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Kripke Logical Relations and PCF

Peter W. O’Hearn™ Jon G. Riecke
School of Computer and Information Science AT&T Bell Laboratories
Syracuse University 600 Mountain Avenue
Syracuse, New York 13244 Murray Hill, New Jersey 07974
Abstract

Sieber has described a model of PCF consisting of continuous functions that are invariant
under certain (finitary) logical relations, and shown that it is fully abstract for closed terms of
up to third-order types. We show that one may achieve full abstraction at all types using a
form of “Kripke logical relations” introduced by Jung and Tiuryn to characterize A-definability.
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1 Introduction

The nature of sequential functional computation has fascinated computer scientists ever since Scott
remarked on a curious incompleteness phenomenon when he introduced LCF (Logic for Computable
Functions) and its continuous function model in 1969 (Scott, 1993). Scott noted that although the
functionals definable by terms in PCF—the term language of LCF—admitted a sequential evalua-
tion strategy, there were functions in the model that seemed to require a parallel evaluation strategy.
“Sequential evaluation” means, roughly, that computation proceeds in a single thread and any sub-
computation finishes before proceeding with another. Scott’s example of a non-sequential function
is “parallel or”, which returns true even if one argument is true and the other diverges. Plotkin ex-
plored this phenomenon further, and showed that by enlarging PCF to include determinate parallel
facilities related to “parallel or” one could achieve “full abstraction” (Plotkin, 1977). A model is
called fully abstract if two terms are semantically equal precisely when they are observationally
equal, i.e., when they may interchanged in all programs with no difference in observable behaviour.
Plotkin also observed that Scott’s model is not fully abstract without parallel facilities, and left
open the problem of finding a fully abstract model for the original, sequential language.

The concept of a “sequentially computable functional” is surely intuitively compelling, but the
concept has been notoriously difficult to describe in any abstract semantic sense. Some important
advances include Milner’s syntactic construction of a fully abstract model and the proof that it
is unique under certain reasonable assumptions (Milner, 1977), and good, but not fully abstract
models based on sequential algorithms (Berry and Curien, 1982) and stable functions (Berry, 1978);
cf. (Berry et al., 1985; Meyer and Cosmadakis, 1988; Stoughton, 1988) for more discussion and
references. This issue of sequential versus parallel functionals was also partially foreshadowed by
developments in basic recursion theory, e.g., in different notions of relative computability—given
by Turing and weak Turing reducibility—and the associated notions of functional; ¢f. (Odifreddsi,
1989) for more discussion and references.

This paper constructs a new model of PCF. At functional type, the model consists of continuous
functions that are invariant under certain kinds of logical relations. The relations impose conditions
that rule out the parallel functions present in the continuous model. We prove that the model is
inequationally fully abstract, i.e., denotational approximation coincides with a contextually-
defined observational approximation relation. The model is isomorphic to Milner’s fully abstract,
but syntactically constructed, model.

The logical relation approach to building a model of PCF, i.e., using logical relations to con-
strain the construction of function types, was pioneered in (Sieber, 1992). Instead of admitting
all Scott continuous functions from one type to another as the meaning of function types, Sieber’s
construction admits only those continuous functions that are invariant under “sequential logical
relations”. A sequential logical relation has arbitrary but fixed finite arity, and is defined by a base
type relation R™* C (N} X ...x N ) with certain properties; the base type relation determines
higher-type relations R°~7 in a standard way. Sieber’s model, then, takes only those elements of the
continuous function model that are invariant, i.e., only those elements f such that R°(f, f,..., f)
holds for all base relations R®2%, Sieber proved that for closed terms M, N of up to third-order
type, M and N are observationally equivalent iff [M] = [N]—i.e., the model is fully abstract up
to third-order—and left open the problem of whether the model is fully abstract for higher types.

Our model construction resembles Sieber’s except in the choice of logical relations: we use a form
of Kripke logical relation in place of finitary relations. This is reminiscent of Plotkin’s seminal work



(Plotkin, 1980), where binary relations suffice for a A-definability result for second-order types but
Kripke relations are used for definability at higher types. The kind of Kripke relation is a domain-
theoretic version of that introduced in (Jung and Tiuryn, 1993), where a quite general definability
result for pure simply-typed A-calculus is obtained. Jung and Tiuryn’s relations generalize both
those of Sieber and Plotkin, and are themselves a specialization of (unary) logical relations in a
functor category. The basic new idea in Jung and Tiuryn’s relations lies in the “varying arity” of
the relations: the elements of the worlds that index the relations are themselves the indices of the
elements of the relation. Thus, for example, in a Kripke structure with a world w of two elements
and a world w’ of three elements, the logical relation at world w is binary and the relation at world
w' is ternary.

