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HPJava: data parallel extensions to JavaBryan Carpenter, Guansong Zhang, Geo�rey FoxXinying Li, Yuhong WenNPAC at Syra
use UniversitySyra
use, NY 13244fdb
,zgs,g
f,xli,weng�npa
.syr.eduDe
ember 7, 1997Abstra
tWe outline an extension of Java for programming with distributedarrays. The basi
 programming style is Single Program Multiple Data(SPMD), but parallel arrays are provided as new language primitives.Further extensions in
lude three distributed 
ontrol 
onstru
ts, the mostimportant being a data-parallel loop 
onstru
t. Communi
ations involv-ing distributed arrays are handled through a standard library of 
olle
tiveoperations. Be
ause the underlying programming model is SPMD pro-gramming, dire
t 
alls to MPI or other 
ommuni
ation pa
kages are alsoallowed in an HPJava program.1 Introdu
tionThe idea that Java may enable new programming environments, 
ombining at-tra
tive user interfa
es with high performan
e 
omputation, is gaining in
reas-ing attention amongst 
omputational s
ientists. Java boasts a dire
t simpli
ityreminis
ent of Fortran, but also in
orporates many of the important ideas ofmodern obje
t-oriented programming. Of 
ourse it 
omes with an establishedtra
k-re
ord in the domains of Web and Internet programming.This arti
le will fo
us spe
i�
ally on the potential of Java as a languagefor s
ienti�
 parallel programming. We envisage a framework 
alled HPJava.This would be a general environment for parallel 
omputation. Ultimately itshould 
ombine tools, 
lass libraries, and language extensions to support vari-ous established paradigms for parallel 
omputation, in
luding shared memoryprogramming, expli
it message-passing, and array-parallel programming. Otherparadigms (for example, Linda or 
oarse-grained data-
ow) may 
ome later, to-1



gether with bindings to higher-level libraries and appli
ation-spe
i�
 librariessu
h as CHAOS [7℄, S
aLAPACK [1℄, Global Arrays [8℄ or DAGH [9℄.This is a large vision, and the 
urrent arti
le only dis
usses some �rst stepstowards a general framework. In parti
ular we will make spe
i�
 proposals forthe se
tor of HPJava most dire
tly related to its namesake: High Performan
eFortran. We will be 
on
entrating on array-parallel programming.For now we do not propose to import the full HPF programming model toJava. After several years of e�ort by various 
ompiler groups, HPF 
ompilersare still quite immature. It seems diÆ
ult justify a 
omparable e�ort for Javabefore su

ess has been 
onvin
ingly demonstrated in Fortran. In any 
ase thereare features of the HPF model that make it less attra
tive in the 
ontext of theintegrated parallel programming environment we envisage. Although an HPFprogram 
an interoperate with modules written in other parallel programmingstyles through the HPF extrinsi
 pro
edure interfa
e, that me
hanism is quiteawkward. Rather than follow the HPF model dire
tly, we propose introdu
ingsome of the 
hara
teristi
 ideas of HPF|spe
i�
ally its distributed array modeland array intrinsi
 fun
tions and libraries|into a basi
ally SPMD programmingmodel. Be
ause the programming model is SPMD, dire
t 
alls to MPI [2℄ orother 
ommuni
ation pa
kages are allowed from the HPJava program.The language outlined here provides HPF-like distributed arrays as languageprimitives, and new distributed 
ontrol 
onstru
ts to fa
ilitate a

ess to the lo
alelements of these arrays. In the SPMD mold, the model allows pro
essors thefreedom to independently exe
ute 
omplex pro
edures on lo
al elements: it isnot limited by SIMD-style array syntax. All a

