
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1997

HPJava: data parallel extensions to Java HPJava: data parallel extensions to Java

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Guansong Zhang
Syracuse University, Northeast Parallel Architectures Center, zgs@npac.syr.edu

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Xinying Li
Syracuse University, Northeast Parallel Architectures Center, xli@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Carpenter, Bryan; Zhang, Guansong; Fox, Geoffrey C.; and Li, Xinying, "HPJava: data parallel extensions to
Java" (1997). Northeast Parallel Architecture Center. 1.
https://surface.syr.edu/npac/1

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/1?utm_source=surface.syr.edu%2Fnpac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

HPJava: data parallel extensions to JavaBryan Carpenter, Guansong Zhang, Geo�rey FoxXinying Li, Yuhong WenNPAC at Syrause UniversitySyrause, NY 13244fdb,zgs,gf,xli,weng�npa.syr.eduDeember 7, 1997AbstratWe outline an extension of Java for programming with distributedarrays. The basi programming style is Single Program Multiple Data(SPMD), but parallel arrays are provided as new language primitives.Further extensions inlude three distributed ontrol onstruts, the mostimportant being a data-parallel loop onstrut. Communiations involv-ing distributed arrays are handled through a standard library of olletiveoperations. Beause the underlying programming model is SPMD pro-gramming, diret alls to MPI or other ommuniation pakages are alsoallowed in an HPJava program.1 IntrodutionThe idea that Java may enable new programming environments, ombining at-trative user interfaes with high performane omputation, is gaining inreas-ing attention amongst omputational sientists. Java boasts a diret simpliityreminisent of Fortran, but also inorporates many of the important ideas ofmodern objet-oriented programming. Of ourse it omes with an establishedtrak-reord in the domains of Web and Internet programming.This artile will fous spei�ally on the potential of Java as a languagefor sienti� parallel programming. We envisage a framework alled HPJava.This would be a general environment for parallel omputation. Ultimately itshould ombine tools, lass libraries, and language extensions to support vari-ous established paradigms for parallel omputation, inluding shared memoryprogramming, expliit message-passing, and array-parallel programming. Otherparadigms (for example, Linda or oarse-grained data-ow) may ome later, to-1

gether with bindings to higher-level libraries and appliation-spei� librariessuh as CHAOS [7℄, SaLAPACK [1℄, Global Arrays [8℄ or DAGH [9℄.This is a large vision, and the urrent artile only disusses some �rst stepstowards a general framework. In partiular we will make spei� proposals forthe setor of HPJava most diretly related to its namesake: High PerformaneFortran. We will be onentrating on array-parallel programming.For now we do not propose to import the full HPF programming model toJava. After several years of e�ort by various ompiler groups, HPF ompilersare still quite immature. It seems diÆult justify a omparable e�ort for Javabefore suess has been onviningly demonstrated in Fortran. In any ase thereare features of the HPF model that make it less attrative in the ontext of theintegrated parallel programming environment we envisage. Although an HPFprogram an interoperate with modules written in other parallel programmingstyles through the HPF extrinsi proedure interfae, that mehanism is quiteawkward. Rather than follow the HPF model diretly, we propose introduingsome of the harateristi ideas of HPF|spei�ally its distributed array modeland array intrinsi funtions and libraries|into a basially SPMD programmingmodel. Beause the programming model is SPMD, diret alls to MPI [2℄ orother ommuniation pakages are allowed from the HPJava program.The language outlined here provides HPF-like distributed arrays as languageprimitives, and new distributed ontrol onstruts to failitate aess to the loalelements of these arrays. In the SPMD mold, the model allows proessors thefreedom to independently exeute omplex proedures on loal elements: it isnot limited by SIMD-style array syntax. All aess to non-loal array elementsmust go through library funtions|typially olletive ommuniation opera-tions. This puts an extra onus on the programmer; but making ommuniationexpliit enourages the programmer to write algorithms that exploit loality,and simpli�es the task of the ompiler writer. On the other hand, by providingdistributed arrays as language primitives we are able to simplify error-pronetasks suh as onverting between loal and global array subsripts and deter-mining whih proessor holds a partiular element. As in HPF, it is possible towrite programs at a natural level of abstration where the meaning is insensitiveto the detailed mapping of elements. Lower-level styles of programming are alsopossible.Our ompiler will be implemented as a translator to ordinary Java withalls to a suitable run-time library. At the time of writing the underlying li-brary is already available [5℄, and the Java interfae needed by the translatoris under development. The translator itself is being implemented in a ompileronstrution framework developed in the PCRC projet [6, 12℄.
2