Although we concentrate on PCF, the definition of the model and proof of full abstraction apply
in wider circumstances. Given ground pointed cpos and a collection of first-order functions, the
model definition in section 3 works by choosing ‘strict” and “complete” finitary logical relations
that preserve the given first-order functions; the proof of definability of finite elements requires that
the ground domains are SF'P with definable finite projections. Moreover, when the ground domains
are consistently complete and satisfy the “articulating” conditions of (Milner, 1977), the resulting
model is the unique one identified by Milner. In contrast with Milner’s construction, the elements
of the model are described directly here, not as an inverse limit of finite cpo’s: note especially that
the finite projections are used only in the proof of full abstraction, not in the construction of the
model. (In the case that the ground domains have infinite height, a slight adjustment is required:
the relation R}” in section 4 becomes tuples that are lubs of directed sets of definable finite elements,
and the order-theoretic property of finite elements is used to show the relation directed-complete.)

Based on this generality, one might sense that our results do not provide a further analysis
of sequentiality per se, but rather concern lifting finitary first-order principles to higher types.
Nevertheless, in the case of PCF one further simplification is possible: we can use Sieber’s char-
acterization of those relations that are preserved by first-order PCF constants. The result is a
construction of the fully abstract model of PCF in which the semantics of types does not mention
the interpretation of the first-order constants.

2 Sieber’s Sequentiality Relations

We begin by reviewing the basic elements of Sieber’s construction. To fix notation, CPO denotes
the category of cpos and continuous functions. Here, a cpo is a directed-complete poset possessing a
least element. IN| is the flat natural numbers. D x E denotes the componentwise-ordered product
of cpos, and [D — F] the continuous function space with pointwise order. If w is a set and D a
cpo, we write [w — D] for the pointwise-ordered cpo of functions, viewing w as discretely ordered.
Finally, define the functions

succ : N; — N
succ(m) = (m+1) fmeN
] L otherwise

pred : N; — N

_J(mLl) iftm>1
pred(m) = { 1 otherwise



ifz : N xN; xN;, - N
n ifm=0
ifz(m,n,p)=< p ifm>0
1L otherwise

The model in (Sieber, 1992) is based on certain relations on the flat naturals.

Definition 1 Suppose w is a finite set. For any subsets A C B C w, define Sip C [w— N ] as
follows:

If g€ [w— N_], then g € Sy piff (Fee A.g(i)= L) or (Vi,j€ B.g(i)=g(j)).

Then R C [w — N_]is a sequentiality relation if it is the intersection of a collection of relations
of the form 57 g.

Here, a finite set determines the arity of a relation, e.g., binary relations are obtained by taking w
to be a two element set. We use this non-standard notation to be consistent with the definition of
“Kripke relations” below. Sieber’s first main result about sequentiality relations is the following

Proposition 2 A relation R C [w — N | is a sequentiality relation iff for any ¢1, 92,93 € R,
1. (Mew.0)€R;

Ai € w.succ(g1(i))) € R;

At € w.pred(g1(7))) € R; and

Ai € w.ifz(g1(7), g2(7), g3(7))) € R,

where, for instance, (Ai € w.0) is the function that returns 0 given any argument.

(
2. (
3. (
4 (

In other words, sequentiality relations are precisely those finitary relations that are invariant under
the first-order operations 0, succ, pred and ifz.

Sequentiality relations may be lifted to higher types in the standard way. Let [nat] = N  and
[o — 7] = [[e] — [7]].- Using the notation of relations as function spaces and starting from a base
sequentiality relation R = R™@* we define

R°T7T ={g €w—|[[oe — 7]]]| for any h € R?, (Ai € w. g(i) (h(7))) € R"}.

The strictness and completeness properties of sequentiality relations is preserved by lifting to higher
types. This fact and the proposition, together with the “main lemma of logical relations” (Plotkin,
1980), has an important consequence: in the continuous type hierarchy over N |, any element that
is A-definable from 0, succ, pred, ifz, and least fixpoint must be invariant under logical relations
induced by sequentiality relations at base type. Stated contrapositively, if an element d € [o] is
not invariant under R? starting from a sequentiality relations, the element d must not be definable.
This fact may be used in reasoning about the non-definability of certain elements of the model.



Example 1 (Sieber, 1992) Consider the following variation on parallel or:

por : Ny x N; — N
0 fm=0o0orn=20
por(m,n)=< 1 if L#m>0and L#n>0
1 otherwise

Intuitively, por is not sequential because any sequential function of type N x N; — N, must
be constant or evaluate one of its arguments first. Since por(L,0) = por(0, L) = 0, por(L, L)

would have to be 0 if por was sequential, but por(L, L) = L. This informal argument can be
represented quite directly with the relation R C [{1,2,3} — N_|], where d € R iff either d(1) or
{17273}

d(2) = L or d(1) = d(2) = d(3); in other words, R here is the sequentiality relation S 23 11 2.3)
In tuple notation, if we consider two elements dy = (0, L, L) and d2 = (1,0, L) in R, applying por
componentwise results in a tuple ds = (0,0, L) that is not in R.

| |ds| | ds ]|
por 0] L _ 0
110 0
Ll L

One may think of the top two rows in the table as testing the strictness (in one argument) condition
on functions N; x N} — N,. Having found that the function is strict in neither argument, we
test the constancy property by supplying L in the bottom row: the bottom entry of the rightmost
column would have to be 0 for it to represent an element of R.

