Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

2009

ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman
Syracuse University

Wenliang Du
Syracuse University, wedu@syr.edu

Balamurugan Rajagopalan
Syracuse University

Steve J. Chapin
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

6‘ Part of the Computer Engineering Commons

Recommended Citation

Jayaraman, Karthick; Du, Wenliang; Rajagopalan, Balamurugan; and Chapin, Steve J., "ESCUDO: A Fine-
grained Protection Model for Web Browsers" (2009). Electrical Engineering and Computer Science. 5.
https://surface.syr.edu/eecs/5

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/5?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Department of Electrical Engineering
and Computer Science

Technical Report

SYR-EECS-2009-01 Sep 01, 2009

ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman kjayaram@syr.edu
Wenliang Du wedu@syr.edu

Balamurugan Rajagopalan barajago@syr.edu
Steve J. Chapin chapin@syr.edu

ABSTRACT: Web applications are no longer simple hyperlinked documents. They
have progressively evolved to become highly complex---web pages combine
content from several sources (with varying levels of trustworthiness), and
incorporate significant portions of client-side code. However, the prevailing web
protection model, the same-origin policy, has not adequately evolved to manage
the security consequences of this additional complexity. As a result, web
applications have become attractive targets of exploitation. We argue that this
disconnection between the protection needs of modern web applications and the
protection models used by web browsers that manage those applications
amounts to a failure of access control. In this paper, we present Escudo, a new
web browser protection model designed based on established principles of
mandatory access control. We describe our implementation of a prototype of
Escudo in the Lobo web browser, and illustrate how web applications can use
Escudo for securing their resources. Our evaluation results indicate that Escudo
incurs low overhead. To support backwards compatibility, Escudo defaults to the
same-origin policy for legacy applications.

KEYWORDS: Web browsers, access control, web security

Syracuse University - Department of EECS,
4-206 CST, Syracuse, NY 13244
(P) 315.443.2652 (F) 315.443.2583

http:/leecs.syr.edu

EscubDo: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalach Steve J. Chapin
Department of EECS, Syracuse University
{kjayaram,wedu,barajago,chap@syr.edu

Abstract

Web applications are no longer simple hyperlinked documeiihey have progressively evolved
to become highly complex—web pages combine content froraraégources (with varying levels of
trustworthiness), and incorporate significant portionsl@nt-side code. However, the prevailing web
protection model, thesame-origin policy, has not adequately evolved to manage the security conse-
quences of this additional complexity. As a result, web &atibns have become attractive targets of
exploitation. We argue that this disconnection betweemtb&ction needs of modern web applications
and the protection models used by web browsers that manage &pplications amounts to a failure of
access control. In this paper, we preseatBDo, a new web browser protection model designed based
on established principles of mandatory access control. 8gertbe our implementation of a prototype
of Escuboin the Lobo web browser, and illustrate how web applicaticars use Ecubofor securing
their resources. Our evaluation results indicate trst @ oincurs low overhead. To support backwards
compatibility, Escubpodefaults to the same-origin policy for legacy applications

1 Introduction

Initially, web applications comprised a set of documents thostly contained text to be rendered and hy-
perlinks to other documents, with little or no client-sidede. All the content originated from a single,
trusted source. Over the last several years, in the racatmtetactive features, web applications have pro-
gressively become more complex. In more recent times, wplications have evolved to become highly
interactive applications that execute on both the serveércliant. As a result, web pages in modern appli-
cations are no longer simple documents—they now comprigéyhdlynamic contents that interact with each
other. In some sense, a web page has now become a “systerdixthmic contents are programs running
in the system, and they interact with users, access othé¢emtsrboth on the web page and in the hosting
browser, invoke browser APIs, and interact with programsherserver side.

Moreover, today’s web pages no longer draw contents fronmglesisource; contents are now derived
from several sources with varying levels of trustworthiie€ontents may be included by the application
itself, derived from user-supplied text, or from partiaitysted third parties. During parsing, rendering, and
execution inside the browser, the dynamic and static cemterweb pages can both act and be acted upon
by other entities—in classic security parlance, they cam&tantiated as both principals and objects. These
principals and objects are only as trustworthy as the ssuroen which they originate.

The security of a web application is primarily dependent lw integrity and confidentiality of its re-
sources inside the web browser. For example, session fidesitin cookies need to be protected against
access by untrusted principals; code from untrusted ssuncest be authorized before it is allowed to mod-
ify any trusted content on a web page. Without appropriatess control in web applications, we cannot
preserve the trustworthiness of contents, and securitid dmicompromised. If we consider each web page
as a “system,” we need an adequate protection model in brew@enediate the interactions within such a
system.

Allweb browsers implement a protection model calledshree-origin policy. Unfortunately, this model
has not adequately evolved to manage the security consaegiefithe additional complexity in modern web
pages. It cannot distinguish gradations in trustwortlinesr does it provide sufficient isolation between
web browser objects to ensure proper access control. Asil, negb applications have become attractive
targets of exploitation. Both cross-site-scripting dtsaand cross-site-request forgery attacks are examples
of untrusted principals exercising control over trustejbots inside the web browser. We argue that the root
cause of the problem is a failure of access control. The saiget policy clearly violates two important
principles of access control, namely separation of pigéland principle of least privilege [32].

Because of access-control failures, web applicationsdirdied third party content in their web page
cannot restrict the permissions of the third party code. éx@mple, a blog publisher may sell a small
portion of his web page to an advertising network. The adiag network, in turn, accepts Javascript ads
from its clients and displays them on the publisher's webepathe publisher has no further control over
what appears in that ad space—he trusts the network to hafiedeall content. An attacker posing as an
advertiser could compromise the integrity of the publisheeb application using a malicious JavaScript
program [36]. JavaScript verifiers such as ADsafe [12] cheldised by an advertisement network to verify
a JavaScript program, but that does not change the puldighesition: he is relying on a third-party to
vouch for the trustworthiness of Javascript programs thihtaw in his own web pages.

There have been other approaches for dealing with this s@wegrol failure. Web applications, as a
first line of defense, employ input validation and conteriefihg at the server when generating the web
page. The objective of this step is preventing known attficks instantiating an untrustworthy principal
inside a web page. For example, to defeat cross-site sugiptitacks, we can filter out all the code from
contents originating from untrusted sources. This first-bf defense has proven to be difficult to implement
properly; many vulnerabilities are because of the errossich a process [15,17]. Second, there are browser
patches that address specific attacks [18]. In generahesktapproaches address the symptoms of specific
problems without addressing the fundamental root cause-fatik of a robust protection model suitable for
modern web applications.

