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ELLIPTIC COMPLEXES AND GENERALIZED POINCARÉ

INEQUALITIES

DEREK GUSTAFSON

Abstract. We study first order differential operators P = P(D) with con-
stant coefficients. The main question is under what conditions a generalized

Poincaré inequality holds

‖D(f − f0)‖
Lp ≤ C ‖Pf‖

Lp , for some f0 ∈ kerP.

We show that the constant rank condition is sufficient, Theorem 3.5. The
concept of the Moore-Penrose generalized inverse of a matrix comes into play.

1. Elliptic Complexes

Let U, V, and W be finite dimensional inner product spaces, whose inner products
are denoted by 〈 , 〉

U
, 〈 , 〉

V
, and 〈 , 〉

W
respectively, or just 〈 , 〉 when the space is

clear. Let P and Q be the first order differential operators with constant coefficients

P =

n∑

i=1

Ai
∂

∂xi
, Q =

n∑

i=1

Bi
∂

∂xi
,

where the Ai are linear operators from U to V and the Bi are linear operators from
V to W. We will use

P(ξ) =

n∑

i=1

ξiAi, and Q(ξ) =

n∑

i=1

ξiBi

to denote the symbols of P and Q, respectively. We denote by D′(Rn,V) the space
of distributions valued in V. We define a short elliptic complex of order 1 over Rn

to be

D′(Rn,U)
P

−−−−→ D′(Rn,V)
Q

−−−−→ D′(Rn,W)

such that the symbol complex

U
P(ξ)

−−−−→ V
Q(ξ)

−−−−→ W

is exact for all ξ 6= 0 ∈ Rn.
There are two classical structures that fit into this framework and provide our

motivation for studying elliptic complexes in general.

Example 1.1. For l = 0, . . . , n, let Λl = Λl(Rn) be the space of l-covectors on Rn,
that is the vector space with basis elements dxi1 ∧ · · · ∧ dxil

, 1 ≤ i1 < · · · < il ≤ n,
where all choices of subsets of {x1, . . . , xn} of cardinality l are used. By convention,
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Λ0 = R with basis element 1. Then we have the Grassmann Algebra Λ = Λ(Rn) =⊕
Λl(Rn); that is, the space of covectors on Rn. The relevant elliptic complex is

D′(Rn,Λ)
d

−−−−→ D′(Rn,Λ)
d

−−−−→ D′(Rn,Λ),

where d is exterior differentiation which is defined by

d (fdxi1 ∧ · · · ∧ dxil
) = df ∧ dxi1 ∧ · · · ∧ dxil

=
n∑

j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxil

on the basis elements and extended by linearity to Λ.

Example 1.2. The other classical example, which has led to the recent use of
elliptic complexes in the study of PDE’s is

D′(Rn,R)
∇

−−−−→ D′(Rn,Rn)
curl

−−−−→ D′(Rn,Rn×n
skew).

Here R
n×n
skew is the space of n by n skew symmetric matrices and curl is the rotation

operator given by

curl (f1, . . . , fn) =

[
∂fi

∂xj
−
∂fj

∂xi

]

i,j

.

From an elliptic complex, we form the adjoint complex

D′(Rn,W)
Q∗

−−−−→ D′(Rn,V)
P∗

−−−−→ D′(Rn,U).

Here P∗ is the formal adjoint defined by
∫

Rn

〈P∗f, g〉
U

=

∫

Rn

〈f,Pg〉
V

for f ∈ C∞
0 (Rn,V) and g ∈ C∞

0 (Rn,U). So, we have

(1.1) P∗ = −

n∑

i=1

A∗
i

∂

∂xi
,

and similarly for Q∗. Here, we have identified U∗, V∗, and W∗ with U, V and
W, respectively, by use of their inner products. Note that the adjoint complex is
elliptic if and only if the original complex is.

From this, we define an associated second order Laplace-Beltrami Operator by

△ = △V = −PP∗ −Q∗Q : D′(Rn,V) → D′(Rn,V),

with symbol denoted by △(ξ) : V → V. Linear Algebra shows that for every

v ∈ V, 〈−△(ξ)v, v〉 = |P∗(ξ)v|2 + |Q(ξ)v|2 ≥ 0. That equality only occurs when
ξ = 0 follows from the definition of an elliptic complex. Thus, the linear operator
△(ξ) : V → V is invertible for ξ 6= 0. We also have that as a function in ξ, △(ξ) is
homogeneous of degree 2. So, letting

c = max
|ξ|=1

∥∥△−1(ξ) : V → V
∥∥ ,

we get the estimate ∥∥△−1(ξ)
∥∥ ≤ c |ξ|−2

.