Example 2 Example 1 concerns first-order sequentiality. What is interesting is that we can lift
the first-order property represented by R to higher types and reason about higher-order functions.
As an example of the properties thus obtained, consider the functional

fpor : [N} — N;]—= N,
0 if f(0)=0or f(1)=0
fpor(f)=< 1 if L # f(0)>0and L # f(1)>0

1 otherwise

The non-sequentiality of this function corresponds to the failure of the following logical property
for the relation R(rat—nat)—nat witten in tuple notation:

if V(n1,n2,n3) € R.(fi(n1), fa(n2), fa(ns)) € R
then (fpor(f1),fpor(f2),fpor(f3)) € R.

A counterexample is given by an argument tuple (fi, fo, f3) where f1(0) = fo(1) = 0, fi(1) =
f2(0) = L and f5 constantly L. It may be argued that this example is still essentially about first-
order sequentiality, since the function fpor is a simple variation on por. However, it does illustrate
well how the purely first-order properties encoded by R can be effectively lifted to higher types
using logical relations. More sophisticated examples of using logical relations for reasoning about
PCF may be found in (Sieber, 1992; Stoughton, 1994).



The question naturally arises of how far one can apply this mode of reasoning. Sieber’s second
main result is that, up to second-order type in the continuous type hierarchy over N, any element
that is invariant under all sequentiality relations is the lub of a directed set of PCF-definable
elements. This can be turned into a full abstraction result for closed terms of order-three types by
using logical relations to constrain function types. We emphasize again that sequentiality relations
themselves codify essentially first-order principles of sequential functions. This result is quite
astonishing precisely because lifting these first-order principles furnishes a characterization of PCF
definability at second order. The question of what happens at types higher than level two was
left open by Sieber. We have not been able to settle this question; presently, whether or not
sequentiality relations characterize PCEF definability at higher types is unknown. In the following
sections we show that full abstraction may be obtained by replacing Sieber’s fixed-arity relations
with a varying-arity form of Kripke relations due to Jung and Tiuryn.

3 Model of PCF

This section first defines a notion of “Kripke logical relation.” Then the logical relations are used
to describe a suitable cartesian closed category and the resultant model of PCF.

3.1 Kripke Logical Relations

The usual notion of “Kripke logical relations” (¢f. (Mitchell, 1990; Plotkin, 1973; Plotkin, 1980;
Reynolds, 1983)) extends the definition of logical relations with structure similar to the Kripke
semantics of intuitionistic logic. One begins with a poset of worlds and a finite fixed arity, and
then chooses a relation of that arity at base type for each world that must fit together with the
poset structure on worlds; the relations of higher type are determined from the base type relations.
Jung and Tiuryn’s “Kripke logical relations” (Jung and Tiuryn, 1993) are slightly different in two
respects. First, one begins with a category of worlds which are sets, generalizing the usual definition
based on posets. Second, instead of having some finite, fixed arity, Jung and Tiuryn’s relations
are sets of functions, so, for instance, if w is a world and A is the meaning of the base type, the
relation R" is a subset of [w — A]. Notice that there is no finite arity restriction, and that the arity
(size of w) may in fact vary from world to world. Jung and Tiuryn’s Kripke logical relations are
themselves a special case of the categorical forms of logical relation studied in (Ma and Reynolds,
1992; Mitchell and Scedrov, 1993).

For our model of PCF, we need to extend Jung and Tiuryn’s relations to the domain-theoretic
setting. Let C be a small subcategory of the category of sets and functions. Then, formally,

Definition 3 A C-Kripke relation on a cpo D is a family of subsets S C [w — D] indexed by
C-objects w (for world) that satisfy the following conditions:

e Completeness: 5 is a complete subset of [w — D], i.e., L € S and S* is closed under
least upper bounds of directed sets.

e Kripke Monotonicity: If ¢ : v 1= win C and g € 5%, then (¢;g) € S*.

We often omit the C from “C-Kripke relation” when no confusion is likely.
We need a few notational conventions. If 57 is a Kripke relation on cpo Dy, 53 is a Kripke
relation on cpo Dy, and f : Dy — Dj is a continuous function, then we write f : 57 — 99 if for



all w € Ob(C) and h € 57, (h; f) € S¥. This definition corresponds to a notion of “morphism
of relations” as found in (Ma and Reynolds, 1992; Mitchell and Scedrov, 1993).! Similarly, if S is
a Kripke relation on D and ¢ € D, then we write a : 5 (read “a is invariant under the C-Kripke

relation §7) if for all w € Ob(C), (Ai € w.a) € 5.

3.2 Kripke Sequentiality Relations

To interpret PCF we consider certain Kripke relations on N . The following definition adapts
Sieber’s notion of sequentiality relation to take into account the world structure of Kripke relations.