ess to non-lo
al array elementsmust go through library fun
tions|typi
ally 
olle
tive 
ommuni
ation opera-tions. This puts an extra onus on the programmer; but making 
ommuni
ationexpli
it en
ourages the programmer to write algorithms that exploit lo
ality,and simpli�es the task of the 
ompiler writer. On the other hand, by providingdistributed arrays as language primitives we are able to simplify error-pronetasks su
h as 
onverting between lo
al and global array subs
ripts and deter-mining whi
h pro
essor holds a parti
ular element. As in HPF, it is possible towrite programs at a natural level of abstra
tion where the meaning is insensitiveto the detailed mapping of elements. Lower-level styles of programming are alsopossible.Our 
ompiler will be implemented as a translator to ordinary Java with
alls to a suitable run-time library. At the time of writing the underlying li-brary is already available [5℄, and the Java interfa
e needed by the translatoris under development. The translator itself is being implemented in a 
ompiler
onstru
tion framework developed in the PCRC proje
t [6, 12℄.
2



2 Multidimensional arraysFirst we des
ribe a modest extension to Java that adds a 
lass of true multi-dimensional arrays to the standard Java language. The new arrays allow regularse
tion subs
ripting, similar to Fortran 90 arrays. The syntax des
ribed inthis se
tion is a subset of the syntax introdu
ed later for parallel arrays andalgorithms: the only motivation for dis
ussing the sequential subset �rst is tosimplify the overall presentation. No attempt is made to integrate the newmultidimensional arrays with the standard Java arrays: they are a new kind ofentity that 
oexists in the language with ordinary Java arrays. There are goodte
hni
al reasons for keeping the two kinds of array separate1.The type-signatures and 
onstru
tors of the multidimensional array use dou-ble bra
kets to distinguish them from ordinary arrays:int [[,℄℄ a = new int [[5, 5℄℄ ;float [[,,℄℄ b = new float [[10, n, 20℄℄ ;int [[℄℄ 
 = new int [[100℄℄ ;a, b and 
 are respe
tively 2-, 3- and one- dimensional arrays. Of 
ourse 
 isvery similar in stru
ture to the standard array d, 
reated byint [℄ d = new int [100℄ ;
 and d are not identi
al, though2.A

ess to individual elements of a multidimensional array goes through asubs
ripting operation involving single bra
kets, for examplefor(int i = 0 ; i < 4 ; i++)a [i, i + 1℄ = i + 
 [i℄ ;For reasons that will be
ome 
learer in later se
tions, this style of subs
ript-ing is 
alled lo
al subs
ripting. In the 
urrent sequential 
ontext, apart fromthe fa
t that a single pair of bra
kest may in
lude several 
omma-separatedsubs
ripts, this kind of subs
ripting works just like ordinary Java array sub-s
ripting. Subs
ripts always start at zero, in the ordinary Java or C style (thereis no Fortran-like lower bound).In general our language has no idea of Fortran-like array assignments. Inint [[,℄℄ e = new int [[n, m℄℄ ;...a = e ;1The run-time representation of our multi-dimensional arrays in
ludes extra des
riptorinformation that would simply en
umber the large 
lass \non-s
ienti�
" Java appli
ations.2For example, 
 allows se
tion subs
ripting, whereas d does not.3



