends reporting the True Positive (“Dead”) and True Negative 



(“Alive”) rates from the appropriate NEMSIS sub-sample.  Reporting these, for 

example in study limitations, provides quantified information about uncertainty – that 

is, the accuracy for prediction of presumptively dead (True Positive Rate) or 

presumptively alive (True Negative Rate) may be interpreted as the probability of a 

predicted binary outcome indicator being correct.  For example, for out-of-hospital 

cardiac arrests (OHCA), for 2018 TP=694, FN=121, FP=38, and TN=237 (3) which 

results in True Positive Rate=.948 and True Negative Rate=.662.  In other words, the 

probability of a predicted outcome “Dead” (“Alive”) being accurate is 94.8% (66.2%).  

As a probability, it can also be used to estimate a confidence interval for the number in 

“Dead” or “Alive” categories, as the parameter of a binomial distribution (39,40). 

LIMITATIONS 

The analyses, results, and conclusions in this study rely on the accuracy and 

completeness of the NEMSIS public research dataset and, ultimately, the patient care 

reports completed by EMS providers.  More frequent and unambiguous documentation 

of eOutcome.01 and eOutcome.02 elements – i.e., patient disposition from the 

emergency department and, if admitted, from the hospital, respectively – would 

significantly enhance the public research dataset by increasing the size of the sub-

sample for ``learning'' criteria and for assessing quality of the predicted indicators.  

Currently, however, there is a noteworthy practical challenge for this data improvement:  

lessened visibility by EMS providers to patient status after transfer-of-care to the 

emergency department.   

 

CONCLUSION 

The proposed MLB method for predicting NEMSIS binary end-of-event outcomes 



produces reasonably good ``Dead'' or ``Alive'' binary outcome indicators, even after an 

adjustment for conflicts that recategorized them as incorrect predictions.  After 

reproducing the MLB method, and then replicating it for several more NEMSIS dataset 

years, this study provided an extended assessment that adds to the validity of the MLB 

prediction method with an aim of inspiring more NEMSIS analysis to use it to analyze 

survival and mortality patterns related to EMS situations.  These potential studies would 

add to the understanding of population health and of EMS' contribution to health and 

wellness in the United States. 

It is recommended that researchers using MLB in their analysis should clearly 

state the True Positive Rate and True Negative Rate for the NEMSIS sub-sample with 

definitive outcomes that correspond to their study extract.  This makes transparent that 

predicted outcomes are imperfect and provides the best-known quantifications 

describing the imperfections.  In the field, EMS practitioner completion of PCR 

documentation related to NEMSIS eOutcome.01, .02, eArrest.01, .03, .12, .16, .17, .18, 

eDisposition.12, .19, .21, eScene.08, and eSituation.13 elements would significantly 

enhance the public research dataset. 

Minority class accuracy and evidence of over-fitting of MLB suggest there is 

room for improving the prediction quality of the method. A next study examines 

alternatives to the MLB method by seeking probabilistic indicators of the end-of-event 

outcome instead of the deterministic binary indicator using Logit and Probit regression 

models. 
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TABLES 

 

Table 1.  Summary of NEMSIS patient care reports (PCR events) from years 2017, 

2018, 2019, 2020, 2021, and 2022 that involved ground transport and patient contact, 

and where a definitive end of event (``Died'' or ``Lived'') is indicated (3). 

 

 

Table 2.  Summary of instance inclusion/exclusion logic in the data preparation step of 

the MLB prediction method (1,3). 

 

2017 2018 2019 2020 2021 2022   ALL 

EMS Activations (1) 7,907,829 22,532,890 34,203,087 43,488,767 48,982,990 53,179,492 210,295,055

  

PCRs* 4,728,800 13,299,079 19,567,334 24,818,400 27,542,665 30,478,236 120,434,514

 

Definitive Outcomes** 36,877 35,535 87,497 118,617 137,367 280,172 696,065

Died     591 963 957 1,484 2,836 4,733 11,564

Lived  26,296 34,572 86,540 117,133 134,531 275,439 674,511

Definitive Outcome %  0.78% 0.27% 0.45% 0.48% 0.50% 0.92% 0.58%

Mortality Rate*** 2.20% 2.70% 1.10% 1.30% 2.10% 1.70% 1.70%

Survival Rate*** 97.80% 97.30% 98.90% 98.70% 97.90% 98.30% 98.30%

*From 9-1-1 calls, EMS ground transport responses with patient contact (3).