Definition 4 Suppose R is a C-Kripke relation on N . For any object w of C and A C B C w,
define

If g € [w— N_p], then g € 5% g iff (Fi € A. g(:) = L) or (Vi,j € B. g(i) = g(J))-

Then R is a Kripke sequentiality relation if each R™ is the intersection of a collection of relations
of the form 57 .

The operations of PCF are invariant under Kripke sequentiality relations, but we have not been
able to establish a direct converse to this fact, or a counterexample showing the converse to be
false. However, Sieber’s characterization of finitary sequentiality relations carries over for Kripke
relations in which each of the worlds is finite, and these are enough to carry out the proof of full
abstraction.

Definition 5 R is a finitary C-Kripke relation if each object of the category C is a finite set.

Note that in a finitary Kripke relation each R™ has finite arity, but there is not necessarily a
fixed finite bound on the arities of all the R™’s because the category C might still have an infinite
number of objects. This definition thus generalizes Sieber’s sequentiality relations, where in Sieber’s
relations the category C has only one object of finite size.

Proposition 6 Suppose R is a finitary Kripke relation on N . Then R is a sequentiality relation
if

1. 0: R;

2. succ: R — R;

3. pred: R — R; and

4. fz: RX R X R— R,
where (R x R x R)Y ={(f,¢9,h) :[w— NLx N xN]|f,g,h€ R}

Proof: Since the preservation conditions for morphisms of Kripke relations f : 57 — 55 are
determined pointwise on the objects of category C, R is invariant under a PCF operation iff each
RY is invariant under that operation. The result follows from Proposition 2. B

'To be more specific, the resultant category is, in the notation of (Ma and Reynolds, 1992), a subcategory of
Rel(D, DCOP, F), where D is the category of predomains and F : D — DCP sends E to EC).



3.3  Semantic Category

A category suitable for interpreting PCF may be constructed using finitary Kripke sequentiality
relations. In the definition we use a quantifier “for all R” to mean “for all subcategories C of
the category Finset of finite sets, and all C-Kripke sequentiality relations R.” There are no real
size difficulties associated with this quantifier, e.g., our model construction could alternatively use
a small category that is equivalent to Finset. Define the category SR (for sequentiality-relation
preserving functions) as follows.

e OBJECTS. An object A consists of a cpo |A| and a C-Kripke relation A(R) on |A| for each
subcategory C of Finset and each C-Kripke sequentiality relation B. Objects must also
satisfy the

Concreteness Condition: For all R and all a € |A[, a : A(R).
e MorprHISMS. A morphism f: A — B is a continuous function f :|A| — | B| satisfying the
Uniformity Condition: For all R, f: A(R) — B(R).

Composition and identities are inherited from CPO. SR is related to the categories defined for
giving models of languages with local variables (Sieber, 1993; O’Hearn and Tennent, 1993).

Notice that SR does not consist of arbitrary continuous functions, certain of which are singled
out using relations; rather, we use a parametricity condition to constrain hom sets from the very
beginning. The model is therefore not a collapse of the full continuous model of PCF using logical
relations to pick out certain invariant elements. Instead, the relations constrain the construction
of the model so that all elements are invariant. Thus, there is no need for quotienting or a collapse
to guarantee that all elements of the model are extensional functions—they are already by the
definition. Sieber also has a presentation of his model of PCF which does not rely on extensional
collapse (Sieber, personal communication, July 1993).

SR has enough structure to interpret the simply-typed A-calculus, i.e., it is a cartesian-closed
category. The terminal object 1 is given by

e |1] is a one-point cpo, and

e 1(R)" is the singleton subset consisting of the unique function in [w — |1|].
Products are constructed by

e |Ax B| = |A| x|B|, using the product in CPO, and

o (AxB)R)” = {(f,g9) | f€A(R)"and g € B(R)"}.
For exponents,

o |B4| = Homsgr(A, B), ordered pointwise,

o BAR)Y = {ge[w—|BY] |Ve:v 1% w.Yh € A(R)".
(Ai € v. (g (¢ (1)) (h(2))) € B(R)"}.



Note the interesting symbiotic relationship between the construction of the meanings of higher
types and the relational meaning of higher types. The set | B*4| is determined using the results of B
and A on all sequentiality relations, whereas B4(R)" picks out elements from [w — |B4|] using the
particular relation R. The definition of BA(R) therefore relies explicitly on the particular Kripke
sequentiality relation R chosen as the basis, and implicitly on all sequentiality relations.

Lemma 7 (a) |B%| is a cpo.
(b) BA(R) satisfies completeness and Kripke monotonicity.

(c) B4 satisfies the concreteness condition.

Proof: We prove (c¢); (a) can be shown by a routine calculation, and (b) follows from the definition,
using both the Kripke monotonicity and completeness properties of B and A. Suppose f € | B4,
that is, f : A — B. We need to show that (Ai € w. f) € BA(R)¥. From the definition, we must

show that, for ¢ : v 1% w and h € A(R)",

(A7 € v.((Ai € w. f) (9 (7)) (A (7)) € B(R)".

