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Kripke Logical Relations and PCFPeter W. O'Hearn�School of Computer and Information ScienceSyracuse UniversitySyracuse, New York 13244 Jon G. RieckeAT&T Bell Laboratories600 Mountain AvenueMurray Hill, New Jersey 07974AbstractSieber has described a model of PCF consisting of continuous functions that are invariantunder certain (�nitary) logical relations, and shown that it is fully abstract for closed terms ofup to third-order types. We show that one may achieve full abstraction at all types using aform of \Kripke logical relations" introduced by Jung and Tiuryn to characterize �-de�nability.To appear in Information and Computation.(Accepted, October 1994)
�Supported by NSF grant CCR-92110829. 1



1 IntroductionThe nature of sequential functional computation has fascinated computer scientists ever since Scottremarked on a curious incompleteness phenomenon when he introduced LCF (Logic for ComputableFunctions) and its continuous function model in 1969 (Scott, 1993). Scott noted that although thefunctionals de�nable by terms in PCF|the term language of LCF|admitted a sequential evalua-tion strategy, there were functions in the model that seemed to require a parallel evaluation strategy.\Sequential evaluation" means, roughly, that computation proceeds in a single thread and any sub-computation �nishes before proceeding with another. Scott's example of a non-sequential functionis \parallel or", which returns true even if one argument is true and the other diverges. Plotkin ex-plored this phenomenon further, and showed that by enlarging PCF to include determinate parallelfacilities related to \parallel or" one could achieve \full abstraction" (Plotkin, 1977). A model iscalled fully abstract if two terms are semantically equal precisely when they are observationallyequal, i.e., when they may interchanged in all programs with no di�erence in observable behaviour.Plotkin also observed that Scott's model is not fully abstract without parallel facilities, and leftopen the problem of �nding a fully abstract model for the original, sequential language.The concept of a \sequentially computable functional" is surely intuitively compelling, but theconcept has been notoriously di�cult to describe in any abstract semantic sense. Some importantadvances include Milner's syntactic construction of a fully abstract model and the proof that itis unique under certain reasonable assumptions (Milner, 1977), and good, but not fully abstractmodels based on sequential algorithms (Berry and Curien, 1982) and stable functions (Berry, 1978);cf. (Berry et al., 1985; Meyer and Cosmadakis, 1988; Stoughton, 1988) for more discussion andreferences. This issue of sequential versus parallel functionals was also partially foreshadowed bydevelopments in basic recursion theory, e.g., in di�erent notions of relative computability|givenby Turing and weak Turing reducibility|and the associated notions of functional; cf. (Odifreddi,1989) for more discussion and references.This paper constructs a new model of PCF. At functional type, the model consists of continuousfunctions that are invariant under certain kinds of logical relations. The relations impose conditionsthat rule out the parallel functions present in the continuous model. We prove that the model isinequationally fully abstract, i.e., denotational approximation coincides with a contextually-de�ned observational approximation relation. The model is isomorphic to Milner's fully abstract,but syntactically constructed, model.The logical relation approach to building a model of PCF, i.e., using logical relations to con-strain the construction of function types, was pioneered in (Sieber, 1992). Instead of admittingall Scott continuous functions from one type to another as the meaning of function types, Sieber'sconstruction admits only those continuous functions that are invariant under \sequential logicalrelations". A sequential logical relation has arbitrary but �xed �nite arity, and is de�ned by a basetype relation Rnat � (N? � : : :�N?) with certain properties; the base type relation determineshigher-type relations R�!� in a standard way. Sieber's model, then, takes only those elements of thecontinuous function model that are invariant, i.e., only those elements f such that R�(f; f; : : : ; f)holds for all base relations Rnat. Sieber proved that for closed terms M;N of up to third-ordertype, M and N are observationally equivalent i� [[M ]] = [[N ]]|i.e., the model is fully abstract upto third-order|and left open the problem of whether the model is fully abstract for higher types.Our model construction resembles Sieber's except in the choice of logical relations: we use a formof Kripke logical relation in place of �nitary relations. This is reminiscent of Plotkin's seminal work2