**``Dead'' or ``Alive'' determined from NEMIS data elements eOutcome.01 and eOutcome.02 (3).

***Definitive sub-sample of PCRs.

NEMSIS DATASET YEAR

NEMSIS Element 	  Code Value  (Supported Indicator) Description 

eDisposition.12  ≠ 4212001  (Exclusion Logic) NPTT - assist, agency.  

eDisposition.12  ≠ 4212005  (Exclusion Logic) NPTT - assist, unit.  

eDisposition.12  ≠ 4212007  (Exclusion Logic) NPTT - canceled prior to arrival at scene.  

eDisposition.12  ≠ 4212009  (Exclusion Logic) NPTT - canceled on scene with no patient contact.  

eDisposition.12  ≠ 4212011  (Exclusion Logic) NPTT - canceled on scene with no patient found.  

eDisposition.12  ≠ 4212039  (Exclusion Logic) NPTT - standby-no services or support provided.  

eDisposition.12  ≠ 4212041  (Exclusion Logic) NPTT - standby-public safety, fire, or EMS operational support provided.  

eDisposition.12  ≠ 4212043  (Exclusion Logic) NPTT - transport non-patient, such as organs, etc.  

ePayment.50  ≠ 2650011  (Exclusion Logic)  Transport by fixed wing (airplane).  

ePayment.50  ≠ 2650015  (Exclusion Logic)  Paramedic intercept.  

ePayment.50  ≠ 2650017  (Exclusion Logic)  Transport by rotary wing (helicopter).  

eResponse.05  = 2205001  (Inclusion Logic) 911 response (scene); ground transport.     

eResponse.07  = 2207003  (Inclusion Logic) Ground transport.  

eOutcome.01 in [01-09, 21, 43-70]  (Inclusion Logic; D-Alive)  The known disposition from the ED, i.e. admitted, transferred, discharged or left AMA.	  

eOutcome.01  = 20  (Inclusion Logic; D-Dead)  The known disposition from the ED, i.e. deceased.	  

eOutcome.02 in [01-09, 21, 43-70]  (Inclusion Logic; D-Alive)  The known disposition from the hospital, if admitted, i.e. transferred, discharged or left AMA.	  

eOutcome.02  = 20  (Inclusion Logic; D-Dead)  The known disposition from the hospital, if admitted, i.e. deceased.	  

Table Abbreviations:

AMA ≡ Against medical advice

ED ≡ Emergency department

NPTT ≡ Non-patient transport or transfer

Exclusion Logic ≡ Used to exclude instances} 

Inclusion Logic ≡ Used to exclude instances

D-Alive ≡ Definitive outcome, "Alive"

D-Dead ≡ Definitive outcome, "Dead"



Table 3.  Summary of NEMSIS elements and codes used by the MLB prediction 

method (1,3). 

 

  

NEMSIS Element 	  Code Value (Supported Indicator) Description  

eArrest.01  =   3001001	 (presumptively alive)  No indication of a cardiac arrest at any time during this EMS event.	  

eArrest.01  ≠   3001003	 (presumptively alive)  No indication of a cardiac arrest at any time during this EMS event prior to EMS arrival.	  

eArrest.01  ≠   3001005	 (presumptively alive)  No indication of a cardiac arrest at any time during this EMS event after EMS arrival.	  

eArrest.03  =   3003007	 (presumptively dead)  Indication of attempt to resuscitate the patient who is in cardiac arrest was:  not attempted-considered futile.	  

eArrest.03  =   3003009	 (presumptively dead)  Indication of attempt to resuscitate the patient who is in cardiac arrest was:  not attempted-DNR orders.	  

eArrest.03  ≠   3003001	 (presumptively alive)  No Indication of attempt to resuscitate the patient who is in cardiac arrest using Defibrillation.	  

eArrest.03  ≠   3003003	 (presumptively alive)  No Indication of attempt to resuscitate the patient who is in cardiac arrest using Ventilation.	  

eArrest.03  ≠   3003005	 (presumptively alive)  No Indication of attempt to resuscitate the patient who is in cardiac arrest using Chest Compressions.	  

eArrest.12  =   3012001	 (presumptively dead)  Indication of whether or not there was any ROSC was: NO.	  

eArrest.16  =   3016001	 (presumptively dead)  Reason that CPR or the resuscitation efforts were discontinued was:  DNR.	  

eArrest.16  =   3016005	 (presumptively dead)  Reason that CPR or the resuscitation efforts were discontinued was:  obvious signs of death.	  