the assignment simply 
opies a handle to obje
t referen
ed by e into a. Thereis no element-by-element 
opy involved. Similarly we introdu
e no idea of ele-mental arithmeti
 or elemental fun
tion appli
ation. If e and a are arrays, theexpressionse + aMath.
os(e)are type errors.Our HPJava does import a Fortran-90-like idea of array regular se
tions.The syntax for se
tion subs
ripting is di�erent to the syntax for lo
al subs
ript-ing. Double bra
kets are used. These bra
kets 
an in
lude s
alar subs
ripts orsubs
ript triplets.A se
tion is an obje
t in its own right|its type is that of a suitable multi-dimensional array. It des
ribes some subset of the elements of the parent array.This is slightly di�erent to the situation in Fortran, where se
tions 
annot usu-ally be 
aptured as named entities3.int [[℄℄ e = a [[2, 2 :℄℄ ;foo(b [[ : , 0, 1 : 10 : 2℄℄) ;e be
omes an alias for the 3rd row of elements of a. The pro
edure foo shouldexpe
t a two-dimensional array as argument. It 
an read or write to the set ofelements of b sele
ted by the se
tion. As in Fortran, upper or lower bounds 
anbe omitted in triplets, defaulting to the a
tual bound of the parent array, andthe stride entry of the triplet is optional. The subs
ripts of e, like any otherarray, start at 0, although the �rst element is identi�ed with a [2, 2℄.In our language, unlike Fortran, it is not allowed to use ve
tors of integersas subs
ripts. The only se
tions re
ognized are regular se
tions de�ned throughs
alar and triplet subs
ripts.The language provides a library of fun
tions for manipulating its arrays,
losely analogous to the array transformational intrinsi
 fun
tions of Fortran90:int [[,℄℄ f = new int [[5, 5℄℄ ;HPJlib.shift(f, a, -1, 0, CYCL) ;float g = HPJlib.sum(b) ;int [[℄℄ h = new int [[100℄℄ ;HPJlib.
opy(h, 
) ;The shift operation with shift-mode CYCL exe
utes a 
y
li
 shift on the datain its se
ond argument, 
opying the result to its �rst argument|an array of thesame shape. In the example the shift amount is -1, and the shift is performed3Unless a se
tion appears as an a
tual argument to a pro
edure, in whi
h 
ase the dummyargument names that se
tion, or it is the target of a pointer assignment.4



in dimension 0 of the array|the �rst of its two dimensions. The sum operationsimply adds all elements of its argument array. The 
opy operation 
opiesthe elements of its se
ond argument to its �rst|it is something like an arrayassignment. These fun
tions may have to be overloaded to apply to some �niteset of array types, eg they may be de�ned for arrays with elements of anysuitable Java primitive type, up to some maximum rank of array. Alternativelythe type-hierar
hy for arrays 
an be de�ned in a way that allows these fun
tionsto be more polymorphi
.3 Pro
ess arraysHPJava adds 
lass libraries and some additional syntax for dealing with dis-tributed arrays. These arrays are viewed as 
oherent global entities, but theirelements are divided a
ross a set of 
ooperating pro
esses. As a pre-requisiteto introdu
ing distributed arrays we dis
uss the pro
ess arrays over whi
h theirelements are s
attered.An abstra
t base 
lass Pro
s has sub
lasses Pro
s1, Pro
s2, . . . , repre-senting one-dimensional pro
ess arrays, two-dimensional pro
ess arrays, and soon.Pro
s2 p = new Pro
s2(2, 2) ;Pro
s1 q = new Pro
s1(4) ;These de
larations set p to represent a 2 by 2 pro
ess array and q to represent a4-element, one-dimensional pro
ess array. In either 
ase the obje
t 
reated de-s
ribes a group of 4 pro
esses. At the time the Pro
s 
onstru
tors are exe
utedthe program should be exe
uting on four or more pro
esses. Either 
onstru
-tor sele
ts four pro
esses from this set and identi�es them as members of the
onstru
ted group4.Pro
s has a member fun
tion 
alled member, returning a boolean value. Thisis true if the lo
al pro
ess is a member of the group, false otherwise.if(p.member()) {...}The 
ode inside the if is exe
uted only if the lo
al pro
ess is a member p. Wewill say that inside this 
onstru
t the a
tive pro
ess group is restri
ted to p.The multi-dimensional stru
ture of a pro
ess array is re
e
ted in its set ofpro
ess dimensions. An obje
t is asso
iated with ea
h dimension. These obje
tsare a

essed through the inquiry member dim:4There is no 
ooperation between the two 
onstru
tor 
alls for p and q, so an individualphysi
al pro
ess might o

ur in both groups or in neither. As an option not illustrated here,ve
tors of ids 
an be passed to the Pro
s 
onstru
tors to spe
ify exa
tly whi
h pro
esses arein
luded in a parti
ular group. 5