(Plotkin, 1980), where binary relations su�ce for a �-de�nability result for second-order types butKripke relations are used for de�nability at higher types. The kind of Kripke relation is a domain-theoretic version of that introduced in (Jung and Tiuryn, 1993), where a quite general de�nabilityresult for pure simply-typed �-calculus is obtained. Jung and Tiuryn's relations generalize boththose of Sieber and Plotkin, and are themselves a specialization of (unary) logical relations in afunctor category. The basic new idea in Jung and Tiuryn's relations lies in the \varying arity" ofthe relations: the elements of the worlds that index the relations are themselves the indices of theelements of the relation. Thus, for example, in a Kripke structure with a world w of two elementsand a world w0 of three elements, the logical relation at world w is binary and the relation at worldw0 is ternary.Although we concentrate on PCF, the de�nition of the model and proof of full abstraction applyin wider circumstances. Given ground pointed cpos and a collection of �rst-order functions, themodel de�nition in section 3 works by choosing `strict" and \complete" �nitary logical relationsthat preserve the given �rst-order functions; the proof of de�nability of �nite elements requires thatthe ground domains are SFP with de�nable �nite projections. Moreover, when the ground domainsare consistently complete and satisfy the \articulating" conditions of (Milner, 1977), the resultingmodel is the unique one identi�ed by Milner. In contrast with Milner's construction, the elementsof the model are described directly here, not as an inverse limit of �nite cpo's: note especially thatthe �nite projections are used only in the proof of full abstraction, not in the construction of themodel. (In the case that the ground domains have in�nite height, a slight adjustment is required:the relation Rwn in section 4 becomes tuples that are lubs of directed sets of de�nable �nite elements,and the order-theoretic property of �nite elements is used to show the relation directed-complete.)Based on this generality, one might sense that our results do not provide a further analysisof sequentiality per se, but rather concern lifting �nitary �rst-order principles to higher types.Nevertheless, in the case of PCF one further simpli�cation is possible: we can use Sieber's char-acterization of those relations that are preserved by �rst-order PCF constants. The result is aconstruction of the fully abstract model of PCF in which the semantics of types does not mentionthe interpretation of the �rst-order constants.2 Sieber's Sequentiality RelationsWe begin by reviewing the basic elements of Sieber's construction. To �x notation, CPO denotesthe category of cpos and continuous functions. Here, a cpo is a directed-complete poset possessing aleast element. N? is the 
at natural numbers. D�E denotes the componentwise-ordered productof cpos, and [D ! E] the continuous function space with pointwise order. If w is a set and D acpo, we write [w! D] for the pointwise-ordered cpo of functions, viewing w as discretely ordered.Finally, de�ne the functions succ : N? ! N?succ(m) = ( (m+ 1) if m 2 N? otherwisepred : N? ! N?pred(m) = ( (m� 1) if m � 1? otherwise3



ifz : N? �N? �N? ! N?ifz(m;n; p) = 8><>: n if m = 0p if m > 0? otherwiseThe model in (Sieber, 1992) is based on certain relations on the 
at naturals.De�nition 1 Suppose w is a �nite set. For any subsets A � B � w, de�ne SwA;B � [w ! N?] asfollows: If g 2 [w! N?]; then g 2 SwA;B i� (9i 2 A: g(i) = ?) or (8i; j 2 B: g(i) = g(j)):Then R � [w! N?] is a sequentiality relation if it is the intersection of a collection of relationsof the form SwA;B.Here, a �nite set determines the arity of a relation, e.g., binary relations are obtained by taking wto be a two element set. We use this non-standard notation to be consistent with the de�nition of\Kripke relations" below. Sieber's �rst main result about sequentiality relations is the followingProposition 2 A relation R � [w! N?] is a sequentiality relation i� for any g1; g2; g3 2 R,1. (�i 2 w: 0) 2 R;2. (�i 2 w: succ(g1(i))) 2 R;3. (�i 2 w: pred(g1(i))) 2 R; and4. (�i 2 w: ifz(g1(i); g2(i); g3(i))) 2 R,where, for instance, (�i 2 w: 0) is the function that returns 0 given any argument.In other words, sequentiality relations are precisely those �nitary relations that are invariant underthe �rst-order operations 0, succ, pred and ifz.Sequentiality relations may be lifted to higher types in the standard way. Let [[nat]] = N? and[[� ! � ]] = [[[�]]! [[� ]]]. Using the notation of relations as function spaces and starting from a basesequentiality relation R = Rnat, we de�neR�!� = fg 2 [w! [[[� ! � ]]]] j for any h 2 R�, (�i 2 w: g(i) (h(i))) 2 R�g:The strictness and completeness properties of sequentiality relations is preserved by lifting to highertypes. This fact and the proposition, together with the \main lemma of logical relations" (Plotkin,1980), has an important consequence: in the continuous type hierarchy over N?, any element thatis �-de�nable from 0, succ, pred, ifz, and least �xpoint must be invariant under logical relationsinduced by sequentiality relations at base type. Stated contrapositively, if an element d 2 [[�]] isnot invariant under R� starting from a sequentiality relations, the element d must not be de�nable.This fact may be used in reasoning about the non-de�nability of certain elements of the model.4