We describe an alternate approach that addresses the-aooéisd failure in web browsers by redesign-
ing the underlying access-control model, attacking thé obthe problem. Redesigning the access-control
model for web browsers involves four challenges. Firstabeess-control model should be able to identify
principals and objects at required granularity. Seconel aittess-control model should use an appropriate
policy to secure content with varying levels of trustwonigss. Third, a challenge unique to web applica-
tions is distributed enforcement—the applications at Hrges are aware of trustworthiness, but the actual
interactions that have to be restricted happen at the browseally, the new model should be backward
compatible with the same-origin policy to facilitate inorental deployment.

In this paper, we describeSEUDQ, a fine-grained web browser protection model, based ondrette
access-control principles to protect modern web apptioati To the best of our knowledge, this is the first
work on redesigning the access-control model for web brosvdesscubois designed to enforce separation
of privilege and the principle of least privilege, and toypde adequate granularity in both specification and
enforcement. We argue that the protection requirement&bfapplications are similar to operating systems.
Some operating systems use hierarchical protection ridg&R] to enforce their protection requirements.
EscuDois an adaptation of HPR tailored to meet the protection requénts of web applications.

To address the distributed enforcement problem, we deserinethod that web applications could use
to identify the principals, objects, and their trustwontgs and configure their resources at the granularity
required by them to reflect their protection needs. The mkihdackward compatible with nonsEubo
browsers, which ignore the configuration and default to #raesorigin policy.

We implemented a prototype ofdEubo for the Lobo browser and our evaluation results show that
Escuboincurs around 5% overhead. We illustrate our experienceildibg web applications for Ecupo
using two open-source web applications as case studies. dfiied two open source web applications to

2

use Escupo. We analyzed the web applications to understand their ggcaguirements and configured
them to use Bcubo to enforce the security requirements. The key contribgtiohthe paper can be
summarized as follows:

e EscuDoOis a new fine-grained web browser protection model to meeptbeection requirements of
modern applications.

e A backward-compatible configuration method that web apgibms can use to identify the principals,
objects, and their trustworthiness in order to use&bpo.

e A prototype implementation of &cuboon the Lobo web browser.

e Case studies illustrating our experience of building wetliaptions for ESCubDO.

2 Protection Requirements for Web Applications

In this section, we will describe the protection requireisesf web applications by providing an analysis
of the principals, objects, and the characteristics of moaeeb applications. Finally, we describe the
inadequacy of the same-origin policy in meeting the prataectequirements.

2.1 Principals and Objects

In a web application, principals are action-inducing HTMicerpts such as JavaScript programs, and ob-
jects are application resources such as the web page comatshicookies that are targets of actions. Some
HTML excerpts, such as JavaScript programs, may act as bioitigals and objects. Table 1 describes the
principals and objects inside a web application.

HTTP-request Issuing Principals: HTTP-request issuing principals are HTML tags such,asg, form,
embed, andiframe that instruct the web browser to issue an HTTP request.

Script-invoking Principals: Script-invoking principals are HTML constructs suchsadpt and the CSS
expression that can invoke the JavaScript interpreter. Additionalleb applications can specify user-
interface (Ul) event handlers to be invoked for specific évesing attributes such asl oad,onnbuseover ,
etc.

Plugins: Plugins are content-specific run-time environments fotagertypes of contents such as Flash,
Silverlight, and PDF. Additionally, browsers such as Faseprovide a framework for creating extensions,
enabling users to extend the functionality of the browsdugiAs and extensions have their own security
models and may or may not be controlled by the web applicatidn this paper, we only focus on the

principals that can be controlled by the web applications.

Document object model (DOM): Internally, web browsers represent the contents of a web pamg a
data structured called the DOM, in which all the HTML tags &melr content are organized in a hierarchical
fashion. Each HTML tag is a DOM element. DOM elements have exigp feature—they can act as
both principals and objects. Some DOM elements are sanoking principals or HTTP-request initiating
principals. Such DOM elements act as principals momengtariien they are instantiated. On the other
hand, they act as objects when they are the targets of mditifiozia the DOM API.

Principals

Objects

HTTP-request issuing prin-
cipals

- HTML Form

- HTML Anchor

- HTML Img

- HTML Iframe

- HTML Emded

Script-invoking principals
- JavaScript Programs
- Ul event Handlers

Document model

(DOM)

object

Cookies

Native Code API
-XMLHttpRequest API
-DOM API

Browser State
- History

- Visited link information
Plugins (Cannot be con-
trolled by web applications)

Table 1: Principals and objects inside the web browser.

Cookies: Web applications create cookies in web browsers; cookigsdily contain data used to track
sessions. After a cookie is created, web browsers attactotbides in all subsequent HTTP requests back
to the web application. Therefore, cookies are objectsatatmplicitly accessed in all HTTP requests. In
addition, JavaScript programs may explicitly manipulaieldes.

Native Code: Native browser code is exposed to JavaScript programs ViARIn For example, the
XM_Ht t pRequest API is an example of native code that helps JavaScript progliateract with server-
side programs. Similarly, the DOM API is used by JavaScripgpams to access and modify the web page.
Web applications may not want to expose these API to untluside. Therefore, the ability to invoke such
API should be a controllable privilege.

Browser State: Web browsers maintain browsing history and visited linlomfiation for each browsing
session with a web site. This information is part of the stdta browsing session and is accessible to
JavaScript programs through the DOM API. Browsing hist@yailog of recently visited URL and users
may use this information to instruct the web browser to rerdereviously visited web page. Visited link
information is used by web browsers to differentiate relgevisited from unvisited URL—typically, web
browsers use differing colors to display visited and uteasiinks.

2.2 Protection Needs

We outline two characteristics of modern applications #natrelevant for motivating our protection require-
ments:

Increasing Use of Client-side Code: Earlier, web applications primarily executed on the searat only
web pages were delivered to browsers. With the introductfalavaScript programs, web applications could
additionally execute in the browser to provide some intiradeatures. JavaScript programs are commonly
used to display drop-down menus by updating the contentseofveb page. Furthermore, AJAX enables
JavaScript programs to communicate with the applicaticimetserver. An instant-messaging application
might use an AJAX-based JavaScript program for commumigatiith the server and updating the chat
window.

Content with Varying Levels of Trustworthiness: In modern applications, the content inside web pages
is derived from multiple sources with nonuniform trustwimess. Therefore, content inside web pages is
no longer only trusted and provided by the application fts&here are several examples of applications
including untrusted content. Blogs and wikis enable usezdvide arbitrary text that will be part of the
web pages. Because the text is supplied by the user, it sinotilde trusted. There are also examples of
applications including semi-trusted content. An onlingtaun application may enable a seller to create
a web page in its application and may also allow the sellerrtwige JavaScript programs in the page
to enable some rich functionality. A social networking aggtion may allow users to add applications,
essentially JavaScript programs, in their profile to extéral functionality of their profile pages. Web
applications frequently add third party JavaScript proggdor adding some features. For example, an
application may include third party JavaScript programkieping track of site statistics. Online advertising
that we discussed earlier is another example of including-seisted content.