Dimension x = p.dim(0) ;Dimension y = p.dim(1) ;Dimension z = q.dim(0) ;The obje
t returned by the dim inquiry has 
lass Dimension. The membersof this 
lass in
lude the inquiry 
rd. This returns the 
oordinate of the lo
alpro
ess with respe
t to the pro
ess dimension. The result is only well-de�ned ifthe lo
al pro
ess is a member of the parent pro
ess array. The inner body 
odeinif(p.member())if(x.
rd() == 0)if(y.
rd() == 0) {...}will only exe
ute on the �rst pro
ess from p, with 
oordinates (0; 0).4 Distributed arraysSome or all of the dimensions of a multi-dimensional array 
an be de
laredto be distributed ranges. In general a distributed range is represented by anobje
t of 
lass Range. A Range obje
t de�nes a range of integer subs
ripts,and de�nes how they are mapped into a pro
ess array dimension. In fa
t theDimension 
lass introdu
ed in the previous se
tion is a sub
lass of Range. In this
ase the integer range is just the range of 
oordinate values asso
iated with thedimension. Ea
h value in the range is mapped, of 
ourse, to the pro
ess (or sli
eof pro
esses) with that 
oordinate. This kind of range is also 
alled a primitiverange. More 
omplex sub
lasses of Range implement more elaborate maps frominteger ranges to pro
ess dimensions. Some of these will be introdu
ed in laterse
tions. For now we 
on
entrate on arrays 
onstru
ted with Dimension obje
tsas their distributed ranges.The syntax of se
tion 2 is extended in the following way to support dis-tributed arrays� A distributed range obje
t may appear in pla
e of an integer extent in the\
onstru
tor" of the array (the expression following the new keyword).� If a parti
ular dimension of the array has a distributed range, the 
orre-sponding slot in the type signature of the array should in
lude a # symbol.� In general the 
onstru
tor of the distributed array must be followed by anon 
lause, spe
ifying the pro
ess group over whi
h the array is distributed.Distributed ranges of the array must be distributed over distin
t dimen-sions of this group5.5The on 
lause 
an be omitted in some 
ir
umstan
es|see se
tion 5.6



Assume p, x and y are de
lared as in the previous se
tion, thenfloat [[#,#,℄℄ a = new float [[x, y, 100℄℄ on p ;de�nes a as a 2 by 2 by 100 array of 
oating point numbers. Be
ause the�rst two dimensions of the array are distributed ranges|dimensions of p|a isa
tually realized as four segments of 100 elements, one in ea
h of the pro
essesof p. The pro
ess in p with 
oordinates i, j holds the se
tion a [[i, j, :℄℄.The distributed array a is equivalent in terms of storage to four lo
al arraysde�ned byfloat [℄ b = new float [100℄ ;But be
ause a is de
lared as a 
olle
tive obje
t we 
an apply 
olle
tive opera-tions to it. The HPJlib fun
tions introdu
ed in se
tion 2 apply equally well todistributed arrays, but now they imply inter-pro
essor 
ommuni
ation.float [[#,#,℄℄ a = new float [[x, y, 100℄℄ on p,b = new float [[x, y, 100℄℄ on p ;HPJlib.shift(a, b, -1, 0, CYCL) ;The shift operation 
auses the lo
al values of a to be overwritten with valuesof b from a pro
essor adja
ent in the x dimension.There is a 
at
h in this. When subs
ripting the distributed dimensions of anarray it is simply disallowed to use subs
ripts that refer to o�-pro
essor elements.While this:int i = x.
rd(), j = y.
rd() ;a [i, j, 20℄ = a [i, j, 21℄ ;is allowed, this:int i = x.
rd(), j = y.
rd() ;a [i, j, 20℄ = b [(i + 1) % 2, j, 20℄ ;is forbidden. The se
ond example 
ould apparently be implemented using anearest neighbour 
ommuni
ation, quite similar to the shift example above.But our language imposes an stri
t poli
y distinguishing it from most data paral-lel languages: while library fun
tions may introdu
e 
ommuni
ations, languageprimitives su
h as array subs
ripting never imply 
ommuni
ation.If subs
ripting distributed dimensions is so restri
ted, why are the i, j sub-s
ripts on the arrays needed at all? In the examples of this se
tion these sub-s
ripts are only allowed one value on ea
h pro
essor. Well, the in
onvien
eof spe
ifying the subs
ripts will be redu
ed by language 
onstru
ts introdu
edlater, and the fa
t that only one subs
ript value is lo
al is a spe
ial feature ofthe primitive ranges used here. The higher level distributed ranges introdu
edlater map multiple elements to individual pro
esses. Subs
ripting will no longerlook so redundant. 7