Example 1 (Sieber, 1992) Consider the following variation on parallel or:por : N? �N? ! N?por(m;n) = 8><>: 0 if m = 0 or n = 01 if ? 6= m > 0 and ? 6= n > 0? otherwiseIntuitively, por is not sequential because any sequential function of type N? � N? ! N? mustbe constant or evaluate one of its arguments �rst. Since por(?; 0) = por(0;?) = 0, por(?;?)would have to be 0 if por was sequential, but por(?;?) = ?. This informal argument can berepresented quite directly with the relation R � [f1; 2; 3g ! N?], where d 2 R i� either d(1) ord(2) = ? or d(1) = d(2) = d(3); in other words, R here is the sequentiality relation Sf1;2;3gf1;2g;f1;2;3g.In tuple notation, if we consider two elements d1 = (0;?;?) and d2 = (?; 0;?) in R, applying porcomponentwise results in a tuple d3 = (0; 0;?) that is not in R.por d1 d20 ?? 0? ? = d300?One may think of the top two rows in the table as testing the strictness (in one argument) conditionon functions N? �N? ! N?. Having found that the function is strict in neither argument, wetest the constancy property by supplying ? in the bottom row: the bottom entry of the rightmostcolumn would have to be 0 for it to represent an element of R.Example 2 Example 1 concerns �rst-order sequentiality. What is interesting is that we can liftthe �rst-order property represented by R to higher types and reason about higher-order functions.As an example of the properties thus obtained, consider the functionalfpor : [N? ! N?]! N?fpor(f) = 8><>: 0 if f(0) = 0 or f(1) = 01 if ? 6= f(0) > 0 and ? 6= f(1) > 0? otherwiseThe non-sequentiality of this function corresponds to the failure of the following logical propertyfor the relation R(nat!nat)!nat, written in tuple notation:if 8(n1; n2; n3) 2 R: (f1(n1); f2(n2); f3(n3)) 2 Rthen (fpor(f1); fpor(f2); fpor(f3)) 2 R.A counterexample is given by an argument tuple (f1; f2; f3) where f1(0) = f2(1) = 0, f1(1) =f2(0) = ? and f3 constantly ?. It may be argued that this example is still essentially about �rst-order sequentiality, since the function fpor is a simple variation on por. However, it does illustratewell how the purely �rst-order properties encoded by R can be e�ectively lifted to higher typesusing logical relations. More sophisticated examples of using logical relations for reasoning aboutPCF may be found in (Sieber, 1992; Stoughton, 1994).5



The question naturally arises of how far one can apply this mode of reasoning. Sieber's secondmain result is that, up to second-order type in the continuous type hierarchy over N?, any elementthat is invariant under all sequentiality relations is the lub of a directed set of PCF-de�nableelements. This can be turned into a full abstraction result for closed terms of order-three types byusing logical relations to constrain function types. We emphasize again that sequentiality relationsthemselves codify essentially �rst-order principles of sequential functions. This result is quiteastonishing precisely because lifting these �rst-order principles furnishes a characterization of PCFde�nability at second order. The question of what happens at types higher than level two wasleft open by Sieber. We have not been able to settle this question; presently, whether or notsequentiality relations characterize PCF de�nability at higher types is unknown. In the followingsections we show that full abstraction may be obtained by replacing Sieber's �xed-arity relationswith a varying-arity form of Kripke relations due to Jung and Tiuryn.3 Model of PCFThis section �rst de�nes a notion of \Kripke logical relation." Then the logical relations are usedto describe a suitable cartesian closed category and the resultant model of PCF.3.1 Kripke Logical RelationsThe usual notion of \Kripke logical relations" (cf. (Mitchell, 1990; Plotkin, 1973; Plotkin, 1980;Reynolds, 1983)) extends the de�nition of logical relations with structure similar to the Kripkesemantics of intuitionistic logic. One begins with a poset of worlds and a �nite �xed arity, andthen chooses a relation of that arity at base type for each world that must �t together with theposet structure on worlds; the relations of higher type are determined from the base type relations.Jung and Tiuryn's \Kripke logical relations" (Jung and Tiuryn, 1993) are slightly di�erent in tworespects. First, one begins with a category of worlds which are sets, generalizing the usual de�nitionbased on posets. Second, instead of having some �nite, �xed arity, Jung and Tiuryn's relationsare sets of functions, so, for instance, if w is a world and A is the meaning of the base type, therelation Rw is a subset of [w! A]. Notice that there is no �nite arity restriction, and that the arity(size of w) may in fact vary from world to world. Jung and Tiuryn's Kripke logical relations arethemselves a special case of the categorical forms of logical relation studied in (Ma and Reynolds,1992; Mitchell and Scedrov, 1993).For our model of PCF, we need to extend Jung and Tiuryn's relations to the domain-theoreticsetting. Let C be a small subcategory of the category of sets and functions. Then, formally,De�nition 3 A C-Kripke relation on a cpo D is a family of subsets Sw � [w! D] indexed byC-objects w (for world) that satisfy the following conditions:� Completeness: Sw is a complete subset of [w ! D], i.e., ? 2 Sw and Sw is closed underleast upper bounds of directed sets.� Kripke Monotonicity: If ' : v C�! w in C and g 2 Sw, then ('; g) 2 Sv.We often omit the C from \C-Kripke relation" when no confusion is likely.We need a few notational conventions. If S1 is a Kripke relation on cpo D1, S2 is a Kripkerelation on cpo D2, and f : D1 ! D2 is a continuous function, then we write f : S1 ! S2 if for6