As a direct consequence of these two characteristics, we pamcipals of varying trustworthiness
inside the web page. Currently, these principals accessodifyncontent in the web page, invoke native
API, and communicate with the application at the serveespective of their trustworthiness. Saltzer and
Schroeder [32] have summarized eight design principle®ddding protection mechanisms: economy of
mechanism, fail-safe defaults, complete mediation, opesigth, separation of privilege, least privilege,
least common mechanism, and psychological acceptaldityhe eight guidelines, the same-origin policy
clearly violates two principles, namely least privilegalaeparation of privilege, but has done a fairly good
job with respect to the other characteristics. The sanggropolicy’s non-conformance with sound design
principles leads directly to its failure to meet the pramttneeds of modern applications. Based on our
analysis of modern applications and vetted principles,aéeption model for web browsers requires three
characteristics:

1. Separation of Privilege: Separation of privilege indicates that, if possible, peiges in a system
should be divided into less powerful privileges, such trasimgle accident, deception, or breach of
trust is sufficient to compromise the protected information

2. Principle of Least Privilege: The protection model should be able to limit the interactiohprinci-
pals based on their trustworthiness. Essentially, a graichould not have more privileges to access
information or resources than required for its legitimatepese. In addition, a principal should not
be able to elevate its privilege in an uncontrolled manner.

3. Fine Granularity: The protection model should be able to identify principala sufficient granular-
ity to ascertain their trustworthiness. Therefore, osgaone are insufficient for this purpose. Having
fine granularity is essential for achieving the principldeafst privileges.

2.3 The Same-Origin Policy is Inadequate

The same-origin policy (SOP) identifies an application®jioras a unique combination @protocol, do-
main, port). For instanceht t p: // www. amazon. cont i ndex. php andhtt p: / / ww. anazon.
com sear ch. php belong to the same origin, bt t p: // www. gmai | . comand ht t p: / / vwww.
amazon. comdo not belong to the same origin because they have differimgaghs. Similarlyht t p:
/' ww. gmai | . comandhtt ps: //ww. gmai | . comdo not belong to the same origin because they
use different protocols. Web browsers associate appitagsources such as cookies and document object
model (DOM) to their origin, and the SOP prevents JavaSgripgrams from one origin from accessing
application resources belonging to other origins.

Under the SOP, all principals inside the web applicationaassociated with a single principal identified
by the origin and are associated with all the privilegesspeetive of their trustworthiness, violating the

principle of least privilege. In addition, principals aresources across applications are not appropriately
isolated from one another. Both cross-site-scripting (X&$8acks and cross-site-request forgery (CSRF)
attacks are a side effect of these inadequacies.

In XSS attacks, an attacker deftly constructs input datarficapplication that is interpreted as JavaScript
by the web browser and executes with all privileges. Idedilg JavaScript program should execute with
limited or no privileges because it was derived from ungdsieb content.

In CSRF attacks, a malicious site forges and injects a reéguotesa victim user’s active session with
a trusted site. Some HTML tags suchasmg, andiframes can initiate an HTTP request. There are no
restrictions on the URL that can be used in these HTML tagaddition, web browsers automatically attach
the target site’'s cookies to the HTTP request, irrespectiweho is making the request. A malicious site
abuses this weakness to forge a request for a trusted st@lidorincipals and objects across applications
should be isolated from these types of unintended intertas

3 Our Approach

We need fundamental changes to the existing web browsesgbiart model to address the protection needs
of modern applications. Our approach is to design a web mop®tection model based on vetted manda-
tory access-control (MAC) principles. In our proposed mpdevelopers can configure their application by
appropriately specifying the principals, objects, andrttrestworthiness. Web applications communicate
the configuration to the web browser, where the proposedsaammtrol model enforces access decisions
based on the configuration. This is typical of any MAC systetmere a system administrator configures the
system and system-level mechanisms enforce access dediEised on the configuration [8].

Conceptually, access control is the ability to decide whod@awhat to whom in a system. An access-
control system consists of three components: principddgats, and an access-control model. Principals
(the who) are the entities in the system that can maniputsieurces. Objects (the whom) are the resources
in the system that require controlled access. An accessetanodel describes how access decisions are
enforced in the system; the expression of a set of rules nitie model is an access-control policy (the
what).

Based on the analysis of the protection needs in web applisatit is clear that a hierarchical multi-
level MAC model can address these needs. In such modelstenspsganizes its principals and objects
into hierarchies based on their trustworthiness, and assigpropriate privileges to each hierarchy. Access
decisions are based on the hierarchy of the principals ajettsb For example, SELinux and Windows
Vista have adopted a MAC model to enforce restrictions ogams based on their trustworthiness.

We analyzed several existing multi-level MAC models suclBdm [7], Bell-LaPadula [6], and hier-
archical protection rings (HPR) [33]. There are severalilaiities between the protection needs of web
applications in web browsers and those of programs in dpgratstems. In operating systems, a pro-
gram with user-level privileges must be isolated from a paiogwith kernel-level privileges. In addition,
the memory address spaces of user programs should be dsblate one another. Our design is primarily
motivated by this similarity to protection needs in opergtsystems.

HPR was first introduced in the Multics operating system. laltls, the access permissions are orga-
nized into hierarchical rings numbered frdhto n (Figure 1). Ring 0 is the most privileged ring and ring
n is the least privileged ring. The access permissions inguriare a subset of access permissions in ring
y, wheneverr > y. A process in a particular ring is limited to use the accesmijssions in its own ring or
outer rings. There are special gates between rings to allimeeess from an outer ring to request some re-
sources from an inner ring in a controlled fashion. To isotae memory address spaces of user programs,
Multics uses segment descriptors. Organizing the progranngs provides separation of privilege, and
memory isolation enforced via segment descriptors fuiitieases the granularity of protection offered by

Most
Privileged
Ring

Least
Privileged
Ring

Figure 1: Protection rings: All principals and objects argamized into protection rings. The innermost
ring is the most restricted ring and the outermost ring idéhst restricted ring.

rings and enforces the principle of least privilegesdbbois an adaptation of HPR to meet the protection
requirements of web applications.

4 The Escubo Access Control Model

Escuboconsists of four components:

e Rings. EscubDotreats each web page as a “system,” and all the elementssirsythiem are placed in
a static set of per-page protection rings. This is similafRR in operating systems. However, unlike
in operating systems, where there is only one set of ringspad®r can simultaneously host multiple
systems (i.e. web pages), the set of rings for each web paggegendent from the others. The rings of
web pages belonging to the same origin are compatible with ether.