2 Multidimensional arraysFirst we desribe a modest extension to Java that adds a lass of true multi-dimensional arrays to the standard Java language. The new arrays allow regularsetion subsripting, similar to Fortran 90 arrays. The syntax desribed inthis setion is a subset of the syntax introdued later for parallel arrays andalgorithms: the only motivation for disussing the sequential subset �rst is tosimplify the overall presentation. No attempt is made to integrate the newmultidimensional arrays with the standard Java arrays: they are a new kind ofentity that oexists in the language with ordinary Java arrays. There are goodtehnial reasons for keeping the two kinds of array separate1.The type-signatures and onstrutors of the multidimensional array use dou-ble brakets to distinguish them from ordinary arrays:int [[,℄℄ a = new int [[5, 5℄℄ ;float [[,,℄℄ b = new float [[10, n, 20℄℄ ;int [[℄℄ = new int [[100℄℄ ;a, b and are respetively 2-, 3- and one- dimensional arrays. Of ourse isvery similar in struture to the standard array d, reated byint [℄ d = new int [100℄ ; and d are not idential, though2.Aess to individual elements of a multidimensional array goes through asubsripting operation involving single brakets, for examplefor(int i = 0 ; i < 4 ; i++)a [i, i + 1℄ = i + [i℄ ;For reasons that will beome learer in later setions, this style of subsript-ing is alled loal subsripting. In the urrent sequential ontext, apart fromthe fat that a single pair of brakest may inlude several omma-separatedsubsripts, this kind of subsripting works just like ordinary Java array sub-sripting. Subsripts always start at zero, in the ordinary Java or C style (thereis no Fortran-like lower bound).In general our language has no idea of Fortran-like array assignments. Inint [[,℄℄ e = new int [[n, m℄℄ ;...a = e ;1The run-time representation of our multi-dimensional arrays inludes extra desriptorinformation that would simply enumber the large lass \non-sienti�" Java appliations.2For example, allows setion subsripting, whereas d does not.3

the assignment simply opies a handle to objet referened by e into a. Thereis no element-by-element opy involved. Similarly we introdue no idea of ele-mental arithmeti or elemental funtion appliation. If e and a are arrays, theexpressionse + aMath.os(e)are type errors.Our HPJava does import a Fortran-90-like idea of array regular setions.The syntax for setion subsripting is di�erent to the syntax for loal subsript-ing. Double brakets are used. These brakets an inlude salar subsripts orsubsript triplets.A setion is an objet in its own right|its type is that of a suitable multi-dimensional array. It desribes some subset of the elements of the parent array.This is slightly di�erent to the situation in Fortran, where setions annot usu-ally be aptured as named entities3.int [[℄℄ e = a [[2, 2 :℄℄ ;foo(b [[: , 0, 1 : 10 : 2℄℄) ;e beomes an alias for the 3rd row of elements of a. The proedure foo shouldexpet a two-dimensional array as argument. It an read or write to the set ofelements of b seleted by the setion. As in Fortran, upper or lower bounds anbe omitted in triplets, defaulting to the atual bound of the parent array, andthe stride entry of the triplet is optional. The subsripts of e, like any otherarray, start at 0, although the �rst element is identi�ed with a [2, 2℄.In our language, unlike Fortran, it is not allowed to use vetors of integersas subsripts. The only setions reognized are regular setions de�ned throughsalar and triplet subsripts.The language provides a library of funtions for manipulating its arrays,losely analogous to the array transformational intrinsi funtions of Fortran90:int [[,℄℄ f = new int [[5, 5℄℄ ;HPJlib.shift(f, a, -1, 0, CYCL) ;float g = HPJlib.sum(b) ;int [[℄℄ h = new int [[100℄℄ ;HPJlib.opy(h,) ;The shift operation with shift-mode CYCL exeutes a yli shift on the datain its seond argument, opying the result to its �rst argument|an array of thesame shape. In the example the shift amount is -1, and the shift is performed3Unless a setion appears as an atual argument to a proedure, in whih ase the dummyargument names that setion, or it is the target of a pointer assignment.4