eArrest.16  =   3016011	 (presumptively alive)  Reason that CPR or the resuscitation efforts were discontinued was:   ROSC,  i.e. pulse or BP noted.

eArrest.17  =   9901001	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  Agonal/Idioventricular.	  

eArrest.17  =   9901003	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  Asystole.	  

eArrest.17  =   9901007	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Atrial Fibrillation.	  

eArrest.17  =   9901009	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Atrial Flutter.	  

eArrest.17  =   9901011	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: AV Block-1st Degree.	  

eArrest.17  =   9901021	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Left Bundle Branch Block.	  

eArrest.17  =   9901035	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  PEA.	  

eArrest.17  =   9901041	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Right Bundle Branch Block.	  

eArrest.17  =   9901043	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Arrhythmia.	  

eArrest.17  =   9901047	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Rhythm.	  

eArrest.17  =   9901049	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Sinus Tachycardia.	  

eArrest.17  =   9901059	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was: Supraventricular Tachycardia.	  

eArrest.17  =   9901065	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  unknown AED shockable rhythm.	  

eArrest.17  =   9901067	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  Ventricular Fibrillation.	  

eArrest.17  =   9901069	 (presumptively alive)  Patient's cardiac rhythm upon delivery/transfer to destination was:  Ventricular Tachycardia(with pulse).	  

eArrest.17  =   9901071	 (presumptively dead)  Patient's cardiac rhythm upon delivery/transfer to destination was:  Ventricular Tachycardia(pulseless).	  

eArrest.18  =   3018003	 (presumptively dead)  Patient's outcome at the end of the EMS event:  expired in the field.	  

eArrest.18  =   3018007	 (presumptively alive)  Patient's outcome at the end of the EMS event:  ROSC in the field.	  

eDisposition.12  =   4212013	 (presumptively dead)  Disposition treatment/transport indicates patient dead at scene-no resuscitation attempted(with transport).	  

eDisposition.12  =   4212015	 (presumptively dead)  Disposition treatment/transport indicates patient dead at scene-no resuscitation attempted(w/o transport).	  

eDisposition.12  =   4212019	 (presumptively dead)  Disposition treatment/transport indicates patient dead at scene-resuscitation attempted(w/o transport).	  

eDisposition.12  =   4212021	 (presumptively alive)  Disposition treatment/transport of patient:  Patient Evaluated;  No Treatment/Transport Required.	 

eDisposition.12  =   4212025	 (presumptively alive)  Disposition treatment/transport of patient: Patient Refused Evaluation/Care(w/o Transport).	  

eDisposition.12  =   4212027	 (presumptively alive)  Disposition treatment/transport of patient: Patient Treated - released AMA.

eDisposition.12  =   4212029	 (presumptively alive)  Disposition treatment/transport of patient: Patient Treated; Released(per protocol).

eDisposition.12  =   4212033	 (presumptively alive)  Disposition treatment/transport of patient:  patient treated; transported.

eDisposition.12  =   4212035	 (presumptively alive)  Disposition treatment/transport of patient:  Patient Treated; Transported by Law Enforcement.

eDisposition.12  =   4212037	 (presumptively alive)  Disposition treatment/transport of patient: Patient Treated;  Transported by Private Vehicle.

eDisposition.19  =   4219003	 (presumptively alive)  Acuity of patient's condition after EMS care was:  emergent(yellow).	  

eDisposition.19  =   4219005	 (presumptively alive)  Acuity of patient's condition after EMS care was:  lower acuity(green).	  

eDisposition.19  =   4219007	 (presumptively dead)  Acuity of patient's condition after EMS care is dead w/o resuscitation efforts(black).	  

eDisposition.21  =   4221009	 (presumptively dead)  Type of destination the patient was delivered or transferred to is a morgue or mortuary.	  

eProcedure.03  ≠   426220008	 (presumptively alive)  Procedure performed on the patient was NOT:  External Ventricular Defibrillation.	  

eProcedure.03  ≠   429283006	 (presumptively alive)  Procedure performed on the patient was NOT:   Mechanically Assisted Chest Compression.	  

eProcedure.03  ≠   450661000124102	 (presumptively alive)  Procedure performed on the patient was NOT:  Defibrillation using AED.	  

eProcedure.03  ≠   89666000	 (presumptively alive)  Procedure performed on the patient was NOT:  CPR.	  

eScene.08  =   2708009	 (presumptively dead)  Triage classification for an MCI patient is black

eSituation.13  =   2813007	 (presumptively dead)  Acuity of patient's condition upon EMS arrival at the scene is dead w/o resuscitation efforts(black).	  

eTimes.11 - eVitals.01 in [1,3] (presumptively alive) Patient's vital was taken 1-3 minutes after the responding unit arrived with patient at the destination.

eVitals.06 in [60,180] (presumptively alive) Patient's systolic blood pressure is between 60 and 280 (i.e., viable).