¢ Ring Assignments: A web application should provide the ring assignments fotred elements in the
system based on the trustworthiness of the elements anecpoot needs. The ring assignment method
varies depending on the type of element and is discussedctiosetl.1. This step is called “configu-
ration,” analogous to a system administrator configuringstesn. Our configuration method provides
fine-grained granularity in specification.

e Access Control List (ACL): Escuboallows objects to additionally use an ACL to improve the gitanty
of protection provided by the model. Essentially, the ACkedi®y each object enforces the principle of
least privilege. Section 4.1 describes how an object cafiguoe its ACL.

e Access-control Model: Escubouses a MAC model based on HPR for enforcing access restriicitiside
the browser. The access decisions are based on the coribgyratg assignment and ACL) provided by
the application. The rules in the access-control model eseribed in section 4.2.

This design reflects the three principles we summarized étid®e2.2. With rings and ACLs, privileges
in a web applications are divided into many pieces; thessegiare organized into a widely-used hierarchical
model, making them easy to use. The fine granularity of geadsiand privileges is also achieved through
the introduction of multiple rings. With fine-grained pripals, fine-grained privileges, and well-isolated
privileges, the principle of least privilege can be easiifoeced in web applications.

4.1 Rings, Ring Assignment, and ACL

Escubpo allows web developers to choose a set of rings for their egtidins, and assign the elements of
the web applications into these rings. The set of rings farweb application is independent from that of

7

others; therefore, other than defining the relationshipsregifferent rings, Ecubo does not define what
each ring means, nor does it stipulate the total number gérifihe definitions are up to the web application
designers. Designers can choose the total number of rirgdiththeir application needs; they can make
their own ring assignment, independent of other applioatio

Rings in EScuDoare labeled), 1, .. ., N, whereN is application dependent. In the HPR model, higher
numbered rings have lesser privileges than lower numbéngd.rRing0 is the highest-privileged ring, and
ring N is the least-privileged ring. All examples in this paper, thie sake of simplicity in illustration, use
N = 3. This is a large enough number to demonstrate interactitweas rings without being cumbersome;
other than that, 3 is arbitrary.

In this subsection, we describe how various principals drjdats in the web application are assigned
to rings. Web applications can communicate the ring assimio EScupo either using HTML tags or
optional HTTP headers, depending on the type of the object.

DOM Elements: Recall that DOM elements can act as both principals (e.gptsavoking constructs)
and objects (e.g. HTML excerpts). We use the HTHM1z tag to label each DOM element. HTMiiv tags
were originally introduced to specify style informatiorr fogroup of HTML tags; recently they have been
extended for other purposes [35]. We introduce a new at&iballed theing attribute for thediv tag. This
attribute of thediv tag assigns a ring label to all the DOM elements within thepeanf the tag, which is the
region enclosed by thdiv and/div tags (Figure 2). We refer to suclv tags as access-contré\q) tags.

<div ring=2 r=1 w=0 x=2>
<div ring=3 r=2 w=0 x=2>
</ di v>

</ div>

Figure 2: Ring assignment

HTML allows hierarchicalliv scopes, i.e., div scope can be enclosed entirely within anottiigiscope.
Therefore, ring assignments can also be hierarchical. Totena the integrity of the ring assignment, ring
numbers in the inner scope must be equal to or higher thanrthenumbers in the outer scope (i.e. fewer
privileges). Figure 2 gives an example of ring assignmemect&l attention must be taken to ensure the
integrity of the ring assignment. In Section 5, we will déiserspecific mechanisms to thwart attempts to
compromise the integrity of ring assignment.

When a DOM element acts as an objecsdoDo allows web applications to further specify a finer
grained security policy on how this object can be accessedddlition to the policy already imposed by
the rings. EScuDO uses Access Control Lists (ACL) for this purpose. Each AChsists of three items:
permissions for ead, wri t e, anduse operations. The meanings foead andwr i t e operations are
straightforward; thaise operation needs more explanation. In some scenarios, vasisérs implicitly
access objects on behalf of principals, even though theipdahdoes not explicitly request the access. For
example, whenever an HTTP request is generated for a tafiget Web browsers automatically attach the
cookies belonging to the target site to the HTTP request. é¥ew the principal who initiated the request
did not explicitly reference the cookies. Another exampldelivering a Ul event to a DOM element using
a JavaScript program. We call these implicit accesseadleeoperation.

An ACL is specified using a list of attributes ,(w, x) in the div tag, wherer , w, x refer to the
read, write, anduse operations respectively. The value of each attribute ifiestthe outermost ring
required for the operation. For example, in Figure 2, thewnbstAC tag maps the objects inside its scope
to ring 2 (“ring=2"). However, only principals in rin@ can modify any DOM elements embedded inside

the outermosAC tags (“w=0").

Cookies: Typically, web applications instruct the web browser taesta cookie in the browser using a
set-cookie header in HTTP. In ECuDO, we use an additional optional HTTP header to communicate to
the browsers the ring assignment and ACL for cookies. Caakiat contain sensitive data such as session
identifiers should be mapped to a higher-privileged rindh@dtookies could be mapped to lesser-privileged
rings. If ring mappings are omitted from the HTTP header, &fadlt, all cookies are assigned to rig

Native Code API: The ring mappings for native code APIs such as XMLHttpRetjaes also commu-
nicated to Bcubo using an optional HTTP header. By defaults& Do assigns native code API such
as XMLHttpRequest to the highest-privileged ring 0, conforg to the fail-safe defaults guideline. Web
applications may assign the native code APIs to differetgsi

Browser State: Escubo mandatorily assigns internal browser state such as cachbrawsing history

to ring 0. In our current model, the ring assignment of bravesate is not configurable. The web browser
could manipulate or use the state information. HoweveraSesipt programs in the applications cannot
manipulate the state, unless they belong to ring 0. Thiséaulme there are well-known attacks that abuse
this information for tracking users [18].

4.2 The Mandatory Access Control Policy

Escubpo defines a Mandatory Access Control (MAC) policy based onsriagd ACLs, and this policy
controls how principals in a web page can access the objects.

For the sake of presentation, we use the following notatimléscribing the policy(P > O) denotes a
principal P trying to perform an operatioi on objectO. R(P) andR(O) denote the rings of the principal
and object respectivelyO(P) and O(O) denote the origin of the principal and object. We 0g®), =)
to denote the least-privileged ring that is allowed to catdbe operation> on the objectD. An access
request P > O) is permitted if and only if the access is permitted by all théofving three rules:

1. The Origin Rule: O(P) = O(0)

Origin is the unique combination dprotocol, domain, port) in the URL of the web application that
instantiates the principal or object. The origin rule regsithe principal and object to belong to the
same origin. However, unlike the SOP, this is not the onlydofas access-control decisions.