in dimension 0 of the array|the �rst of its two dimensions. The sum operationsimply adds all elements of its argument array. The opy operation opiesthe elements of its seond argument to its �rst|it is something like an arrayassignment. These funtions may have to be overloaded to apply to some �niteset of array types, eg they may be de�ned for arrays with elements of anysuitable Java primitive type, up to some maximum rank of array. Alternativelythe type-hierarhy for arrays an be de�ned in a way that allows these funtionsto be more polymorphi.3 Proess arraysHPJava adds lass libraries and some additional syntax for dealing with dis-tributed arrays. These arrays are viewed as oherent global entities, but theirelements are divided aross a set of ooperating proesses. As a pre-requisiteto introduing distributed arrays we disuss the proess arrays over whih theirelements are sattered.An abstrat base lass Pros has sublasses Pros1, Pros2, . . . , repre-senting one-dimensional proess arrays, two-dimensional proess arrays, and soon.Pros2 p = new Pros2(2, 2) ;Pros1 q = new Pros1(4) ;These delarations set p to represent a 2 by 2 proess array and q to represent a4-element, one-dimensional proess array. In either ase the objet reated de-sribes a group of 4 proesses. At the time the Pros onstrutors are exeutedthe program should be exeuting on four or more proesses. Either onstru-tor selets four proesses from this set and identi�es them as members of theonstruted group4.Pros has a member funtion alled member, returning a boolean value. Thisis true if the loal proess is a member of the group, false otherwise.if(p.member()) {...}The ode inside the if is exeuted only if the loal proess is a member p. Wewill say that inside this onstrut the ative proess group is restrited to p.The multi-dimensional struture of a proess array is reeted in its set ofproess dimensions. An objet is assoiated with eah dimension. These objetsare aessed through the inquiry member dim:4There is no ooperation between the two onstrutor alls for p and q, so an individualphysial proess might our in both groups or in neither. As an option not illustrated here,vetors of ids an be passed to the Pros onstrutors to speify exatly whih proesses areinluded in a partiular group. 5

Dimension x = p.dim(0) ;Dimension y = p.dim(1) ;Dimension z = q.dim(0) ;The objet returned by the dim inquiry has lass Dimension. The membersof this lass inlude the inquiry rd. This returns the oordinate of the loalproess with respet to the proess dimension. The result is only well-de�ned ifthe loal proess is a member of the parent proess array. The inner body odeinif(p.member())if(x.rd() == 0)if(y.rd() == 0) {...}will only exeute on the �rst proess from p, with oordinates (0; 0).4 Distributed arraysSome or all of the dimensions of a multi-dimensional array an be delaredto be distributed ranges. In general a distributed range is represented by anobjet of lass Range. A Range objet de�nes a range of integer subsripts,and de�nes how they are mapped into a proess array dimension. In fat theDimension lass introdued in the previous setion is a sublass of Range. In thisase the integer range is just the range of oordinate values assoiated with thedimension. Eah value in the range is mapped, of ourse, to the proess (or slieof proesses) with that oordinate. This kind of range is also alled a primitiverange. More omplex sublasses of Range implement more elaborate maps frominteger ranges to proess dimensions. Some of these will be introdued in latersetions. For now we onentrate on arrays onstruted with Dimension objetsas their distributed ranges.The syntax of setion 2 is extended in the following way to support dis-tributed arrays� A distributed range objet may appear in plae of an integer extent in the\onstrutor" of the array (the expression following the new keyword).� If a partiular dimension of the array has a distributed range, the orre-sponding slot in the type signature of the array should inlude a # symbol.� In general the onstrutor of the distributed array must be followed by anon lause, speifying the proess group over whih the array is distributed.Distributed ranges of the array must be distributed over distint dimen-sions of this group5.5The on lause an be omitted in some irumstanes|see setion 5.6