Table Abbreviations: ED ≡ Emergency department

AED ≡ Automated external (cardiac) defib MCI ≡ Mass casualty incident

AMA ≡ Against medical advice} NPTT ≡ Non-patient transport or transfer

AV ≡ Arteriovenous PEA ≡ Pulse-less electrical activity

BP ≡ Blood pressure presumptively alive ≡ MLB imputed outcome

CPR ≡ Cardiopulmonary resuscitation presumptively dead ≡ MLB imputed outcome

DNR ≡ A do-not-resuscitate medical order ROSC ≡ Return of spontaneous circulation



Table 4.  Results of the MLB method applied to NEMSIS data-set years 2017, 2018, 

2019, 2020, 2021, and 2022 before adjusting for conflicts. 

 

 

Table 5.  Results of the MLB method applied to NEMSIS data-set years 2017, 2018, 

2019, 2020, 2021, and 2022 after adjusting for conflicts and adding extended evaluation 

metrics. 

 

  

Year  2017 2018 2019 2020 2021 2022      ALL 

Total Instances  26,887       35,535       87,497       118,617       137,367       280,172       686,075       

True Positive (TP)  430             748             723             1,046            1,739            2,466            7,152            

False Negative (FN)  134             143             155             306                732                1,716            3,186            

True Negative (TN)  26,001       34,247       86,157       116,547       133,618       274,449       671,019       

False Positive (FP)  101             152             224             359                592                473                1,901            

Conflicting Labels (Truly Dead)  27                72                79                132                365                551                1,226            

Conflicting Labels (Truly Alive)  194             173             159             227                321                517                1,591            

Cohen's Kappa Coefficient (COH)  0.781 0.831 0.79 0.756 0.719 0.689 0.734

Overall Accuracy (ACC)  0.991 0.992 0.996 0.994 0.99 0.992 0.993

Table 4.  Results of the MLB method applied to NEMSIS data-set years 2017, 2018, 2019, 2020, 2021, and 2022 before adjusting 

for conflicts.

Year  2017 2018 2019 2020 2021 2022      ALL 

Total Instances  26,887       35,535       87,497       118,617       137,367       280,172       686,075       

 

True Positive (TP)  430             748             723             1,046            1,739            2,466            7,152            

False Negative (FN)  161             215             234             438                1,097            2,267            4,412            

True Negative (TN)  26,001       34,247       86,157       116,547       133,618       274,449       671,019       

False Positive (FP)  295             325             383             586                913                990                3,492            

Conflicting Label (Truly ``Dead'')  0 0 0 0 0 0 0

Conflicting Label (Truly ``Alive'')  0 0 0 0 0 0 0

      

Cohen's Kappa Coefficient (COH)  0.645 0.727 0.697 0.667 0.626 0.597 0.638

Overall Accuracy (ACC)  0.983 0.985 0.993 0.991 0.985 0.988 0.988

True Positive Rate (TPR, Recall, Sensitivity)  0.728 0.777 0.755 0.705 0.613 0.521 0.618

True Negative Rate (TNR, Specificity, Selectivity)  0.989 0.991 0.996 0.995 0.993 0.996 0.995

Balanced Accuracy (BACC)  0.858 0.884 0.876 0.85 0.803 0.759 0.807

Precision (PER)  0.593 0.697 0.654 0.641 0.656 0.714 0.672

F1 Score  0.653 0.735 0.701 0.671 0.634 0.602 0.644

Matthew's Coefficient (MCC) 0.648 0.728 0.699 0.668 0.627 0.604 0.639

Hamming Loss (HL) 0.017 0.015 0.007 0.009 0.015 0.012 0.012

Jaccard Similarity ($\cal{J}$) 0.485 0.581 0.54 0.505 0.464 0.431 0.475



FIGURES 

 

Figure 1. Consort flow diagram for the analyzed NEMSIS sub-sample for 

years 2017 to 2022. 

 

 



Figure 2. Generalization of the confusion matrix applied to ``Dead'' or ``Alive'' 

prediction; sklearn.metrics.confusion_matrix (23). 

 

 

  



Figure 3. Metrics used in the present study to assess MLB predictions (18,19,20,21); 

computations via the scikit-learn Python development library (23). 
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