2. The Ring Rule: R(P) < R(O)

The ring rule factors the trustworthiness of the principatsl objects into the model. The ring rule
requires that the principal’s ring should be of equal of tgeprivilege than the object’s ring.

3. The ACL Rule: R(P) <1Nn(0O,>)

The ACL rule further limits the access control on objectse BCL rule requires that the principal’s
ring be at least as privileged as that specified for the ojperaly the object’'s ACL. Web applications
can avoid interference between JavaScript programs helpig the same ring by assigning a more
restrictive ring in the ACL.

However, it should be noted that web applications cannatciste an ACL with an object that is
less restrictive than the object’s ring. For example, aedbgssigned to ring cannot have an ACL
that permits a principal belonging id, wheren’ > n, to access the object. Even if the ACL is set
incorrectly, the ACL will be ineffective because the Ringl®prevents such an access.

<html><head><title> Paul's Blog </title></head><body>
<div ring=2 r=0 w=0 x=0 nonce=23409750497590487 >
<h1>Scavenger Hunt!<h1>
<hr>
<h2>Paul: | will award the student bringing me the
following items:</h2>

Yellow #2 pencil
Secretary's middle name<//i>
Number of ceiling tiles in our lab
10 <>
11 </div nonce=23409750497590487>
12 <hr>
13 <h4>Comments</h4>
14 <div ring=3 r=1 w=1 x=1 nonce=23409750497590487>
15 Karthick: What will we get?
16 <div ring=0 r=0 w=0 x=0 ><script>
17 // malicious script that may modify the above list. //
18 </script></div>
19 </div nonce=23409750497590487>
20 <hr>
21 </bodv></html>

AL ON=

©oooNe

Figure 3: Assigning DOM elements to rings: This is the webgpafga blog application. The original posted
message is isolated from the user comments by assigningttheiffierent rings.

4.3 An Example

To help understand our model, we give a more complete exampligure 3. This is an example of a blog
application. In Line 2, the original blog post (Lines 2-1%)assigned to ring 2 as a principal, and its ACL
indicates that only ring 0 has the permissiom &ad/ wr i t e/ use it 1. The user comment (Lines 14-19)
is assigned to ring 3, so even if there is a malicious scrigh@éuser comment, the script cannot access
anything in the original blog post. If a ring specificatiomigssing, ECuboassumes a safe default value,
i.e. the ring attribute will be set to the least-privilegeag; and the ACL will be setto =0, w=0, x=0,
allowing only the principals in ring 0 to access it.

5 Security Analysis of Escudo

The key to Escudo’s security enforcement is the safety atedjiity of the configuration provided by the
application. Because Escudo is a MAC model, Escudo readsotifeguration information provided by the
application and performs the ring mapping exactly once ulis's implementation disallows reassignment
of rings, because the configuration information is not egdds JavaScript programs for modification.

We describe additional measures to ensure the safety ofotiifeggaration from tampering. The con-
figuration information for all the principals and objectsimained inside the browser is not exposed to
JavaScript programs. However, because the ring mappirng@ elements is communicated via HTML,
it is vulnerable to certain tampering methods via HTML anda$Bxript. Escudo enforces some additional
rules to prohibit such tampering methods. Broadly, theestan ways that HTML or JavaScript could be
used for illegally elevating privilege.

(1) A Principal Increasing Privilege: A JavaScript program may attempt to remapAghtag to a higher
privileged ring using the DOM API functiosetAttribute. Recall that the configuration information is not
exposed to JavaScript programs. Therefore, such attemptsdify the attributes cannot succeed.

!please temporarily ignore the number in ttence attribute. We will explain the purpose of that attribute #c8on 5.

10

(2) A Principal Trying to Create a New Principal with Elevated Privilege: HTML tags could be vulnera-
ble to node-splitting because of vulnerabilities in thelaagion [21]. In a node-splitting attack, an attacker
may prematurely terminatediv region using</div>, and then start a newiv region with a different set

of ring assignments (potentially with higher privilege$his attack escapes the privilege restriction set on
adiv region by web developers. Node-splitting attacks can beepted by using markup randomization
techniques, which involve incorporating random nonce$@tdtv tags (See Lines 2, 11, 14, and 19 in Fig-
ure 3). Escudo ignores ary/div> tag whose random nonce does not match the number in its mgtéhi

tag. The random nonces are dynamically generated whenrgotiisy a web page, so adversaries cannot
predict those numbers before they insert their malicioudests into a web page.

JavaScript programs can add new DOM elements. A maliciotsSgaipt program may attempt to use
this feature to create a neC tag with higher privileges. Escudo enforcescaping ruleto protect against
such attempts. The scoping rule restricts all child elesiehta DOM element to be mapped to either the
same ring or some less privileged ring. Formally speakingemadiv tag is labeled withr i ng="n", then
the privileges of the principals within the scope of thig tag, including all sub scopes, are bounded by
ring leveln. Escudo’s implementation strictly enforces this even & ting specification of the sub scope
violates this rule.

In a properly configured web application, a malicious pgatiwould belong to the least privileged
ring. As a result, such a malicious principal can only modd@®M elements that are mapped to the least
privileged ring for write operation. That is, a maliciousnmipal can add new DOM elements in only the
least privileged ring. The scoping rule restricts all cldldments of a DOM element to be mapped to either
the same ring or a less privileged ring. As a result, a malgigrincipal cannot create a new principal that
has higher privileges than itself. All the DOM modificatiodsne using the DOM API are subject to the
scoping rule.

6 Evaluation

We implemented a prototype ofSEuDOon the Lobo web browser and evaluated the prototype to astert
the feasibility of deploying and usingdeubo. Our evaluation assessed the following: (1) how web ap-
plications can take advantage o$§&uD0 (2) compatibility with legacy web applications, (3) resaiste to
common XSS and CSRF attacks, and (4) performance overhead.

6.1 Implementation

We implemented a prototype ofSEuDO for the Lobo web browser [34], an extensible Java-based web
browser. Lobo is intended to be a platform for building nevertt-side web languages. Therefore, the
browser architecture is designed to be easily extensibigpldmenting Ecupo on Lobo involved 500
lines of code for extracting, tracking, and enforcing thecEDO policy specified by the web application.
EscubDOs implementation can be categorized into three parts:aetitrg the security contexts, tracking
the security contexts, and enforcing the access contratypol’he ESCuDO implementation maintains a
security context derived from the configuration informatigrovided by the application, tracks it through
the browser, and makes it available whenever a principakbsakequest. The security context is internally
maintained data such as the ring assignments, domain, ahdféxQll the principals and objects. We
implemented the EcuboReference Monitor (ERM), which enforces access-decidiased on the security
contexts. The ERM is spread over several places becausdattesgo embed the checks is specific to the
object type.