all w 2 Ob(C) and h 2 Sw1 , (h; f) 2 Sw2 . This de�nition corresponds to a notion of \morphismof relations" as found in (Ma and Reynolds, 1992; Mitchell and Scedrov, 1993).1 Similarly, if S isa Kripke relation on D and a 2 D, then we write a : S (read \a is invariant under the C-Kripkerelation S") if for all w 2 Ob(C), (�i 2 w: a) 2 Sw.3.2 Kripke Sequentiality RelationsTo interpret PCF we consider certain Kripke relations on N?. The following de�nition adaptsSieber's notion of sequentiality relation to take into account the world structure of Kripke relations.De�nition 4 Suppose R is a C-Kripke relation on N?. For any object w of C and A � B � w,de�ne If g 2 [w! N?]; then g 2 SwA;B i� (9i 2 A: g(i) = ?) or (8i; j 2 B: g(i) = g(j)):Then R is aKripke sequentiality relation if each Rw is the intersection of a collection of relationsof the form SwA;B.The operations of PCF are invariant under Kripke sequentiality relations, but we have not beenable to establish a direct converse to this fact, or a counterexample showing the converse to befalse. However, Sieber's characterization of �nitary sequentiality relations carries over for Kripkerelations in which each of the worlds is �nite, and these are enough to carry out the proof of fullabstraction.De�nition 5 R is a �nitary C-Kripke relation if each object of the category C is a �nite set.Note that in a �nitary Kripke relation each Rw has �nite arity, but there is not necessarily a�xed �nite bound on the arities of all the Rw's because the category C might still have an in�nitenumber of objects. This de�nition thus generalizes Sieber's sequentiality relations, where in Sieber'srelations the category C has only one object of �nite size.Proposition 6 Suppose R is a �nitary Kripke relation on N?. Then R is a sequentiality relationi� 1. 0 : R;2. succ : R! R;3. pred : R! R; and4. ifz : R�R� R! R,where (R�R� R)w = fhf; g; hi : [w! N? �N? �N?] j f; g; h 2 Rwg.Proof: Since the preservation conditions for morphisms of Kripke relations f : S1 ! S2 aredetermined pointwise on the objects of category C, R is invariant under a PCF operation i� eachRw is invariant under that operation. The result follows from Proposition 2.1To be more speci�c, the resultant category is, in the notation of (Ma and Reynolds, 1992), a subcategory ofRel(D;DCop ; F ), where D is the category of predomains and F :D! DCop sends E to E({).7



3.3 Semantic CategoryA category suitable for interpreting PCF may be constructed using �nitary Kripke sequentialityrelations. In the de�nition we use a quanti�er \for all R" to mean \for all subcategories C ofthe category Finset of �nite sets, and all C-Kripke sequentiality relations R." There are no realsize di�culties associated with this quanti�er, e.g., our model construction could alternatively usea small category that is equivalent to Finset. De�ne the category SR (for sequentiality-relationpreserving functions) as follows.� Objects. An object A consists of a cpo jAj and a C-Kripke relation A(R) on jAj for eachsubcategory C of Finset and each C-Kripke sequentiality relation R. Objects must alsosatisfy theConcreteness Condition: For all R and all a 2 jAj, a : A(R).� Morphisms. A morphism f : A! B is a continuous function f : jAj ! jBj satisfying theUniformity Condition: For all R, f : A(R)! B(R).Composition and identities are inherited from CPO. SR is related to the categories de�ned forgiving models of languages with local variables (Sieber, 1993; O'Hearn and Tennent, 1993).Notice that SR does not consist of arbitrary continuous functions, certain of which are singledout using relations; rather, we use a parametricity condition to constrain hom sets from the verybeginning. The model is therefore not a collapse of the full continuous model of PCF using logicalrelations to pick out certain invariant elements. Instead, the relations constrain the constructionof the model so that all elements are invariant. Thus, there is no need for quotienting or a collapseto guarantee that all elements of the model are extensional functions|they are already by thede�nition. Sieber also has a presentation of his model of PCF which does not rely on extensionalcollapse (Sieber, personal communication, July 1993).SR has enough structure to interpret the simply-typed �-calculus, i.e., it is a cartesian-closedcategory. The terminal object 1 is given by� j1j is a one-point cpo, and� 1(R)w is the singleton subset consisting of the unique function in [w! j1j].Products are constructed by� jA� Bj = jAj � jBj, using the product in CPO, and� (A�B)(R)w = fhf; gi j f 2 A(R)w and g 2 B(R)wg.For exponents,� jBAj = HomSR(A;B), ordered pointwise,� BA(R)w = fg 2 [w! jBAj] j 8' : v C�! w: 8h 2 A(R)v:(�i 2 v: (g (' (i))) (h(i))) 2 B(R)vg.8