But this just reduces to (Aj € v. f(hyj)) € B(R)Y, which is the uniformity condition on SR-
morphisms f. W

Lemma 8 (a) Ax B and BA can be extended to bifunctors on F, with BA contravariant in A.
(b) (-) x B is left adjoint to B,

Proof: Proof of (a). f X g is just the function induced by the underlying product in CPO. f9
has the usual definition: f9(h) = g;h; f. Preservation of identities and compositions and various
continuity conditions are straightforward to check, as is the uniformity condition for fxg. We check
the uniformity condition for f9. First, the uniformity condition is preserved by composition, as is
relevant domain-theoretic structure, so we may conclude that g; h; f € |B’A/|, where [ : B — B’
and g : A’ — A. To see that f9 = g¢;—; f satisfies the uniformity condition, consider an R and
m € BA(R)": we need that (M € w.g;m(i); f) € B (R)", which in turn requires that, for
@:v 1% wand n € A(R)”,

(+) (A € 0. (gimlp(h)); F(n(5))) € B'(R)".

By the uniformity condition for g, (Aj € v. g(n(j))) € A(R)". Then, by the definition of B4(R)
we obtain (Aj € v. m(p(j))(g(n(j)))) € B(R)Y, and a final application of uniformity for f gives the
desired result (*). Thus, we may conclude that f9 satisfies the uniformity condition.

Proof of (b). For f: Ax B — C,curry(f): A — CPBis curry(f)ab = f(a,b). Forg: A — CB,

uncurry(g) : A x B — (' is uncurry(g){a,b) = (gab). Of course, these are the same defining
equations as in CPO (and many other categories). The point, however, is that the definition
of CP is just right to make these inverse isomorphisms. Clearly, uncurry(curry(f)) = f and

curry(uncurry(g)) = g, using the same argument as in CPO, as long as we can show that uncurry(g)
and curry(f) are actually defined. For this we need only verify the appropriate parametricity
conditions, as continuity and naturality properties are straightforward. We treat curry(f), leaving
the similar case of uncurry(g) to the reader.



We need to show that curry(f) is a well-defined function from |A| to |CP| and that it satisfies
the uniformity condition. First, for well-definedness, we must show that for any a € |A|, R,
and w, if h € B(R)" then (A7 € w.curry(f)a(h(2))) € C(R)Y. By the concreteness condition,
a € |A| implies that (Ai € w.a) € A(R)", which means that (A¢ € w. (a, h(?))) € (A X B)(R)".
Uniformity for f then gives (A¢ € w. f(a,h(¢))) € C(R)", which by definition of curry(f) is what
we wanted to show. Second, for uniformity of curry(f), suppose k € A(R)"; we need to show that

(Ai € w. curry(f)(k(7))) € CB(R)", which, from the definition of CB(R), requires proving
() (A € 0. f(K' (), k(1)) € C(R)”

for p:v 1% wand h € B(R)Y, where k' = (¢; k). Since A satisfies Kripke monotonicity, we know
that &’ € A(R)", and so the desired property (#*) is immediate from the uniformity condition for

f.m

Proposition 9 SR is a cpo-enriched cartesian closed category, with Homsgr (A, B) ordered point-
wise. It is order-extensional in the following sense:

fEg:A—=B <& Ve:l— A.e;fCeyg

Proof: That x,1 is a cartesian product structure should be clear; the projections and pairing
are just as in CPO. The previous lemma shows cartesian closure, and the preservation of relevant
cpo-enriched structure is straightforward. The concreteness condition implies that SR is a concrete
(well-pointed) category, which is to say that two maps f, g are equal iff (e; f) = (e;¢) for all maps
e out of 1. Order-extensionality is then immediate from the pointwise ordering of hom sets. B

The least fixpoint map ¥ : A4 — A is standard: (Y f) is the least fixed-point of the function
I |Al — |A], defined (Y f) = |,501/"(Lj4))}- The operator Y satisfies the uniformity condition
by the completeness property of Kripke relations.

3.4 Interpretation of Types and Terms

We now give a concrete description of the programming language PCF and its model in this
category. The version of PCF used here has one base type nat of natural numbers for simplicity.
The types are given by the grammar

s,t:=mnat | (s — ).

A typing judgement is a formula of the form I' = M : ¢ where M is a term, ¢ a type, and I' is a
PCF typing context, i.e., a finite function from variables to types. Standard rules for deriving
typing judgements are as follows.

Dyazitbha:t I'F0: nat

La:thM:s IFM:t—s THN:t LHM:t—t
'FAz:tM):t—s I'F(MN):s F'F(Y:M):t

'+ M :nat 't M : nat L'+ M; : nat
I' F (suce M) : nat I' - (pred M) : nat I' F (ifz My then M, else M3) : nat

10



The interpretation of PCF types is straightforward in SR. The base type nat is interpreted as
an SR-object [nat] by

|[nat]] = N
[nat] R = R.

For function types we use the exponent in SR: [s — ¢] = []l*].