So, solving the Poisson Equation

△ϕ = F
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with F ∈ C∞
0 (Rn,V), we find the second derivatives of ϕ by noting that

∂̂2ϕ

∂xi∂xj
(ξ) = ξiξj△

−1(ξ)F̂ (ξ).

Since ξiξj△
−1(ξ) : V → V is bounded, this gives rise to a Calderón-Zygmund

type singular integral operator, RijF = ∂2

∂xi∂xj
ϕ which is bounded on Lp for 1 <

p < ∞. We will refer to these as the second order Riesz type transforms, due
to the similarities with the classical Riesz transforms. A detailed discussion of
Calderón-Zygmund singular integral operators and, in particular, the classical Riesz
transforms can be found in [5].

We will use

W k,p(Rn) =




f :
∑

|α|≤k

∥∥∥∥
∂|α|

∂xα
f

∥∥∥∥
p

<∞






to denote the classical Sobolev spaces, and

Lk,p(Rn) =




f : ‖f‖k,p =
∑

|α|=k

∥∥∥∥
∂|α|

∂xα
f

∥∥∥∥
p

<∞




 ⊂W
k,p
loc (Rn)

to denote the space of distributions with all kth order derivatives in Lp(Rn). Note
that we can approximate a Lk,p(Rn) function by W k,p(Rn) functions. This is
accomplished by taking f ∈ Lk,p(Rn) and multiplying by ψn ∈ C∞

0 (Rn) where
0 ≤ ψn ≤ 1, ψn = 1 on the ball about 0 of radius n, and has its support contained
in the ball about 0 of radius 2n. As n goes to infinity, fψn converges to f in the
Lk,p norm. So, in this notation, the Poisson Equation

△ϕ = F

with F ∈ Lp(Rn) is solvable for ϕ ∈ L2,p(Rn). Also, since C∞
0 (Rn,V) is dense in

L1,p(Rn,V) and P∗ and Q are continuous under the L1,p seminorm, we can extend
them by continuity to all of L1,p(Rn,V). Similarly, P and Q∗ can be defined on
L1,p(Rn,U) and L1,p(Rn,W), respectively.

We refer the reader to [2], [4], [6], and [7] for further reading on elliptic com-
plexes.

2. Main Question

We begin by recalling the classical Poincaré Inequality

Theorem 2.1. For each f ∈ D′(Rn) such that ∇f ∈ Lp(Rn)and each ball B ⊂ Rn,

there exists a constant fB such that
∫

B

|f − fB|
p
≤ C

∫

B

|∇f |
p
.

We view fB as an element in D′(Rn) with ∇fB = 0.

This leads to our main question:

Question 2.2. For what partial differential operators P of order k is it true that

for every f ∈ D′(Rn,U) such that Pf ∈ Lp(Rn,V), there exists f0 ∈ D′(Rn,U)
such that Pf0 = 0 and

(2.1) ‖f − f0‖k,p ≤ C ‖Pf‖p?
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Notice that with the change from ∇ to P we also had to change some other
details. First, there is no need for the ball that appears in the classical theorem,
our methods have been able to achieve global estimates. But, our estimates are on
the kth order partial derivatives of f , not f itself. The local Lp estimates of f − f0
will follow from Equation 2.1 by the usual Poincaré inequality. We will confine our
investigations to the case k = 1.

We present two theorems as partial answers to this question. The first is already
known, see [4] for example,and uses the methods of elliptic complexes to attack
the problem. The second theorem takes a more direct approach which allows for a
more general result.

Theorem 2.3. Let 1 < p <∞, and let

D′(Rn,X)
R

−−−−→ D′(Rn,U)
P

−−−−→ D′(Rn,V)
Q

−−−−→ D′(Rn,W)

be an elliptic complex of order 1, and let f ∈ D′(Rn,U) such that Pf ∈ Lp(Rn,V).
Then there exists f0 ∈ D′(Rn,U) ∩ kerP with

‖f − f0‖1,p ≤ C ‖Pf‖p .

Proof. Here we shall need not only the Laplace-Beltrami Operator for functions
valued in V, but also the Laplace-Beltrami Operator for functions valued in U,
△U = RR∗ + P∗P . There exists ϕ ∈ D′(Rn,U) such that △Uϕ = f . Note that
because of the exactness of the elliptic complex, we have the identity

△VPϕ = PP∗Pϕ+ Q∗QPϕ = PP∗Pϕ+ PRR∗ϕ = P△Uϕ = Pf.