5 The on 
onstru
t and the a
tive pro
ess groupIn the se
tion 3 the idiomif(p.member()) {...}appeared. Our language provides a short way of writing this 
onstru
ton(p) {...}In fa
t the on 
onstru
t provides some extra value. Informally we said in se
-tion 3 that the a
tive pro
ess group is restri
ted to p inside the body of thep.member() 
onditional 
onstru
t. The language in
orporates a more formalidea of an a
tive pro
ess group (APG). At any point of exe
ution some pro
essgroup is singled out as the APG. An on(p) 
onstru
t spe
i�
ally 
hanges thevalue of the APG to p. On exit from the 
onstru
t, the APG is restored to itsvalue on entry.Elevating the a
tive pro
ess group to a part of the language allows somesimpli�
ations. For example, it provides a natural default for the on 
lausein array 
onstru
tors. More importantly, formally de�ning the a
tive pro
essgroup simpli�es the statement of various rules about what operations are legalinside distributed 
ontrol 
onstru
ts like on.6 Higher-level ranges and lo
ationsThe 
lass Blo
kRange is a sub
lass of Range whi
h des
ribes a simple blo
k-distributed range of subs
ripts. Like BLOCK distribution format in HPF, it mapsblo
ks of 
ontiguous subs
ripts to ea
h element of its target pro
ess dimension6.The 
onstru
tor of Blo
kRange usually takes two arguments: the extent of therange and a Dimension obje
t de�ning the pro
ess dimension over whi
h thenew range is distributed.Pro
s2 p = new Pro
s2(3, 2) ;Range x = new Blo
kRange(100, p.dim(0)) ;Range y = new Blo
kRange(200, p.dim(1)) ;float [[#,#℄℄ a = new float [[x, y℄℄ on p ;a is 
reated as a 100 � 200 array, blo
k-distributed over the 6 pro
esses in p.The fragment is essentially equivalent to the HPF de
larations6Other higher-level ranges in
lude Cy
li
Range, whi
h produ
es the equivalent of CYCLICdistribution format in HPF. 8



. . .

Global subscripts0 1 2 3

Locations

. . . . . . N-1Figure 1: A range regarded as a set of lo
ations, or slots.!HPF$ PROCESSORS p(3, 2)REAL a(100, 200)!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO pSubs
ripting distributed arrays with non-primitive ranges introdu
es some newproblems. An array a

ess su
h asa [17, 23℄ = 13 ;is perfe
tly legal if the lo
al pro
ess holds the element in question. But de-terimining whether an element is lo
al is no longer so easy. When arrays hadonly primitive distributed ranges, it was straightforward to 
he
k that a