Assume p, x and y are delared as in the previous setion, thenfloat [[#,#,℄℄ a = new float [[x, y, 100℄℄ on p ;de�nes a as a 2 by 2 by 100 array of oating point numbers. Beause the�rst two dimensions of the array are distributed ranges|dimensions of p|a isatually realized as four segments of 100 elements, one in eah of the proessesof p. The proess in p with oordinates i, j holds the setion a [[i, j, :℄℄.The distributed array a is equivalent in terms of storage to four loal arraysde�ned byfloat [℄ b = new float [100℄ ;But beause a is delared as a olletive objet we an apply olletive opera-tions to it. The HPJlib funtions introdued in setion 2 apply equally well todistributed arrays, but now they imply inter-proessor ommuniation.float [[#,#,℄℄ a = new float [[x, y, 100℄℄ on p,b = new float [[x, y, 100℄℄ on p ;HPJlib.shift(a, b, -1, 0, CYCL) ;The shift operation auses the loal values of a to be overwritten with valuesof b from a proessor adjaent in the x dimension.There is a ath in this. When subsripting the distributed dimensions of anarray it is simply disallowed to use subsripts that refer to o�-proessor elements.While this:int i = x.rd(), j = y.rd() ;a [i, j, 20℄ = a [i, j, 21℄ ;is allowed, this:int i = x.rd(), j = y.rd() ;a [i, j, 20℄ = b [(i + 1) % 2, j, 20℄ ;is forbidden. The seond example ould apparently be implemented using anearest neighbour ommuniation, quite similar to the shift example above.But our language imposes an strit poliy distinguishing it from most data paral-lel languages: while library funtions may introdue ommuniations, languageprimitives suh as array subsripting never imply ommuniation.If subsripting distributed dimensions is so restrited, why are the i, j sub-sripts on the arrays needed at all? In the examples of this setion these sub-sripts are only allowed one value on eah proessor. Well, the inonvieneof speifying the subsripts will be redued by language onstruts introduedlater, and the fat that only one subsript value is loal is a speial feature ofthe primitive ranges used here. The higher level distributed ranges introduedlater map multiple elements to individual proesses. Subsripting will no longerlook so redundant. 7

5 The on onstrut and the ative proess groupIn the setion 3 the idiomif(p.member()) {...}appeared. Our language provides a short way of writing this onstruton(p) {...}In fat the on onstrut provides some extra value. Informally we said in se-tion 3 that the ative proess group is restrited to p inside the body of thep.member() onditional onstrut. The language inorporates a more formalidea of an ative proess group (APG). At any point of exeution some proessgroup is singled out as the APG. An on(p) onstrut spei�ally hanges thevalue of the APG to p. On exit from the onstrut, the APG is restored to itsvalue on entry.Elevating the ative proess group to a part of the language allows somesimpli�ations. For example, it provides a natural default for the on lausein array onstrutors. More importantly, formally de�ning the ative proessgroup simpli�es the statement of various rules about what operations are legalinside distributed ontrol onstruts like on.6 Higher-level ranges and loationsThe lass BlokRange is a sublass of Range whih desribes a simple blok-distributed range of subsripts. Like BLOCK distribution format in HPF, it mapsbloks of ontiguous subsripts to eah element of its target proess dimension6.The onstrutor of BlokRange usually takes two arguments: the extent of therange and a Dimension objet de�ning the proess dimension over whih thenew range is distributed.Pros2 p = new Pros2(3, 2) ;Range x = new BlokRange(100, p.dim(0)) ;Range y = new BlokRange(200, p.dim(1)) ;float [[#,#℄℄ a = new float [[x, y℄℄ on p ;a is reated as a 100 � 200 array, blok-distributed over the 6 proesses in p.The fragment is essentially equivalent to the HPF delarations6Other higher-level ranges inlude CyliRange, whih produes the equivalent of CYCLICdistribution format in HPF. 8

. . .