Let f0 = f−P∗Pϕ. Now it simply remains to verify that f0 satisfies the conclusions
of the theorem. First,

Pf0 = Pf − PP∗Pϕ = Pf − PP∗Pϕ− PQQ∗ϕ = Pf − P△Uϕ = 0.

Also,

∑

i

∥∥∥∥
∂

∂xi
(f − f0)

∥∥∥∥
p

=
∑

i

∥∥∥∥
∂

∂xi
P∗Pϕ

∥∥∥∥
p

≤
∑

i,j

∥∥∥∥A
∗
j

∂2

∂xi∂xj
Pϕ

∥∥∥∥
p

≤
∑

i,j

∥∥A∗
jRijPf

∥∥
p
≤
∑

i,j

∥∥A∗
j

∥∥Ci,j ‖Pf‖p

≤ C ‖Pf‖p .

�

3. Generalized Inverses

Before we are able to present the second theorem, we need to look at the theory
of generalized inverses.

Proposition 3.1. For A ∈ Hom(U,V), there exists a unique A† ∈ Hom(V,U),
called the Moore-Penrose generalized inverse,with the following properties:

(1) AA†A = A : U → V,

(2) A†AA† = A† : V → U,

(3) (AA†)∗ = AA† : V → V,

(4) (A†A)∗ = A†A : U → U.

The linear map A† has properties similar to inverse matrices that make it valuable
as a tool.
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Proposition 3.2. For λ 6= 0, (λA)† = λ−1A†.

Proposition 3.3. For a continuous matrix valued function P = P (ξ), the function

P † = P †(ξ) is continuous at ξ if and only if there is a neighborhood of ξ on which

P has constant rank.

Proposition 3.4. AA† is the orthogonal projection onto the image of A. A†A is

the orthogonal projection onto the orthogonal complement of the kernel of A.

For a more detailed discussion of generalized inverses and the proofs of these
results, consult [1] and the references cited there. Generalized Inverses are the
additional tools we need for the following theorem.

Theorem 3.5. Let P : D′(Rn,U) → D′(Rn,V) be a differential operator of order

1 with constant coefficients and symbol P(ξ) which is of constant rank for ξ 6= 0,
and let f ∈ D′(Rn,U) such that Pf ∈ Lp(Rn,V), 1 < p < ∞. Then there exists

f0 ∈ D′(Rn,U) such that Pf0 = 0 and

‖f − f0‖1,p ≤ C ‖Pf‖p .

Note that this is the same constant rank condition investigated in [3] in relation
to quasiconvexity of variational integrals.

Proof. From the symbol P(ξ) : U → V, we have its generalized inverse P†(ξ) :
V → U. We use this to define a pseudodifferential operator Rj , which we will
refer to as the first order Riesz type transforms. For h ∈ C∞

0 (Rn,V), we define

Rjh(x) = (2π)−n/2
∫
ieix·ξξjP

†(iξ)ĥ(ξ)dξ. Note that since P(ξ) is homogeneous of
degree 1, we get that for λ 6= 0

(λξj)P
†(iλξ) = λξj (λP(iξ))

†
= ξjP(iξ).

So, ξjP
†(iξ) is homogeneous of degree 0. Since P(ξ) has constant rank away from

the origin, P†(iξ) is continuous on |ξ| = 1. Thus, ξjP
†(iξ) is continuous and homo-

geneous of order 0, which makes it bounded. Therefore, Rj extends continuously to
an operator from Lp(Rn,V) to Lp(Rn,U). Recalling the definition of the operator
P =

∑
j Aj

∂
∂xj

, we note that

∑

j

AjRjh = (2π)−n/2

∫
eix·ξP(iξ)P†(iξ)ĥ(ξ)dξ.

We also note that P(iξ)P†(iξ) is the orthogonal projection onto the image of P(iξ).
In particular this means that if h = Pg, then

∑
j AjRjh = h, and since this is

defined by a Calderón-Zygmund singular integral operator this extends to all of
Lp(Rn,V).

The reader may wish to notice that

∂

∂xj
Rkh =

∂

∂xk
Rjh.

Therefore, there exists a distribution f0 such that ∂
∂xj

f0 = ∂
∂xj

f − RjPf , for

j = 1, . . . , n. Then, we have

Pf0 = Pf −
∑

j

AjRjPf = Pf − Pf = 0.
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And,

‖f − f0‖1,p ≤
∑

j

‖RjPf‖p ≤ C ‖Pf‖p ,

where the constant depends on the norms of the Riesz type transforms. �

4. Sufficiency of Generalized Inverses

At this point we have proved Theorem 2.3 and Theorem 3.5 in an attempt to
answer our question about when a generalized Poincaré inequality is true. What
is unclear is if these two results are related in any way. Before we can answer this
question, we will need the following lemma. It should be noted that although it is
elementary in nature, we were unable to find it in the literature.