Note the interesting symbiotic relationship between the construction of the meanings of highertypes and the relational meaning of higher types. The set jBAj is determined using the results of Band A on all sequentiality relations, whereas BA(R)w picks out elements from [w! jBAj] using theparticular relation R. The de�nition of BA(R) therefore relies explicitly on the particular Kripkesequentiality relation R chosen as the basis, and implicitly on all sequentiality relations.Lemma 7 (a) jBAj is a cpo.(b) BA(R) satis�es completeness and Kripke monotonicity.(c) BA satis�es the concreteness condition.Proof: We prove (c); (a) can be shown by a routine calculation, and (b) follows from the de�nition,using both the Kripke monotonicity and completeness properties of B and A. Suppose f 2 jBAj,that is, f : A ! B. We need to show that (�i 2 w: f) 2 BA(R)w. From the de�nition, we mustshow that, for ' : v C�! w and h 2 A(R)v,(�j 2 v: ((�i 2 w: f) (' (j))) (h (j))) 2 B(R)v :But this just reduces to (�j 2 v: f (h j)) 2 B(R)v, which is the uniformity condition on SR-morphisms f .Lemma 8 (a) A�B and BA can be extended to bifunctors on F , with BA contravariant in A.(b) ({)� B is left adjoint to B({).Proof: Proof of (a). f � g is just the function induced by the underlying product in CPO. fghas the usual de�nition: fg(h) = g; h; f . Preservation of identities and compositions and variouscontinuity conditions are straightforward to check, as is the uniformity condition for f�g. We checkthe uniformity condition for fg . First, the uniformity condition is preserved by composition, as isrelevant domain-theoretic structure, so we may conclude that g; h; f 2 jB0A0 j, where f : B ! B0and g : A0 ! A. To see that fg = g; {; f satis�es the uniformity condition, consider an R andm 2 BA(R)w: we need that (�i 2 w: g;m(i); f) 2 B0A0(R)w, which in turn requires that, for' : v C�! w and n 2 A0(R)v,(�) (�j 2 v: (g;m('(j)); f)(n(j))) 2 B0(R)v:By the uniformity condition for g, (�j 2 v: g(n(j))) 2 A(R)v. Then, by the de�nition of BA(R)we obtain (�j 2 v: m('(j))(g(n(j)))) 2 B(R)v, and a �nal application of uniformity for f gives thedesired result (�). Thus, we may conclude that fg satis�es the uniformity condition.Proof of (b). For f : A�B ! C, curry(f) : A! CB is curry(f)a b = fha; bi. For g : A! CB,uncurry(g) : A � B ! C is uncurry(g)ha; bi = (g a b). Of course, these are the same de�ningequations as in CPO (and many other categories). The point, however, is that the de�nitionof CB is just right to make these inverse isomorphisms. Clearly, uncurry(curry(f)) = f andcurry(uncurry(g)) = g, using the same argument as in CPO, as long as we can show that uncurry(g)and curry(f) are actually de�ned. For this we need only verify the appropriate parametricityconditions, as continuity and naturality properties are straightforward. We treat curry(f), leavingthe similar case of uncurry(g) to the reader. 9



We need to show that curry(f) is a well-de�ned function from jAj to jCBj and that it satis�esthe uniformity condition. First, for well-de�nedness, we must show that for any a 2 jAj, R,and w, if h 2 B(R)w then (�i 2 w: curry(f) a (h(i))) 2 C(R)w. By the concreteness condition,a 2 jAj implies that (�i 2 w: a) 2 A(R)w, which means that (�i 2 w: ha; h(i)i) 2 (A � B)(R)w.Uniformity for f then gives (�i 2 w: fha; h(i)i) 2 C(R)w, which by de�nition of curry(f) is whatwe wanted to show. Second, for uniformity of curry(f), suppose k 2 A(R)w; we need to show that(�i 2 w: curry(f)(k(i))) 2 CB(R)w, which, from the de�nition of CB(R), requires proving(��) (�j 2 v: f
k0(j); h(j)�) 2 C(R)vfor ' : v C�! w and h 2 B(R)v, where k0 = ('; k). Since A satis�es Kripke monotonicity, we knowthat k0 2 A(R)v, and so the desired property (��) is immediate from the uniformity condition forf .Proposition 9 SR is a cpo-enriched cartesian closed category, with HomSR(A;B) ordered point-wise. It is order-extensional in the following sense:f v g : A! B , 8e : 1! A : e; f v e; gProof: That �; 1 is a cartesian product structure should be clear; the projections and pairingare just as in CPO. The previous lemma shows cartesian closure, and the preservation of relevantcpo-enriched structure is straightforward. The concreteness condition implies that SR is a concrete(well-pointed) category, which is to say that two maps f; g are equal i� (e; f) = (e; g) for all mapse out of 1. Order-extensionality is then immediate from the pointwise ordering of hom sets.The least �xpoint map Y : AA ! A is standard: (Y f) is the least �xed-point of the functionf : jAj ! jAj, de�ned (Y f) = Fn�0ffn(?jAj)g. The operator Y satis�es the uniformity conditionby the completeness property of Kripke relations.3.4 Interpretation of Types and TermsWe now give a concrete description of the programming language PCF and its model in thiscategory. The version of PCF used here has one base type nat of natural numbers for simplicity.The types are given by the grammar s; t ::= nat j (s! t):A typing judgement is a formula of the form � ` M : t where M is a term, t a type, and � is aPCF typing context, i.e., a �nite function from variables to types. Standard rules for derivingtyping judgements are as follows.�; x : t ` x : t � ` 0 : nat�; x : t `M : s� ` (�x : t:M) : t! s � `M : t! s � ` N : t� ` (M N) : s � `M : t! t� ` (YtM) : t� `M : nat� ` (succ M) : nat � `M : nat� ` (pred M) : nat � `Mi : nat� ` (ifzM1 thenM2 elseM3) : nat10