esseswere lo
al|the subs
ript simply had to be equal to the lo
al 
oordinate. Withhigher-level ranges, that simple 
ondition no longer holds.In pra
tise it is unusual to use integer values dire
tly as lo
al subs
ripts indistributed array dimensions. Instead the idea of a lo
ation is introdu
ed. Alo
ation 
an be viewed as an abstra
t element, or \slot", of a distributed range.Conversely, a range 
an be thought of as a set of lo
ations. This model of arange is visualized in �gure 1. An individual lo
ation is des
ribed by an obje
tof the 
lass Lo
ation. Ea
h Lo
ation element is mapped to a parti
ular sli
eof a pro
ess grid. In general two lo
ations are identi
al only if they 
ome fromthe same position in the same range. A subs
ripting syntax is used to representlo
ation n in range x:Lo
ation i = x [n℄This is an important idea in HPJava. By working in terms of abstra
tlo
ations|elements of distributed ranges|one 
an usually respe
t lo
ality ofreferen
e without resorting expli
itly to low-level lo
al subs
ripts and pro
essids. In fa
t the lo
ation 
an be viewed as an abstra
t data type in
orporatingthese lower-level o�sets.Publi
ally a

essible �elds of Lo
ation in
lude dim and 
rd. The �rst isthe pro
ess dimension of the parent range. The se
ond is 
oordinate in thatdimension to whi
h the element is mapped. So the a

ess to element a [17,23℄ 
ould now be guarded by 
onditionals as follows:Lo
ation i = x [17℄, j = y [23℄ ;if(i.
rd == i.dim.
rd()) 9



if(j.
rd == j.dim.
rd())a [17, 23℄ = 13 ;This is still quite verbose and error-prone. The language provides a se
onddistributed 
ontrol 
onstru
t (analogous to on) to deal with this 
ommon situa-tion. The new 
onstru
t is 
alled at, and takes a lo
ation as its argument. Thefragment above 
an be repla
ed withLo
ation i = x [17℄, j = y [23℄ ;at(i)at(j)a [17, 23℄ = 13 ;This is more 
on
ise, but still involves some redundan
y be
ause the subs
ripts17 and 23 appear twi
e. A natural extension is to allow lo
ations to be useddire
tly as array subs
ripts:Lo
ation i = x [17℄, j = y [23℄ ;at(i)at(j)a [i, j℄ = 13 ;Lo
ations used as array subs
ripts must be elements of the 
orresponding rangesof the array.The range 
lass has a member fun
tionint Range.idx(Lo
ation i)whi
h 
an be used to re
over the integer subs
ript, given a lo
ation in the range.There is a restri
tion that an at(i) 
onstru
t should only appear at a pointof exe
ution where i.dim is a dimension of the a
tive pro
ess group. In the ex-amples of this se
tion this means that an at(i) 
onstru
t, say, should normallybe nested dire
tly or indire
tly inside an on(p) 
onstru
t.7 Distributed loopsGood parallel algorithms don't usually expend many lines of 
ode assigning toisolated elements of distributed arrays. The atme
hanism of the previous se
tionis often useful, but a more pressing need is a me
hanism for parallel a

ess todistributed array elements. The last and most important distributed 
ontrol
onstru
t in the language is 
alled over. It implements a distributed parallelloop. Con
eptually it is quite similar to the FORALL 
onstru
t of Fortran, ex
eptthat the over 
onstru
t spe
i�es exa
tly where its parallel iterations are to beperformed. The argument of over is a member of the spe
ial 
lass Index. The
lass Index is a sub
lass of Lo
ation, so it is synta
ti
ally 
orre
t to use anindex as an array subs
ript7. Here is an example of a pair of nested over loops:7But the e�e
t of su
h subs
ripting is only well-de�ned inside an over 
onstru
tparametrised by the index in question. 10