The interpretation of PCF terms is also relatively straightforward. The maps pred, succ,
and ifz defined earlier are morphisms in SR, i.e., pred,succ € Homgsg([nat], [nat]) and ifz €
Homgsr([nat] x [nat] x [nat],[nat]). This, together with Proposition 9, is enough to determine
a model of PCF, but we give a concrete description of the semantics of terms to settle notation for
the proofs that follow. If I' = @y : #1,..., @, : £, is a typing context then [I'] = [t1] x ... X [t,]. (The
order is not important here, as we could rely on some fixed ordering of z; : ¢; pairs.) In the case
that I' is empty [I'] is the terminal object 1. For an environment p € |[I']|, we often write p(z) for
projection to the component corresponding to variable x. The meaning of a judgement I' - M : ¢
is an SR-morphism [I' - M : ¢] : [I'] L— [¢] satisfying the equations

[T,z :tka:t]p=plz)
[T+ (M N): tlp = (IT+ M : (s — 0p) (ITF N : s]p)
[TFEAz:s. M):(s—=t)]p=f, where f(d)=[I',a:sF M :t]p[z — d]
[TE(YM):slp=(Y [I'EM:(s—s)]p)
[l'FO0:nat]p=0
[I'F (succ M) :nat]p = succ([I' F M : nat]p)
[I'F (pred M) :nat]p = pred([I' - M : nat]p)
[I'F (ifz M then N else P) : nat]p = ifz([I' - M : nat]p,[I'F N : nat]p,[I'F P : nat]p)

where p[z — d] denotes the environment in which the  component is extended (or overwritten) to
d. It M : s, we write [M] for the corresponding element [0 - M : s]0 € [s].

4 Kripke Invariance and PCF Definability

In this section we show that every element in the model is a least upper bound of a directed set
of definable elements. The proof is based on ideas from (Jung and Tiuryn, 1993), and proceeds by
considering specific finitary Kripke sequentiality relations over specific categories.

For the proof to work with finitary Kripke relations we use the fact that the general form of the
construction—and the fact that we are dealing with PCF—forces each cpo to be an SFP object.
Define

Pl = Az :nat. ifz 2 then z else (.. .ifz (pred” z)thenzelse(}...)

a

Pr,=Xx:(s—=1).Ay:s. P (x(Ply))

and let ¢} = [P]. Since we have a model of PCF built from continuous functions, ¥ : [s] — [s]

is continuous. One may use this fact to prove

Lemma 10 (Milner, 1977) For any s and d € |[s]|, d = ||, ¥7(d). Furthermore, each ¥} is
idempotent.
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For each natural number n we define a category C,. First, for each PCF type s, let DT be the
set {d € [[s]| | d = ¥2(d)}. Then the objects of C,, are products
(D5

510"

Dy 1=(Dy x...x DY )

It is understood that as an object of C,, the domain-theoretic structure is forgotten, so that these are
considered simply as sets. The morphisms are projections from [DY , .. .,D§m+k] to [D} ..., D} .

Next we define a C,-Kripke relation R,. First, for any function f € [Fy — ... — E,, — F], let
uncurry,, (f) : [(E1 X ... X E,, ) — E] be defined by uncurry,,(f)(e1,...,en) = (f €1...€5). Then

for any w = [DY,,..., Dy ],
RY ={g € [w— N_]| there is a closed M such that g = (e,; uncurry,,([M]))},

where the function e, : w — (|[s1]| X ... X |[$m]]) is the inclusion and the type of the closed terms
Mis (s — ... — 8, — nat). Notice that, although the domain of g € [[{]]RY is restricted,
the range of g need not lie in D!. This is in fact necesary if R, is to be a sequentiality relation.
The construction of this sequentiality relation is interesting because of the apparent “circularity”:
the particular sequentiality relation is defined on a category C,,, and C,, is constructed using all
sequentiality relations. Of course, this is not a real foundational issue, but the technique does
resemble the proof of strong normalization of the Girard-Reynolds polymorphic A-calculus using
Girard’s “reducibility candidates”, cf. (Gallier, 1989; Girard et al., 1989).

Lemma 11 R, is a finitary Kripke sequentiality relation.

Proof: Directed completeness follows from the fact that each w is finite and N, is flat. To see
Kripke monotonicity, suppose w = [s1,...,8m], ¥ = [$14++ ., Smak], @ : v 1 w, and ¢ € RY; we
want to show that (¢;9) € RY. Let s = (81 — ... — &, — nat) and s’ = (81 — ... — Sy —
nat). By definition, g = (e,,; uncurry,, ([0 = M, : s])) for some M;. Then note that

(03 9) = (ey; uncurry, G ([0F Az s1. o A2 pgp @ Sk My 21 ... 20) 1 §]))

and hence (¢;¢) € RY as desired. Thus, R, is a Kripke relation.