The interpretation of PCF types is straightforward in SR. The base type nat is interpreted asan SR-object [[nat]] byj[[nat]]j = N?[[nat]]R = R:For function types we use the exponent in SR: [[s! t]] = [[t]][[s]].The interpretation of PCF terms is also relatively straightforward. The maps pred, succ,and ifz de�ned earlier are morphisms in SR, i.e., pred; succ 2 HomSR([[nat]]; [[nat]]) and ifz 2HomSR([[nat]] � [[nat]]� [[nat]]; [[nat]]). This, together with Proposition 9, is enough to determinea model of PCF, but we give a concrete description of the semantics of terms to settle notation forthe proofs that follow. If � = x1 : t1; :::; xn : tn is a typing context then [[�]] = [[t1]]� :::� [[tn]]. (Theorder is not important here, as we could rely on some �xed ordering of xi : ti pairs.) In the casethat � is empty [[�]] is the terminal object 1. For an environment � 2 j[[�]]j, we often write �(x) forprojection to the component corresponding to variable x. The meaning of a judgement � ` M : tis an SR-morphism [[� `M : t]] : [[�]] �! [[t]] satisfying the equations[[�; x : t ` x : t]]� = �(x)[[� ` (M N) : t]]� = ([[� `M : (s! t)]]�) ([[� ` N : s]]�)[[� ` (�x : s: M) : (s! t)]]� = f; where f(d) = [[�; x : s `M : t]]�[x 7! d][[� ` (YM) : s]]� = (Y [[� `M : (s! s)]]�)[[� ` 0 : nat]]� = 0[[� ` (succ M) : nat]]� = succ([[� `M : nat]]�)[[� ` (pred M) : nat]]� = pred([[� `M : nat]]�)[[� ` (ifzM thenN else P ) : nat]]� = ifz([[� `M : nat]]�; [[� ` N : nat]]�; [[� ` P : nat]]�)where �[x 7! d] denotes the environment in which the x component is extended (or overwritten) tod. If ; `M : s, we write [[M ]] for the corresponding element [[; `M : s]]; 2 [[s]].4 Kripke Invariance and PCF De�nabilityIn this section we show that every element in the model is a least upper bound of a directed setof de�nable elements. The proof is based on ideas from (Jung and Tiuryn, 1993), and proceeds byconsidering speci�c �nitary Kripke sequentiality relations over speci�c categories.For the proof to work with �nitary Kripke relations we use the fact that the general form of theconstruction|and the fact that we are dealing with PCF|forces each cpo to be an SFP object.De�ne Pnnat = �x : nat: ifz x then x else (: : : ifz (predn x) then x else 
 : : :)Pns!t = �x : (s! t): �y : s: Pnt (x (Pns y))and let  ns = [[Pns ]]. Since we have a model of PCF built from continuous functions,  ns : [[s]]! [[s]]is continuous. One may use this fact to proveLemma 10 (Milner, 1977) For any s and d 2 j[[s]]j, d = Fn<!  ns (d). Furthermore, each  ns isidempotent. 11



For each natural number n we de�ne a category Cn. First, for each PCF type s, let Dns be theset fd 2 j[[s]]j j d =  ns (d)g. Then the objects of Cn are products[Dns1 ; : : : ; Dnsm] = (Dns1 � : : :�Dnsm)It is understood that as an object ofCn the domain-theoretic structure is forgotten, so that these areconsidered simply as sets. The morphisms are projections from [Dns1 ; : : : ; Dnsm+k ] to [Dns1 ; : : : ; Dnsm ].Next we de�ne a Cn-Kripke relation Rn. First, for any function f 2 [E1 ! : : :! Em ! E], letuncurrym(f) : [(E1� : : :�Em)! E] be de�ned by uncurrym(f)(e1; : : : ; em) = (f e1 : : : em). Thenfor any w = [Dns1 ; : : : ; Dnsm],Rwn = fg 2 [w! N?] j there is a closed M such that g = (ew; uncurrym([[M ]]))g;where the function ew : w ! (j[[s1]]j� : : :� j[[sm]]j) is the inclusion and the type of the closed termsM is (s1 ! : : : ! sm ! nat). Notice that, although the domain of g 2 [[t]]Rwn is restricted,the range of g need not lie in Dtn. This is in fact necesary if Rn is to be a sequentiality relation.The construction of this sequentiality relation is interesting because of the apparent \circularity":the particular sequentiality relation is de�ned on a category Cn, and Cn is constructed using allsequentiality relations. Of course, this is not a real foundational issue, but the technique doesresemble the proof of strong normalization of the Girard-Reynolds polymorphic �-calculus usingGirard's \reducibility candidates", cf. (Gallier, 1989; Girard et al., 1989).Lemma 11 Rn is a �nitary Kripke sequentiality relation.Proof: Directed completeness follows from the fact that each w is �nite and N? is 
at. To seeKripke monotonicity, suppose w = [s1; : : : ; sm], v = [s1; : : : ; sm+k ], ' : v C�! w, and g 2 Rwn ; wewant to show that ('; g) 2 Rvn. Let s = (s1 ! : : : ! sm ! nat) and s0 = (s1 ! : : : ! sm+k !nat). By de�nition, g = (ew; uncurrym([[; `Mj : s]])) for some Mj . Then note that('; g) = (ev ; uncurrym+k([[; ` (�x : s1: : : :�xm+k : sm+k : Mj x1 : : : xm) : s0]]))and hence ('; g) 2 Rvn as desired. Thus, Rn is a Kripke relation.To show that it is a sequentiality relation it su�ces, by Proposition 6, to show that each ofthe base constants is invariant. We prove one of the closure conditions and leave the others to thereader. Suppose g 2 Rwn where w = [s1; : : : ; sm]. Then g = (ew; uncurrym([[; ` Mj : s]])) wheres = (s1 ! : : :! sm ! nat). But(�i 2 w: succ(g i)) = (ew ; (uncurrym([[; ` (�x1 : s1: : : :�xm : sm: succ (Mj x1 : : :xm)) : s]])))and hence (�i 2 w: succ(g i)) 2 Rwn as required.The proof of the following is an adaptation of the proof of the characterization of �-de�nabilityin (Jung and Tiuryn, 1993).Lemma 12 If f =  ns (f), then there is a closed expression M such that f = [[M ]].Proof: We prove the following claim by induction on the type t:12