float [[#,#℄℄ a = new float [[x, y℄℄,b = new float [[x, y℄℄ ;...Index i, j ;over(i = x | :)over(j = y | :)a [i, j℄ = 2 * b [i, j℄ ;The body of an over 
onstru
t exe
utes, 
on
eptually in parallel, for everylo
ation in the range of its index (or some subrange if a non-trivial triplet isspe
i�ed)8. An individual \iteration" exe
utes on just those pro
essors holdingthe lo
ation asso
iated with the iteration. In a parti
ular iteration, the lo
ation
omponent of the index (the base 
lass obje
t) is equal to that lo
ation. The nete�e
t of the example above should be reasonably 
lear. It assigns twi
e the valueof ea
h element of b to the 
orresponding element of a. Be
ause of the rulesabout where an individual iteration iterates, the body of an over 
an usually only
ombine elements of arrays that have some simple alignment relation relative toone another. The idx member of range 
an be used in parallel updates to giveexpressions that depend on global index values.With the over 
onstru
t we 
an give some useful examples of parallel pro-grams. Figure 2 is the famous Ja
obi iteration for a two dimensionsionalLapla
e equation. We have used 
y
li
 shift to implement nearest neighbour
ommuni
ations9.Copying whole arrays into temporaries is not an eÆ
ient way of a

essingnearest neighbours in an array. Be
ause this is su
h a 
ommon pattern of
ommuni
ation, the standard library supports ghost regions. Distributed arrays
an be 
reated in su
h a way that the segment stored lo
ally is extended withsome halo. This halo 
a
hes values stored in the segments of adja
ent pro
esses.The 
a
hed values are expli
itly bought up to date by the library operationwriteHalo.An optimized version of the Ja
obi program is give in �gure 3. This versiononly involves a singe array temporary. A new 
onstru
tor for Blo
kRange isprovided. This allows the width of the ghost extensions to be spe
i�ed. Thearguments of writeHalo itself are an array with suitable extensions and two ve
-tors. The �rst de�nes in ea
h dimension the width of the halo that must a
tuallybe updated, and the se
ond de�nes the treatment at the ends of the range|inthis 
ase the ghost edges are updated with 
y
li
 wraparound. The new 
on-stru
tor and new writeHalo fun
tion are simply standard library extensions.One new pie
e of syntax is needed: the addition and subtra
tion operators are8Formally | is being used here as an operator that 
ombines a range and a triplet to returnan obje
t of the iterator 
lass Index.9Lapla
e's equation with 
y
li
 boundary 
onditions is not parti
ularly useful, but it illus-trates the language features. More interesting boundary 
onditions 
an easily be in
orporatedlater. In
identally, this is a suitable pla
e to mention that the array arguments of shift mustbe aligned arrays|they must have identi
al distributed ranges.11



Pro
s2 p = new Pro
s2(2, 2) ;on(p) {Range x = new Blo
kRange(100, p.dim(0)) ;Range y = new Blo
kRange(200, p.dim(1)) ;float [[#,#℄℄ u = new float [[x, y℄℄ ;// ... some 
ode to initialise `u'float [[#,#℄℄ unx = new float [[x, y℄℄, upx = new float [[x, y℄℄,uny = new float [[x, y℄℄, upy = new float [[x, y℄℄ ;HPJlib.shift(unx, u, 1, 0, CYCL) ;HPJlib.shift(upx, u, -1, 0, CYCL) ;HPJlib.shift(uny, u, 1, 1, CYCL) ;HPJlib.shift(upy, u, -1, 1, CYCL) ;Index i, j ;over(i = x | :)over(j = y | :)u [i, j℄ = 0.25 * (unx [i, j℄ + upx [i, j℄ +uny [i, j℄ + upy [i, j℄) ;} Figure 2: Ja
obi iteration using shift.
12