To show that it is a sequentiality relation it suffices, by Proposition 6, to show that each of
the base constants is invariant. We prove one of the closure conditions and leave the others to the
reader. Suppose g € RY where w = [s1,...,8,]. Then g = (ey; uncurry,, ([0 & M; : s])) where
8:(81 — ... = Sy —>nat). But

(Ai € w.suce(g 1)) = (ey; (uncurry,, ([0 F (Azq :s1. ... A&y, @ Sy suce (M zq...2,,)) @ 5])))
and hence (A7 € w.succ(gi)) € RY as required.

The proof of the following is an adaptation of the proof of the characterization of A-definability
in (Jung and Tiuryn, 1993).

Lemma 12 If f = ¢2(f), then there is a closed expression M such that f = [M].

Proof: We prove the following claim by induction on the type ¢:

12



Suppose w = [D7,...,D} | and g € [w — |[[¢t]|] is such that ¢ = (g;%¢7). Then

g € [t](R,,)" iff there is a closed expression M such that g = (e,; uncurry,,([M])).
Choosing t = s and w = [ ], we know

¢ By the concreteness condition and Lemma 11, (Ad € [ ]. f) € [t](R)Y, and
o Ade[].f)=(Ade[].vi(f) =((Ad €[] f)vy),

and thus the claim will establish the lemma.
The basis when ¢t = nat holds by the definition of R}, so consider the induction case where
t = (to — t1). To prove (=), suppose g = (g;¢7) and g € [t](R,)", where w = [D7 ,..., D7 |.
Let v = [Dy,,..., Dy D], ¢ : v — w be the projection, and
h = (ep; uncurry,, (o ([Azy @ s1. .. A2y, @ 8. Az 2 Hg. 2])).
Notice that h = (h;1f) since, for d € Di, ¥ (d) = d. Thus, by induction h € [to](R,)”. Then
since g € [t](R)", it follows that

= Az €v.(g(p2)) (ha))e[L](R)".

Moreover, since g = (g;97), it is easy to see that g’ = (¢';¥7 ). Hence, by induction, there is an M
such that g’ = (e,; uncurry,,,([M])). Let

Q=Ar1:81. . ATy 8 Ax ton (M 2y . wy (P ).
Then for any (dy,...,d,) € wand d € |[to]|,

(ew; uncurry,, ([Q]) (d1,...,dn) d = ¢' (dy1,...,dm, (W, d))
=g (d1,....dn) (¥ d)
=g {(dy,....,dpn)d

since g = (g; 91, so g = (ew; uncurry,, ([Q])) as desired.

For the (<) direction, suppose ¢ = (g;¥7) and there is an M such that ¢ = (e,; uncurry,, ([M]));
we want to show g € [t](R,)". So suppose v = [D7,.. .,D§m+k], @ : v — w is the projection,
and h € [to](R,)". It follows that (h;47) € [to](Ry)Y since, by the uniformity condition R, is
invariant under ¥y . Then, since (h;97) = (h; ¥ ); 7, by induction there is a closed term N such

that (h; ¥ ) = (ev; uncurry,, 1 ([N])). Let
P=Xxy st oo Aok 2 Sk (M 21 0o2) (N 21Ttk )
Therefore, for any (dy,...,d,4k) € v,

(cui uncurry,  ((IPD)) {d . dm+k>

= (uncurry,, ([M]) (ew (d1,-..,dn))) (uncurry,, (IN]) (ey (di,. .. dntr)))
= (g (¢ (d1,- .., dnsr))) ((h %) {di,. s dmir))

= (9 (¢ {dis i) (Pg, (B (drs - dingr)

= (g9 (¢ (di,..., m+k>))( <d1,...,dm+k>)

where the last line follows from the fact that ¢ = (g; 7). By induction, (Az € v. (g (¢ 2)) (h a)) €
[ti](R.)", and hence g € [t](R,)". B
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We now have enough facts to establish the basic connections between the model and the lan-
guage. We first define the observational approximation relation < as follows.

Definition 13 1. ([ is a I't-context if § F C'[M] : nat, whenever I' - M : .

2. M <y Nif ' M ¢, T+ N : ¢, and for all I't-contexts C[-], [I' - C[M] : nat] C [I' - C[N]:
nat].

Here we have used the denotational semantics to determine “observable approximation.” The
adequacy of this model for the usual operational semantics can be shown using the standard com-
putability method (c¢f. (Plotkin, 1977)). The proof of full abstraction follows from Lemma 10,
Lemma 12, and continuity.

Theorem 14 (Full Abstraction) M <p; N iff [T F M :tJC '+ N :¢].

5 Conclusion

In this paper we have given a characterization of the (unique by (Milner, 1977)) inequationally
fully abstract model of PCF. The results of this paper owe much to (Jung and Tiuryn, 1993)
and (Sieber, 1992), and we make no claim of great originality. It is clearly interesting, however,
that such a full abstraction result is possible using logical relations. We were led to the connection
between the two works by our own work on translating PCF into a language with parametric
polymorphism (O’Hearn and Riecke, 1994) (hence the connection to A-definability and Jung and
Tiuryn’s work). We view our results as strengthening, and providing further justification for, the
research program begun in (Sieber, 1992).