Suppose w = [Dns1 ; : : : ; Dnsm] and g 2 [w ! j[[t]]j] is such that g = (g; nt ). Theng 2 [[t]](Rn)w i� there is a closed expression M such that g = (ew; uncurrym([[M ]])).Choosing t = s and w = [ ], we know� By the concreteness condition and Lemma 11, (�d 2 [ ]: f ) 2 [[t]](R)w, and� (�d 2 [ ]: f) = (�d 2 [ ]:  ns (f)) = ((�d 2 [ ]: f); ns ),and thus the claim will establish the lemma.The basis when t = nat holds by the de�nition of Rwn , so consider the induction case wheret = (t0 ! t1). To prove ()), suppose g = (g; nt ) and g 2 [[t]](Rn)w, where w = [Dns1 ; : : : ; Dnsm ].Let v = [Dns1 ; : : : ; Dnsm ; Dnt0], ' : v ! w be the projection, andh = (ev; uncurrym+1([[�x1 : s1: : : :�xm : sm: �x : t0: x]])):Notice that h = (h; nt0) since, for d 2 Dnt0,  nt0(d) = d. Thus, by induction h 2 [[t0]](Rn)v . Thensince g 2 [[t]](R)w, it follows thatg0 = (�x 2 v: (g (' x)) (h x)) 2 [[t1]](Rn)v:Moreover, since g = (g; nt ), it is easy to see that g0 = (g0; nt1). Hence, by induction, there is an Msuch that g0 = (ev; uncurrym+1([[M ]])). LetQ = �x1 : s1: : : :�xm : sm: �x : t0: (M x1 : : :xm (Pnt0 x)):Then for any hd1; : : : ; dmi 2 w and d 2 j[[t0]]j,(ew; uncurrym([[Q]])) hd1; : : : ; dmi d = g0 
d1; : : : ; dm; ( nt0 d)�= g hd1; : : : ; dmi ( nt0 d)= g hd1; : : : ; dmi dsince g = (g; nt ), so g = (ew ; uncurrym([[Q]])) as desired.For the (() direction, suppose g = (g; nt ) and there is anM such that g = (ew; uncurrym([[M ]]));we want to show g 2 [[t]](Rn)w. So suppose v = [Dns1 ; : : : ; Dnsm+k ], ' : v ! w is the projection,and h 2 [[t0]](Rn)v . It follows that (h; nt0) 2 [[t0]](Rn)v since, by the uniformity condition Rn isinvariant under  nt0 . Then, since (h; nt0) = (h; nt0); nt0, by induction there is a closed term N suchthat (h; nt0) = (ev; uncurrym+k([[N ]])). LetP = �x1 : s1: : : :�xm+k : sm+k : (M x1 : : :xm) (N x1 : : :xm+k):Therefore, for any hd1; : : : ; dm+ki 2 v,(ev; uncurrym+k([[P ]])) hd1; : : : ; dm+ki= (uncurrym([[M ]]) (ew hd1; : : : ; dmi)) (uncurrym+k([[N ]]) (ev hd1; : : : ; dm+ki))= (g (' hd1; : : : ; dm+ki)) ((h; nt0) hd1; : : : ; dm+ki)= (g (' hd1; : : : ; dm+ki)) ( nt0 (h hd1; : : : ; dm+ki))= (g (' hd1; : : : ; dm+ki)) (h hd1; : : : ; dm+ki)where the last line follows from the fact that g = (g; nt ). By induction, (�x 2 v: (g (' x)) (h x)) 2[[t1]](Rn)v, and hence g 2 [[t]](Rn)w. 13



We now have enough facts to establish the basic connections between the model and the lan-guage. We �rst de�ne the observational approximation relation � as follows.De�nition 13 1. C[�] is a �t-context if ; ` C[M ] : nat, whenever � `M : t.2. M ��t N if � `M : t, � ` N : t, and for all �t-contexts C[�], [[� ` C[M ] : nat]] v [[� ` C[N ] :nat]].Here we have used the denotational semantics to determine \observable approximation." Theadequacy of this model for the usual operational semantics can be shown using the standard com-putability method (cf. (Plotkin, 1977)). The proof of full abstraction follows from Lemma 10,Lemma 12, and continuity.Theorem 14 (Full Abstraction) M ��t N i� [[� `M : t]] v [[� ` N : t]].5 ConclusionIn this paper we have given a characterization of the (unique by (Milner, 1977)) inequationallyfully abstract model of PCF. The results of this paper owe much to (Jung and Tiuryn, 1993)and (Sieber, 1992), and we make no claim of great originality. It is clearly interesting, however,that such a full abstraction result is possible using logical relations. We were led to the connectionbetween the two works by our own work on translating PCF into a language with parametricpolymorphism (O'Hearn and Riecke, 1994) (hence the connection to �-de�nability and Jung andTiuryn's work). We view our results as strengthening, and providing further justi�cation for, theresearch program begun in (Sieber, 1992).One crucial question remains: is the model based on Kripke relations actually di�erent thanSieber's �nitary relation model? All equivalences that we know of that are treated incorrectlyby the continuous model are in fact treated correctly by the model based on �xed-arity �nitaryrelations. This situation is rather like (Plotkin, 1980), where binary relations characterize �-de�nability in the full type hierarchy over an in�nite ground set up to type-level two, and Kripkerelations characterize de�nability at all types, but there remains the nagging question of whetherbinary or �nitary relations already su�ce for de�nability (the example of (Statman, 1985) is notfor the full type hierarchy). We know here that Kripke relations su�ce for technical purposes butnot whether they are necessary, i.e., whether the simpler �xed-arity relations of Sieber su�ce forfull abstraction.One may wonder, with all the previous constructions of models of PCF, whether this construc-tion