11

6.2 Building Escubo-based Web Applications

We analyzed two open-source web applications, phpBB and®@&léndar, and createdsEuDO configu-
rations for securing them. phpBB (http://www.phpbb.com/a multi-user message board application and
PHP-Calendar (http://www.php-calendar.com/) is a muder online calendar application. We analyzed the
principals and objects in these web applications and utwmigheir security requirements. It did not take
more than a day for modifying either application to ussCEDO. A developer who knows the application
better would be able to make the changes faster.

phpBB: phpBB is primarily used to create an online community, inehhiisers may interact with one
another by posting new topics for discussion, respondirgxisting discussion threads, or sending private
messages to other users. The key security concern in phpBppi®priately limiting the capabilities of
messages posted by users. Table 2 describes the secuuineregnts. Application contents, such as trusted
JavaScript programs and HTML forms included into the webedagthe application, require access to the
messages, cookies, and the XMLHttpRequest object. Tagipbes, and private messages, however, do not
require such privileges. Furthermore, user-providedcwpieplies, and private messages are not expected
to manipulate the contents of the web page. We createdssmuBo configuration that enforces these
requirements.

Principal | Modify Messages (DOM) | Access Cookies| Access XMLHttpRequest
Application contents Yes Yes Yes
Topics and replies No No No
Private messages No No No

Table 2: Application contents can modify messages, acamsidas, and access the XMLHttpRequest ob-
ject. However, topics, replies, and private messages dbawat such capabilities.

The Escubpo policy for phpBB is described in Table 3. The head portionhaf page contains style
information and some trusted JavaScript programs. Thesalleaissigned to ring 0 and can be manipulated
only from ring 0. The content enclosed between ltbdy and/body tags is a mix of application provided
content and user-provided topics, replies, and privatesages. The body tags are assigned to ring 1 and can
only be manipulated by principals in rings 0 and 1. Topicglies, and private messages appearing inside the
body are assigned to ring 3, but their ACL is configured sottiheg can be manipulated only by principals
inring 0, 1, and 2. Therefore, content provided by one useompletely isolated from content provided
by another. There are two cookies in the web application,ahaphpbb2mysgl _data and phpbb2mysql _sid.

Both cookies are assigned to ring 1. The cookies are attamtiigdo HTTP requests generated by principals
belonging to rings 0 and 1.
phpBB uses a template engine similarSwarty for separating the HTML layout from the internal

Configuration | Cookies | XMLHttpRequest | Application contents | Topics& Replies | Private Messages

Ring | 1 | 1 | 1 | 3 | 3
Access-control List
Read access <1 <1 <1 <2 <2
Write access <1 <1 <1 <2 <2

Table 3: EscuDo security configuration for phpBB: Application contentspkies, and the XMLHttpRe-
guest object are assigned to ring 1. The ACL for cookies amdiGgion-content is set so that it can be
accessed only from rings 0 and 1. Topics, replies, and grivegssages are assigned to ring 3. The ACL for
topics, replies, and messages are configured to allow omgipals in ring 0-2 to manipulate it, providing
isolation between the messages.

12

processing that produces content for the web page. To ggheifEscuboconfiguration, we made changes
in the template for each web page. Moreover, phpBB createssession cookies and sends them to the
browser using theet-cookie header. There were two places in the source code that cheat®okies. We
used theéheader function to add an additional HTTP header to specify the nrapping for these cookies.

PHP-Calendar. PHP-Calendar is meant to facilitate a group’s collaboeativeating and tracking of
events. An event in PHP-Calendar consists of a text messeggriling the event, time, and date of the
event. The key security concern in PHP-Calendar is appatgbyi limiting the capabilities of events inside
the web application. Table 4 describes the security reaquargs for PHP-Calendar. Application content re-
quires privileges to modify events, session cookies, aedhs XMLHttpRequest object. However, events
should be prohibited from modifying other events via the D@MI and are not expected to manipulate
cookies or use the XMLHttpRequest object. The security irequents for the PHP-Calendar application
are very similar to phpBB.

Principal | Modify Messages (DOM) | Access Cookies| Access XMLHttpRequest
Application content Yes Yes Yes
Calendar events No No No

Table 4: Application content can modify messages, accasiges) and access the XMLHttpRequest object.
However, calendar events do not have such capabilities.

Configuration | Cookies | XMLHttpRequest | Application content | Calendar events

Ring | 1] 1 | 1 | 3
Access-control List
Read access <1 <1 <1 <2
Write access <1 <1 <1 <2

Table 5: EScubo security configuration for PHP-Calendar: Application @rit cookies, and the XML-
HttpRequest object are assigned to ring 1. The ACL for caolied application-content is set so that it can
be accessed only from rings 0 and 1. Calendar events ar@eddigring 3. The ACL for calendar events is
configured to allow only principals in ring 0-2 to manipul#tgproviding isolation between the events.

We created an &uDo configuration for enforcing the security requirements. l@&bdescribes the
Escubo policy for PHP-Calendar. In all the web pages inside PHRe@#dr, the body of the web page
is a mix of application content and user created events. ®hé&nt enclosed between the body tags is
mapped to ring 1 and its ACL is configured to permit manipalatonly by rings 0 and 1. However, as
allowed by the scoping rule, the individual calendar evéimas appear within the body are assigned to ring
3 and configured to allow manipulation by rings 0, 1, and 2. réfoge, the various calendar events are
isolated from one another. All the session cookies in thdigaion are assigned to ring 1, along with the
XMLHttpRequest object.

PHP-Calendar has created an HTML type system using PHPesl&éssseparating the HTML layout
from the internal processing required for producing confen the web page. This organization made
it easier to modify the layout to incorporate the isolatiarlipes. For specifying the ring mapping for
cookies, we use the same technique as we used for phpBB.

Framework Support for E scupo Configuration: Creating EScuboconfigurations for static web pages
is very straightforward because the configuration can bectly embedded in the web page and is not
expected to change. In the case of web applications withfgignt portions of dynamic code, we need

13

more systematic methods for specifying the configurati@tberwise, specifying the configuration will be
cumbersome.

HTML template engines provide a structured method for isajgthe view elements from the business
logic. The view elements are specified in a template and datguated at run-time is plugged into the
template to create the web page. Th&cE DO configuration can be specified in the template, isolating the
configuration from dynamic data. Sophisticated templagires such as StringTemplate [29] provide a
stricter separation between view and model, making it easpdnage Ecubo configurations for large-
scale web applications.