Lemma 4.1. Let U and V be finite dimensional innerproduct spaces. Let r :
Hom(U,V) → N0 be the function that takes a matrix to its rank. If Hom(U,V) is

given the operator norm, then r is lower semicontinuous.

Proof. Since r only takes values in the nonnegative integers, it is enough to show
that for each natural number t, the set {r(A) ≤ t − 1} is closed. Let u1, . . . , ul

be an orthonormal basis for U. Let Ω be the collection of ordered t-tuples ω =
(i1, . . . , it) where 1 ≤ i1 < · · · < it ≤ l. For each ω ∈ Ω, we define a function
Φω : Hom(U,V) × St−1 → V by

Φω(A,m) =

t∑

ν=1

mνAuiν
,

(
t∑

ν=1

m2
ν = 1

)

where m = (m1, . . . ,mt) ∈ St−1. Consider Φ−1
ω (0). This is a closed set in

Hom(U,V) × St−1. Denote the projection of this set onto Hom(U,V) by Zω. Note
that Zω is closed since St−1 is compact. Now, let

Z =
⋂

ω∈Ω

Zω.

Note that Z is a closed set. Also, Z is precisely the collection of matrices of rank
less than t. �

Since this next result is true for a broader class of elliptic complexes than what
we have previously defined, we will take a moment for definitions so that we may
state our result in this broader sense. For differential operators

P =
∑

|α|≤m

Aα(x)Dα

and
Q =

∑

|α|≤m

Bα(x)Dα

of order m with variable coefficients, then

D′(Rn,U)
P

−−−−→ D′(Rn,V)
Q

−−−−→ D′(Rn,W)

is an elliptic complex of order m if QP = 0 and the symbol complex

U
Pm(x,ξ)
−−−−−→ V

Qm(x,ξ)
−−−−−→ W

is exact for every x and every ξ 6= 0. Here, Pm denotes the principle symbol of P ,
that is

∑
|α|=mAα(x)ξα, and similarly for Qm.
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Theorem 4.2. A sequence

D′(Rn,U)
P

−−−−→ D′(Rn,V)
Q

−−−−→ D′(Rn,W)

with continuous coefficients is an elliptic complex if and only if all of the following

hold:

(i) QP = 0.
(ii) The sequence

U
Pm(y,ζ)
−−−−−→ V

Qm(y,ζ)
−−−−−→ W

is exact for some y and some ζ 6= 0.
(iii) For each multi-index γ of length 2m,

∑

α+β=γ,
|α|=|β|=m

Bβ(x)Aα(x) = 0

as operators from U to V.

(iv) The matrix Pm(x, ξ) has constant rank for all x and all ξ 6= 0.
(v) The matrix Qm(x, ξ) has constant rank for all x and all ξ 6= 0.

Proof. We will begin by showing that an elliptic complex has the stated properties.
(i) and (ii) follow trivially from the definition. Note that

Qm(x, ξ)Pm(x, ξ) =
∑

|β|=m

∑

|α|=m

Bβ(x)ξβAα(x)ξα(4.1)

=
∑

|γ|=2m

ξγ
∑

α+β=γ
|α|=|β|=m

Bβ(x)Aα(x).

Since this is true as functions of ξ and Qm(x, ξ)Pm(x, ξ) = 0, we get (iii) be
equating coefficients of ξγ . Since the Aα(x) and Bbt(x) are continuous, we get that
Pm and Qm are continuous, so rankPm and rankQm are lower semicontinuous by
Lemma 4.1. By the rank-nullity theorem and the fact that the symbol complex is
exact, we get

(4.2) rankQm(x, ξ) = dim V − NullQm(x, ξ) = dim V − rankPm(x, ξ)

as long as ξ 6= 0. Thus, rankQm is upper semicontinuous since rankPm is lower
semicontinuous away from ξ = 0. Therefore it is continuous. And, since it is valued
in a discrete set, we get (v). Then, (iv) follows by Equation 4.2.

Now, we will assume that properties (i) through (iv) hold and show that the
complex is elliptic. Equation 4.1 and (iii) give us that the composition QmPm is
identically 0, which means that imagePm ⊆ kerQm. Now, consider

rankPm(x, ξ) = rankPm(y, ζ) = NullQm(y, ζ)

= dim V − rankQm(y, ζ) = dim V − rankQm(x, ξ)

= NullQm(x, ξ).

So, as long as ξ 6= 0 so that we have the constant rank necessary for the first and
fourth equality, we have exactness. �
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