constitutes a solution to the \full abstraction problem". It has been remarked on a numberof occasions (Abramsky et al., 1994; Berry et al., 1985; Jung and Stoughton, 1993) that there isno universal agreement on the requirements for a \solution." At the very least, one would like aconstruction that does not depend on the syntax or operational semantics of PCF. Although thesyntax of PCF was used in the proof of full abstraction, the semantic category in which the modellives was de�ned without recourse to the type structure of PCF or to operational semantics, and sowe feel that the construction satis�es this �rst criterion. A second criterion, argued in (Abramskyet al., 1994), is that the construction should exist in a cartesian closed category, so that in partic-ular the function type is explained using an exponential construction. Our presentation also meetsthis criterion. In fact, it would also have been possible to use Kripke relations to characterize those14



elements in the continuous function model that are lubs of de�nables, and then use the techniquesof (Jung and Stoughton, 1993) to collapse to the fully abstract model. It is not clear at presentwhether our method could yield more useful information about PCF than this collapsing, thoughwe agree that it is desirable to present the model in terms of a cartesian closed category.Jung and Stoughton (1993) propose a third criterion: a solution should yield an e�ective presen-tation of �nitary PCF, i.e., PCF with just the boolean type. By \e�ective presentation" is meant,roughly, a procedure that prints out, for each type, a table of graphs of PCF-de�nable functions,and which indicates when the table for a type is complete. In other words, such a solution wouldguarantee that given the graph of a function in �nitary PCF, one could tell whether it was in themodel or not. Our model is not a solution in this sense, due to the complexity of the logical rela-tions; if, for instance, Sieber's more tame relations determined the fully abstract model, there wouldbe an e�ective presentation. Of course, there may be no solution meeting this third criterion. (Theundecidability result of (Loader, 1994), for �-de�nability in the full type hierarchy over a �nite basetype, is interesting but apparently not immediately relevant to the PCF de�nability problem.)The results of this paper were obtained subsequent to the full abstraction results reported byAbramsky, Jagadeesan and Malacaria (Abramsky et al., 1994; Abramsky et al., 1993) and Hylandand Ong (Hyland and Ong, 1993) using games semantics. The games semantics approaches thefull abstraction problem for PCF by �rst providing an intensional model, which is then quotientedto achieve extensionality. In contrast, here and in (Sieber, 1992) the starting point is manifestlyextensional, and logical relations are used to impose stringent conditions on function types. Thegames semantics does a better job of explaining the \temporal" or \process" aspect of sequential-ity, and in particular the structure in the intensional games semantics is already interesting andinformative, prior to quotienting, and independent of questions of full abstraction.Our construction probably does not o�er a de�nitive account of sequential functional computa-tion, even though Sieber's sequentiality relations, along with our variation on them, clearly exhibitsome semantic aspects of sequentiality. For instance, the fully abstract models for sequential PCFand parallel PCF (with \parallel or") coexist in our category SR. We have seen that SR con-tains the fully abstract model of PCF, but it also contains the continuous function model (Plotkin,1977; Scott, 1993): for this, we would simply de�ne each [[nat]]R to be the evident everywhere-trueKripke relation on N?, that is, where ([[nat]]R)w = [w ! N?]. Nevertheless, we feel that thelogical relation approach still has clear interest when it comes to principles for reasoning about se-quential functions. As was remarked above, logical-relation reasoning handles many examples quitesmoothly, and allows for an e�ective presentation of �nitary PCF up to type-level two. This is il-lustrated well by Stoughton's implementation of an algorithm for de�nability problems (Stoughton,1994), and its use on the subtle examples of (Curien, 1986).Another closely related work is that of Cartwright, Curien, and Felleisen, where a fully abstractmodel is presented for SPCF, a \sequential" extension of PCF that includes errors and a versionof the \catch" construct (Cartwright et al., 1994). While this result is not for PCF itself, themodel, which turns out to be a version of sequential algorithms (Berry and Curien, 1982), is quitesatisfactory. In particular, the preservation conditions for \manifestly sequential functions" are ofsu�cient quality to yield an e�ective presentation of a �nitary version of SPCF (Felleisen, personalcommunication, February 1994). The possibility of �nding something similar for PCF is one reasonwhy further developments along the lines of, e.g., (Bucciarelli and Erhardt, 1991; Brookes andGeva, 1994) continue to hold interest. 15
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