Global subscripts0 1 2 3

Locations

. N-1Figure 1: A range regarded as a set of loations, or slots.!HPF$ PROCESSORS p(3, 2)REAL a(100, 200)!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO pSubsripting distributed arrays with non-primitive ranges introdues some newproblems. An array aess suh asa [17, 23℄ = 13 ;is perfetly legal if the loal proess holds the element in question. But de-terimining whether an element is loal is no longer so easy. When arrays hadonly primitive distributed ranges, it was straightforward to hek that aesseswere loal|the subsript simply had to be equal to the loal oordinate. Withhigher-level ranges, that simple ondition no longer holds.In pratise it is unusual to use integer values diretly as loal subsripts indistributed array dimensions. Instead the idea of a loation is introdued. Aloation an be viewed as an abstrat element, or \slot", of a distributed range.Conversely, a range an be thought of as a set of loations. This model of arange is visualized in �gure 1. An individual loation is desribed by an objetof the lass Loation. Eah Loation element is mapped to a partiular slieof a proess grid. In general two loations are idential only if they ome fromthe same position in the same range. A subsripting syntax is used to representloation n in range x:Loation i = x [n℄This is an important idea in HPJava. By working in terms of abstratloations|elements of distributed ranges|one an usually respet loality ofreferene without resorting expliitly to low-level loal subsripts and proessids. In fat the loation an be viewed as an abstrat data type inorporatingthese lower-level o�sets.Publially aessible �elds of Loation inlude dim and rd. The �rst isthe proess dimension of the parent range. The seond is oordinate in thatdimension to whih the element is mapped. So the aess to element a [17,23℄ ould now be guarded by onditionals as follows:Loation i = x [17℄, j = y [23℄ ;if(i.rd == i.dim.rd()) 9

if(j.rd == j.dim.rd())a [17, 23℄ = 13 ;This is still quite verbose and error-prone. The language provides a seonddistributed ontrol onstrut (analogous to on) to deal with this ommon situa-tion. The new onstrut is alled at, and takes a loation as its argument. Thefragment above an be replaed withLoation i = x [17℄, j = y [23℄ ;at(i)at(j)a [17, 23℄ = 13 ;This is more onise, but still involves some redundany beause the subsripts17 and 23 appear twie. A natural extension is to allow loations to be useddiretly as array subsripts:Loation i = x [17℄, j = y [23℄ ;at(i)at(j)a [i, j℄ = 13 ;Loations used as array subsripts must be elements of the orresponding rangesof the array.The range lass has a member funtionint Range.idx(Loation i)whih an be used to reover the integer subsript, given a loation in the range.There is a restrition that an at(i) onstrut should only appear at a pointof exeution where i.dim is a dimension of the ative proess group. In the ex-amples of this setion this means that an at(i) onstrut, say, should normallybe nested diretly or indiretly inside an on(p) onstrut.7 Distributed loopsGood parallel algorithms don't usually expend many lines of ode assigning toisolated elements of distributed arrays. The atmehanism of the previous setionis often useful, but a more pressing need is a mehanism for parallel aess todistributed array elements. The last and most important distributed ontrolonstrut in the language is alled over. It implements a distributed parallelloop. Coneptually it is quite similar to the FORALL onstrut of Fortran, exeptthat the over onstrut spei�es exatly where its parallel iterations are to beperformed. The argument of over is a member of the speial lass Index. Thelass Index is a sublass of Loation, so it is syntatially orret to use anindex as an array subsript7. Here is an example of a pair of nested over loops:7But the e�et of suh subsripting is only well-de�ned inside an over onstrutparametrised by the index in question. 10

float [[#,#℄℄ a = new float [[x, y℄℄,b = new float [[x, y℄℄ ;...Index i, j ;over(i = x | :)over(j = y | :)a [i, j℄ = 2 * b [i, j℄ ;The body of an over onstrut exeutes, oneptually in parallel, for everyloation in the range of its index (or some subrange if a non-trivial triplet isspei�ed)8. An individual \iteration" exeutes on just those proessors holdingthe loation assoiated with the iteration. In a partiular iteration, the loationomponent of the index (the base lass objet) is equal to that loation. The nete�et of the example above should be reasonably lear. It assigns twie the valueof eah element of b to the orresponding element of a. Beause of the rulesabout where an individual iteration iterates, the body of an over an usually onlyombine elements of arrays that have some simple alignment relation relative toone another. The idx member of range an be used in parallel updates to giveexpressions that depend on global index values.With the over onstrut we an give some useful examples of parallel pro-grams. Figure 2 is the famous Jaobi iteration for a two dimensionsionalLaplae equation. We have used yli shift to implement nearest neighbourommuniations9.Copying whole arrays into temporaries is not an eÆient way of aessingnearest neighbours in an array. Beause this is suh a ommon pattern ofommuniation, the standard library supports ghost regions. Distributed arraysan be reated in suh a way that the segment stored loally is extended withsome halo. This halo ahes values stored in the segments of adjaent proesses.The ahed values are expliitly bought up to date by the library operationwriteHalo.An optimized version of the Jaobi program is give in �gure 3. This versiononly involves a singe array temporary. A new onstrutor for BlokRange isprovided. This allows the width of the ghost extensions to be spei�ed. Thearguments of writeHalo itself are an array with suitable extensions and two ve-tors. The �rst de�nes in eah dimension the width of the halo that must atuallybe updated, and the seond de�nes the treatment at the ends of the range|inthis ase the ghost edges are updated with yli wraparound. The new on-strutor and new writeHalo funtion are simply standard library extensions.One new piee of syntax is needed: the addition and subtration operators are8Formally | is being used here as an operator that ombines a range and a triplet to returnan objet of the iterator lass Index.9Laplae's equation with yli boundary onditions is not partiularly useful, but it illus-trates the language features. More interesting boundary onditions an easily be inorporatedlater. Inidentally, this is a suitable plae to mention that the array arguments of shift mustbe aligned arrays|they must have idential distributed ranges.11