Language-based information flow could also be used to cEeste)DO configurations. The SIF frame-
work is an extension of the Java Servlet framework to enfomrdidentiality and integrity policies at run-
time using language-based information flow [10]. In SIF,aleper provides annotations in the source
code to mark the confidentiality and integrity policies. $&golicies are then enforced at run-time when
the program executes at the server. The confidentiality aredjiity policies on the data can be used to
automatically derive the &cuDo configuration for the web page, when the web page is createdard/
currently working on an SIF extension that could achievs.thife are unable to describe the extension in
detail because of space limitations.

6.3 Compatibility with Legacy Applications

There are two types of compatibility concerns with respecEscubpa (1) compatibility of EScubo
configured applications with nonde upo browsers, and (2) compatibility ofS£uD0O-based browsers with
non-Escupo applications.

Escubo-configured applications are compatible with noselubo browsers. The only aspect that
distinguishes an &ubo-based application is the availability of ring mappings émokies, the XML-
HttpRequest API, and DOM objects. For DOM objects, ring niagp are specified usingC tags, which
are additional attributes in th#i v tag. Non-EScuDo browsers would simply ignore these attributes. For
cookies and the XMLHttpRequest API, ring mappings are $@ecusing an optional HTTP header; they
also will be ignored by non-&cubpo browsers.

Escubo-based browsers are also compatible with n@G&bo applications. Non-BEcubo appli-
cations do not provide any ring mapping. Therefore, all ggals and object inside the application are
assigned to a single ring, effectively mimicking the samigin policy.

6.4 Defense Effectiveness

We evaluated the effectiveness o &D0o in addressing common XSS and CSRF problems. We created
XSS and CSRF attacks for both applications. For the purpbsgaduation, we removed some protection
mechanisms in the applications to facilitate the attaak&oth applications, we removed the input validation
routines to facilitate XSS attacks. In phpBB, we removedstheret-token validation protection to facilitate
CSREF attacks. PHP-Calendar had no protection mechanism@SiRF attacks.

We created 4 XSS attacks for each web applications. In phpRRreated XSS attacks for posting new
messages on behalf of victim users and for modifying exgstiressages. In PHP-Calendar, we created XSS
attacks for creating new events on behalf of victim userd, modifying existing events. All the attacks
were neutralized in the presence of@&D0. This is because we structured the application to map all
user-influenced regions to belong to ring 3.

We created five CSRF attacks for each web applications. Wepsatmalicious web site that crafted
cross-origin requests for the two web applications, whesessed by a user. When accessed using our
Escubo-enabled Lobo browser, the malicious site still issued dwuests for the two web applications.

14

Without Escudo KXX=x Escudo &6mem

180
160

140 |
120 |
100 |
80 |
ot

4
[t

Parsing and rendering time (ms)

I I IR IO H

el

60 |]
40 B e
o e B %&a

Figure 4: Performance overhead in parsing and rendering different scenarios).

However, Escupodid not attach the session cookie automatically to the regubecause of the insufficient
privileges of the principals), neutralizing the attacks.

6.5 Performance Overhead

EscubDOs execution is invoked during both parsing and renderingelh pages and while responding to Ul
events. Therefore, to measure the performance overheadulstng ESCUDO, we measured the slowdown

in both activities. We instrumented Lobo to measure the arhoitime taken to parse the web page and also
to respond to Ul events. In both cases, we did not observe atigeable overhead in any of the activities.
We setup 8 web pages varying amountsAQf tags and dynamic content. To measure the overhead we
compared the time taken for parsing and rendering the 8 pagdsveraged the rendering time over 90
executions (Figure 4). The average overhead was 5.09%cUEO primarily does bookkeeping to keep
track of the principals and this activity does not add anyi§icant cost. Similarly, we did not notice any
overhead for Ul event handling.

7 Related Work

Same-origin policy (SOP) extensionsJackson et al. [18] extends the SOP to browser cache comtdnt a
visited link information to protect user privacy. Livshiésd Ulfar [27] extends the SOP to additionally
account for the principal names added to tag groups for alézitrg code-injection attacks. Karlof et al. [24]
extends the SOP to account for certificate errors in therotgdistinguish resources in the authentic domain
from a spoofed domain to detect dynamic-pharming attackhileMach of these proposals addresses a
specific shortcoming in the SOP, they do not address the glegegy between the fundamental model and the
security requirements of modern web applicationscEDois a fine-grained protection model specifically
designed to meet the protection needs of modern web apphsat

New browser architectures: The OP web browser isolates each web page instance and sériowser
components using OS processes [14]. The architecture noakesiunication between components explicit
and interposes itself in all inter-process communicatmmprovide isolation guarantees. Tahoma isolates
each instance of a web application inside the browser usipgrate virtual machines [20]. The policy
for identifying program boundaries and the permissibleratizristics, such as which URL may be visited
in each VM, are specified in a manifest. Essentially, thesevao different approaches for isolating web
applications from one another and limiting their permiksibehavior. Both share the weakness that the
granularity of protection is the web page, rather than dbj&dthin the page. In comparison,SEUDO
provides more fine-grained protection.

15

Chromium [5, 31] and Gazelle [38] are two new web browser iggctures that bifurcate the browser
into two portions, kernel and applications, for achievirggtér security and reliability. However, the access
control mechanism is still based on the same-origin policy.

XSS and CSRF solutions: Current work has proposed several solutions for XSS and C&RFions.
Approaches to XSS include taint-tracking [16, 28, 30], peifent-side solutions [26, 37], pure server-side
approaches [9], and co-operating defenses [21]. Simjlerbss-site-request forgery solutions can be cate-
gorized into client-side methods [22], HTTP referrer headdidation [25], proposals for new headers [4],
and secret-token validation techniques [23]. All theseatsmhs are attack-specific patches to the application,
framework, or browser. In contrast to these solutions thdtess the symptoms of the underlying problem,
Escubois not a patch for XSS or CSRF problems. RathescEDO is a fine-grained protection model
for web browsers. XSS and CSRF problems are thwarted as aff@s of addressing the fundamental
weakness in the protection model.

In addition to patching, input validation and sanitizatisra basic and primitive defensive coding tech-
nique for avoiding XSS. Frameworks such as PHP and ASP.NEVig® libraries for this purpose. Fil-
tering and sanitizing input, although useful as a sanityckhenay be bypassed by known evasion tech-
niques [15,17]. As we showed earlier in the papescHEDO prevents such attacks even when the front-line
defense has been bypassed.

Mashup solutions: Mashups applications integrate content from several egipdins from differing origins
into one web page. A key security concern in such applicatisisolating the resources of each application
from one another. Several frame-based design proposatmashups have contributed new primitives and
communication methods with minimal or no changes to the besw{3, 11, 13, 19]. Still, these proposals
have a coarse-grained privileged model because they aedl lmasthe same-origin policy. Mashups are
outside the scope of this paper. HowevesdbDJs fine-grained protection model could be extended to
address security requirements for mashup applicationpjoariately describing the relationship between
the rings of applications from different origins.