Pro
s2 p(2, 2) ;on(p) {Range x = new Blo
kRange(100, p.dim(0), 1) ; // ghost width 1Range y = new Blo
kRange(200, p.dim(1), 1) ; // ghost width 1float [[#,#℄℄ u = new float [[x, y℄℄ ;// ... some 
ode to initialise `u'int [℄ widths = {1, 1} ; // Widths a
tually updatedMode [℄ modes = {CYCL, CYCL} ; // Wraparound at ends.HPJlib.writeHalo(u, widths, modes) ;float [[#,#℄℄ v = new float [[x, y℄℄ ;Index i, j ;over(i = x | :)over(j = y | :)v [i, j℄ = 0.25 * (u [i + 1, j℄ + u [i - 1, j℄ +u [i, j + 1℄ + u [i, j + 1℄) ;HPJlib.
opy(u, v) ;} Figure 3: Ja
obi iteration using writeHalo.overloaded so that integer o�sets 
an be added or subtra
ted to Lo
ation ob-je
ts, yielding new, shifted, lo
ations. The usual a

ess rules apply|this kindof shifted a

ess is illegal if it implies a

ess to o�-pro
essor data. It only worksif the subs
ripted array has suitable ghost extensions.8 Other featuresWe have already des
ribed most of the important language features we proposeto implement. Two additional features that are quite important in pra
ti
e buthave not been dis
ussed are subranges and subgroups. A subrange is simply arange whi
h is a regular se
tion of some other range, 
reated by syntax likex [0 : 49℄. Subranges are 
reated ta
itly when a distributed array is sub-s
ripted with a triplet, and they 
an also be used dire
tly to 
reate distributedarrays with general HPF-like alignments. A subgroup is some sli
e of a pro
essarray, formed by restri
ting pro
ess 
oordinates in one or more dimensions to13



single values. Again they may be 
reated impli
itly by se
tion subs
ripting, thistime using a s
alar subs
ript. They also formally des
ribe the state of the a
tivepro
ess group inside at and over 
onstru
ts.The framework des
ribed is mu
h more powerful than spa
e allows us todemonstrate in this paper. This power 
omes in part from the 
exibility toadd features by extending the libraries asso
iated with the language. We haveonly illustrated the simplest kinds of distribution format. But any HPF 1.0 ar-ray distribution format, plus various others, 
an be in
orporated by extendingthe Range hierar
hy in the run-time library. We have only illustrated shiftand writeHalo operations from the 
ommuni
ation library, but the library alsoin
ludes mu
h more powerful operations for remapping arrays and performingirregular data a

esses. Our intention is to provide minimal language supportfor distributed arrays, just enough to fa
ilitate further extension through 
on-stru
tion of new libraries.For a more 
omplete des
ription of a slightly earlier version of the proposedlanguage, see [4℄.9 Dis
ussion and related workWe have des
ribed a 
onservative set of extensions to Java. In the 
ontextof an expli
itly SPMD programming environment with a good 
ommuni
ationlibrary, we 
laim these extensions provide mu
h of the 
on
ise expressivenessof HPF, without relying on very sophisti
ated 
ompiler analysis. The obje
t-oriented features of Java are exploited to give an elegant parameterization ofthe distributed arrays of the extended language. Be
ause of the relatively low-level programming model, interfa
ing to other parallel-programming paradigmsis more natural than in HPF. With suitable 
are, it is possible to make dire
t
alls to, say, MPI from within the data parallel program. In [3℄ we suggest a
on
rete Java binding for MPI.We will mention two related proje
ts. Spar [11℄ is a Java-based language forarray-parallel programming. Like our language it introdu
es multi-dimensionalarrays, array se
tions, and a parallel loop. There are some similarities in syntax,but semanti
ally Spar is very di�erent to our language. Spar expresses paral-lelism but not expli
it data pla
ement or 
ommuni
ation|it is a higher levellanguage. ZPL [10℄ is a new programming language for s
ienti�
 
omputations.Like Spar, it is an array language. It has an idea of performing 
omputationsover a region, or set of indi
es. Within a 
ompound statement pre�xed by aregion spe
i�er, aligned elements of arrays distributed over the same region 
anbe a

essed. This idea has 
ertain similarities to our over 
onstru
t. Com-muni
ation is more expli
it than Spar, but not as expli
it as in the languagedis
ussed in this arti
le. 14
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