Pros2 p = new Pros2(2, 2) ;on(p) {Range x = new BlokRange(100, p.dim(0)) ;Range y = new BlokRange(200, p.dim(1)) ;float [[#,#℄℄ u = new float [[x, y℄℄ ;// ... some ode to initialise `u'float [[#,#℄℄ unx = new float [[x, y℄℄, upx = new float [[x, y℄℄,uny = new float [[x, y℄℄, upy = new float [[x, y℄℄ ;HPJlib.shift(unx, u, 1, 0, CYCL) ;HPJlib.shift(upx, u, -1, 0, CYCL) ;HPJlib.shift(uny, u, 1, 1, CYCL) ;HPJlib.shift(upy, u, -1, 1, CYCL) ;Index i, j ;over(i = x | :)over(j = y | :)u [i, j℄ = 0.25 * (unx [i, j℄ + upx [i, j℄ +uny [i, j℄ + upy [i, j℄) ;} Figure 2: Jaobi iteration using shift.
12

Pros2 p(2, 2) ;on(p) {Range x = new BlokRange(100, p.dim(0), 1) ; // ghost width 1Range y = new BlokRange(200, p.dim(1), 1) ; // ghost width 1float [[#,#℄℄ u = new float [[x, y℄℄ ;// ... some ode to initialise `u'int [℄ widths = {1, 1} ; // Widths atually updatedMode [℄ modes = {CYCL, CYCL} ; // Wraparound at ends.HPJlib.writeHalo(u, widths, modes) ;float [[#,#℄℄ v = new float [[x, y℄℄ ;Index i, j ;over(i = x | :)over(j = y | :)v [i, j℄ = 0.25 * (u [i + 1, j℄ + u [i - 1, j℄ +u [i, j + 1℄ + u [i, j + 1℄) ;HPJlib.opy(u, v) ;} Figure 3: Jaobi iteration using writeHalo.overloaded so that integer o�sets an be added or subtrated to Loation ob-jets, yielding new, shifted, loations. The usual aess rules apply|this kindof shifted aess is illegal if it implies aess to o�-proessor data. It only worksif the subsripted array has suitable ghost extensions.8 Other featuresWe have already desribed most of the important language features we proposeto implement. Two additional features that are quite important in pratie buthave not been disussed are subranges and subgroups. A subrange is simply arange whih is a regular setion of some other range, reated by syntax likex [0 : 49℄. Subranges are reated taitly when a distributed array is sub-sripted with a triplet, and they an also be used diretly to reate distributedarrays with general HPF-like alignments. A subgroup is some slie of a proessarray, formed by restriting proess oordinates in one or more dimensions to13