JavaScript verifiers: There are several static and dynamic verifiers that couldéd to verify conformance
of a JavaScript program to a safe subset of the languageld,29]. The primary target of these tools are
applications that embed untrusted and semi-trusted Jepamgrams from third parties. Verifiers can be
considered as an alternative approach to dealing with thebsewvser access-control failure. However, a
publisher should trust the content provider to use the eerdn the JavaScript program. For example, a
publisher may lease a portion of his page to an advertiserreniork. Currently, the publisher has to trust
the advertising network to use a verifier on the JavaScrimnam provided to display the advertisement. In
the case of EcuDOQ, a publisher could take advantage of the browser proteatiotel to enforce restrictions
on the embedded JavaScript content rather than trusting\aamtesement network. Furthermores&DO

is generic protection model and constraints not only JawpiSarograms, but also HTTP-request initiating
principals. Therefore, & ubDocan restrict the actions of an untrustworthy HT TP-requesating principal
manipulating more trustworthy resources (eg. CSRF atjablkis JavaScript verifiers cannot do this because
these principals are outside the scope of their protection.

8 Conclusion

There is a disconnection between the protection needs oématdeb applications and the prevailing pro-
tection model-same-origin policy. We outlined three chiastics that a protection model should have to
address the disconnection. We presented o, a new protection model that is systematically designed
to fulfill the three requirements using mandatory accesgrobprinciples. We implemented a prototype of
Escubpoin the Lobo web browser, and illustrated how web applicatioan use ECuDO to secure their
resources using case studies. Our evaluations resultsatedihat Ecupo is a practical access-control

16

model. In addition, Ecubocan be incrementally deployed because it retains backveaamgatibility with
legacy applications.

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]
(23]
[24]

[25]
[26]

[27]

(28]

[29]
[30]

[31]

Caja.htt p:// code. googl e. coni p/ googl e- caj a/ .

Web Sandboxht t p: / / websandbox. | i vel abs. cont .

MashupOS: operating system abstractions for clientmps. InHOTOS, 2007.

A. Barth, C. Jackson, and J. C. Mitchell. Robust deferisesross-site request forgery. ACM CCS, 2008.

A. Barth, C. Jackson, and C. Reis. The security architecof chromium browsemt t p: / / crypt o. st anf ord. edu/
websec/ chrom unt .

D. E. Belland L. J. La Padula. Secure Computer SystemfigthExposition and Multics Interpretation, 1976.
K. J. Biba. Integrity Considerations for Secure Comp@gstems, April 1977.
M. A. Bishop. The Art and Science of Computer Security. Addison-Wesley Longman Publishing Co., Inc., 2002.

P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise &yt Prevention of Cross-Site Scripting Attacks .OMMVA,
2008.

S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing cateitiality and integrity in web applications. USENIX-SS, 2007.
S. Crites, F. Hsu, and H. Chen. Omash: enabling secubemashups via object abstractions. AGM CCS, 2008.
D. Crockford. ADSafehtt p: / / ww. adsaf e. or g.

F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and &hihama. Smash: secure component model for cross-domain
mashups on unmodified browsers.ViWAWV, 2008.

C. Grier, S. Tang, and S. T. King. Secure web browsindn e op web browser. IFEEE S& P, 2008.

J. Grossman. Cross-site scripting worms and virusé® impending threat and the best defenskt t p: / / www.
whi t ehat sec. com downl oads/ WHXSSThr eat s. pdf .

M. V. Gundy and H. Chen. Noncespaces: Using randonuimatid enforce information flow tracking and thwart crosg-sit
scripting attacks. IINDSS, 2009.

R. Hansen. XSS cheat shebt.t p: // ha. ckers. org/ xss. htn .
C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pctitey browser state from web privacy attacks WWWV, 2006.
C. Jackson and H. J. Wang. Subspace: secure cross{ieoramunication for web mashups. MWW, 2007.

R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble, and H.eMy. A safety-oriented platform for web applications. In
|IEEE S& P, 2006.

T. Jim, N. Swamy, and M. Hicks. Defeating script injectiattacks with browser-enforced embedded policiesSVWWaW,
2007.

M. Johns and J. Winter. RequestRodeo: Client-sideggtmn against session riding. ®WASP Europe, 2006.
N. Jovanovic, E. Kirda, and C. Kruegel. Preventing srsite request forgery attacks. IIBEE S& P, 2006.

C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamiharming attacks and locked same-origin policies for web
browsers. IMACM CCS, 2007.

F. Kerschbaum. Simple cross-site attack preventinrgetureComm, 2007.

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxaglient-side solution for mitigating cross-site scriptiattacks. In
ACM SAC, 2006.

B. Livshits and U. Erlingsson. Using web applicatiomstruction frameworks to protect against code injectidaciks. In
PLAS 2007.

Y. Nadji, P. Saxena, and D. Song. Document structuregiitty: A robust basis for cross-site scripting defense NS
20009.

T. J. Parr. Enforcing strict model-view separationémplate engines. IMWAMW, 2004.

T. Pietraszek and C. V. Berghe. Defending against tigacattacks through context-sensitive string evaluatiomRAID,
2005.

C. Reis and S. D. Gribble. Isolating web programs in mmod®owser architectures. EuroSys, 2009.

17

[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

J. H. Saltzer and M. D. Schroeder. The protection ofrimfation in computer system®roceedings of the IEEE, 1975.
M. D. Schroeder and J. H. Saltzer. A hardware architector implementing protection ring€ommun. ACM, 15(3), 1972.
J. Solorzano. The Lobo Proje¢tt t p: / /| obobr owser . or g/ .

M. Ter Louw, P. Bisht, and V. Venkatakrishnan. Analyefshypertext isolation techniques for XSS prevention. WBSP,
2008.

A. Vance. Times web ads show security breachntt p://ww. nyti nes. com 2009/ 09/ 15/t echnol ogy/
i nternet/15adco. htni .

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegahd G. Vigna. Cross-site scripting prevention with dyradata
tainting and static analysis. MDSS, 2007.

H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudury, &hd/enter. The multi-principal os construction of the géa&leb
browser. INUSENIX-SS, 2009.

K. Zyp. Secure Mashups with dojox.secure. http://ww. sitepen. cont bl og/ 2008/ 08/ 01/
secur e- mashups- wi t h- doj oxsecure/ .

18

	ESCUDO: A Fine-grained Protection Model for Web Browsers
	Recommended Citation

	tmp.1283347294.pdf.dNynE