One crucial question remains: is the model based on Kripke relations actually different than
Sieber’s finitary relation modell’ All equivalences that we know of that are treated incorrectly
by the continuous model are in fact treated correctly by the model based on fixed-arity finitary
relations. This situation is rather like (Plotkin, 1980), where binary relations characterize A-
definability in the full type hierarchy over an infinite ground set up to type-level two, and Kripke
relations characterize definability at all types, but there remains the nagging question of whether
binary or finitary relations already suffice for definability (the example of (Statman, 1985) is not
for the full type hierarchy). We know here that Kripke relations suffice for technical purposes but
not whether they are necessary, i.e., whether the simpler fixed-arity relations of Sieber suffice for
full abstraction.

One may wonder, with all the previous constructions of models of PCF, whether this construc-
tion constitutes a solution to the “full abstraction problem”. It has been remarked on a number
of occasions (Abramsky et al., 1994; Berry et al., 1985; Jung and Stoughton, 1993) that there is
no universal agreement on the requirements for a “solution.” At the very least, one would like a
construction that does not depend on the syntax or operational semantics of PCF. Although the
syntax of PCF was used in the proof of full abstraction, the semantic category in which the model
lives was defined without recourse to the type structure of PCF or to operational semantics, and so
we feel that the construction satisfies this first criterion. A second criterion, argued in (Abramsky
et al., 1994), is that the construction should exist in a cartesian closed category, so that in partic-
ular the function type is explained using an exponential construction. Qur presentation also meets
this criterion. In fact, it would also have been possible to use Kripke relations to characterize those

14



elements in the continuous function model that are lubs of definables, and then use the techniques
of (Jung and Stoughton, 1993) to collapse to the fully abstract model. It is not clear at present
whether our method could yield more useful information about PCF than this collapsing, though
we agree that it is desirable to present the model in terms of a cartesian closed category.

Jung and Stoughton (1993) propose a third criterion: a solution should yield an effective presen-
tation of finitary PCF, i.e., PCF with just the boolean type. By “effective presentation” is meant,
roughly, a procedure that prints out, for each type, a table of graphs of PCF-definable functions,
and which indicates when the table for a type is complete. In other words, such a solution would
guarantee that given the graph of a function in finitary PCF, one could tell whether it was in the
model or not. Our model is not a solution in this sense, due to the complexity of the logical rela-
tions; if, for instance, Sieber’s more tame relations determined the fully abstract model, there would
be an effective presentation. Of course, there may be no solution meeting this third criterion. (The
undecidability result of (Loader, 1994), for A-definability in the full type hierarchy over a finite base
type, is interesting but apparently not immediately relevant to the PCF definability problem.)

The results of this paper were obtained subsequent to the full abstraction results reported by
Abramsky, Jagadeesan and Malacaria (Abramsky et al., 1994; Abramsky et al., 1993) and Hyland
and Ong (Hyland and Ong, 1993) using games semantics. The games semantics approaches the
full abstraction problem for PCF by first providing an intensional model, which is then quotiented
to achieve extensionality. In contrast, here and in (Sieber, 1992) the starting point is manifestly
extensional, and logical relations are used to impose stringent conditions on function types. The
games semantics does a better job of explaining the “temporal” or “process” aspect of sequential-
ity, and in particular the structure in the intensional games semantics is already interesting and
informative, prior to quotienting, and independent of questions of full abstraction.

Our construction probably does not offer a definitive account of sequential functional computa-
tion, even though Sieber’s sequentiality relations, along with our variation on them, clearly exhibit
some semantic aspects of sequentiality. For instance, the fully abstract models for sequential PCF
and parallel PCF (with “parallel or”) coexist in our category SR. We have seen that SR con-
tains the fully abstract model of PCF, but it also contains the continuous function model (Plotkin,
1977; Scott, 1993): for this, we would simply define each [nat]R to be the evident everywhere-true
Kripke relation on N, that is, where ([nat]R)* = [w — N_]. Nevertheless, we feel that the
logical relation approach still has clear interest when it comes to principles for reasoning about se-
quential functions. As was remarked above, logical-relation reasoning handles many examples quite
smoothly, and allows for an effective presentation of finitary PCF up to type-level two. This is il-
lustrated well by Stoughton’s implementation of an algorithm for definability problems (Stoughton,
1994), and its use on the subtle examples of (Curien, 1986).

Another closely related work is that of Cartwright, Curien, and Felleisen, where a fully abstract
model is presented for SPCF, a “sequential” extension of PCF that includes errors and a version
of the “catch” construct (Cartwright et al., 1994). While this result is not for PCF itself, the
model, which turns out to be a version of sequential algorithms (Berry and Curien, 1982), is quite
satisfactory. In particular, the preservation conditions for “manifestly sequential functions” are of
sufficient quality to yield an effective presentation of a finitary version of SPCF (Felleisen, personal
communication, February 1994). The possibility of finding something similar for PCF is one reason
why further developments along the lines of, e.g., (Bucciarelli and Erhardt, 1991; Brookes and
Geva, 1994) continue to hold interest.
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