single values. Again they may be reated impliitly by setion subsripting, thistime using a salar subsript. They also formally desribe the state of the ativeproess group inside at and over onstruts.The framework desribed is muh more powerful than spae allows us todemonstrate in this paper. This power omes in part from the exibility toadd features by extending the libraries assoiated with the language. We haveonly illustrated the simplest kinds of distribution format. But any HPF 1.0 ar-ray distribution format, plus various others, an be inorporated by extendingthe Range hierarhy in the run-time library. We have only illustrated shiftand writeHalo operations from the ommuniation library, but the library alsoinludes muh more powerful operations for remapping arrays and performingirregular data aesses. Our intention is to provide minimal language supportfor distributed arrays, just enough to failitate further extension through on-strution of new libraries.For a more omplete desription of a slightly earlier version of the proposedlanguage, see [4℄.9 Disussion and related workWe have desribed a onservative set of extensions to Java. In the ontextof an expliitly SPMD programming environment with a good ommuniationlibrary, we laim these extensions provide muh of the onise expressivenessof HPF, without relying on very sophistiated ompiler analysis. The objet-oriented features of Java are exploited to give an elegant parameterization ofthe distributed arrays of the extended language. Beause of the relatively low-level programming model, interfaing to other parallel-programming paradigmsis more natural than in HPF. With suitable are, it is possible to make diretalls to, say, MPI from within the data parallel program. In [3℄ we suggest aonrete Java binding for MPI.We will mention two related projets. Spar [11℄ is a Java-based language forarray-parallel programming. Like our language it introdues multi-dimensionalarrays, array setions, and a parallel loop. There are some similarities in syntax,but semantially Spar is very di�erent to our language. Spar expresses paral-lelism but not expliit data plaement or ommuniation|it is a higher levellanguage. ZPL [10℄ is a new programming language for sienti� omputations.Like Spar, it is an array language. It has an idea of performing omputationsover a region, or set of indies. Within a ompound statement pre�xed by aregion spei�er, aligned elements of arrays distributed over the same region anbe aessed. This idea has ertain similarities to our over onstrut. Com-muniation is more expliit than Spar, but not as expliit as in the languagedisussed in this artile. 14

Referenes[1℄ L. S. Blakford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon,J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. SaLAPACK User's Guide. SIAM, 1997.[2℄ Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox, Donald Leskiw, and Xi-aoming Li. Experiments with HPJava. Conurreny: Pratie and Experi-ene, 9(6):633, 1997.[3℄ Bryan Carpenter, Geo�reyFox, Xinying Li, and Guansong Zhang. A draft Java binding for MPI.URL: http://www.npa.syr.edu/projets/pr/July97/do.html.[4℄ Bryan Carpenter, Guansong Zhang,Geo�rey Fox, Xinying Li, and Yuhong Wen. Introdution to Java-Ad.URL: http://www.npa.syr.edu/projets/pr/July97/do.html.[5℄ Bryan Carpenter, Guansong Zhang, and Yuhong Wen. NPAC PCRCRuntime Kernel De�nition, 1997. In preparation. For urrent draft, seehttp://www.npa.syr.edu/projets/pr/July97/do.html.[6℄ Parallel Compiler Runtime Consortium. Common runtime support forhigh-performane parallel languages. In Superomputing `93. IEEE Com-puter Soiety Press, 1993.[7℄ R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communiation optimiza-tions for irregular sienti� omputations on distributed memory arhi-tetures. Journal of Parallel and Distributed Computing, 22(3):462{479,September 1994.[8℄ J. Nieploha, R.J. Harrison, and R.J. Little�eld. The Global Array: Non-uniform-memory-aess programming model for high-performane omput-ers. The Journal of Superomputing, 10:197{220, 1996.[9℄ Manish Parashar and J.C. Browne. Systems engineering for high perfor-mane omputing software: The HDDA/DAGH infrastruture for imple-mentation of parallel strutured adaptive mesh. In Strutured AdaptiveMesh Re�nement Grid Methods, IMA Volumes in Mathematis and its Ap-pliations. Springer-Verlag.[10℄ Lawrene Snyder.A ZPL programming guide. Tehnial report, University of Washington,May 1997. URL: http://www.s.washington.edu/researh/projets/zpl/.[11℄ Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar:A programming language for semi-automati ompilation of parallel pro-grams. Conurreny: Pratie and Experiene, 9(11):1193{1205, 1997.15

[12℄ Guansong Zhang, Bryan Carpenter, Geo�rey Fox, Xiaoming Li, Xinying Li,and Yuhong Wen. PCRC-based HPF ompilation. In 10th InternationalWorkshop on Languages and Compilers for Parallel Computing, 1997. Toappear in Leture Notes in Computer Siene.

16

	HPJava: data parallel extensions to Java
	Recommended Citation

	tmp.1285252205.pdf.tqIMs

