
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

2009

ESCUDO: A Fine-grained Protection Model for Web Browsers ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman
Syracuse University

Wenliang Du
Syracuse University, wedu@syr.edu

Balamurugan Rajagopalan
Syracuse University

Steve J. Chapin
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Jayaraman, Karthick; Du, Wenliang; Rajagopalan, Balamurugan; and Chapin, Steve J., "ESCUDO: A Fine-
grained Protection Model for Web Browsers" (2009). Electrical Engineering and Computer Science. 5.
https://surface.syr.edu/eecs/5

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/5?utm_source=surface.syr.edu%2Feecs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SYR-EECS-2009-01 Sep 01, 2009

ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman
Wenliang Du

Balamurugan Rajagopalan
Steve J. Chapin

kjayaram@syr.edu
wedu@syr.edu
barajago@syr.edu
chapin@syr.edu

ABSTRACT: Web applications are no longer simple hyperlinked documents. They
have progressively evolved to become highly complex---web pages combine
content from several sources (with varying levels of trustworthiness), and
incorporate significant portions of client-side code. However, the prevailing web
protection model, the same-origin policy, has not adequately evolved to manage
the security consequences of this additional complexity. As a result, web
applications have become attractive targets of exploitation. We argue that this
disconnection between the protection needs of modern web applications and the
protection models used by web browsers that manage those applications
amounts to a failure of access control. In this paper, we present Escudo, a new
web browser protection model designed based on established principles of
mandatory access control. We describe our implementation of a prototype of
Escudo in the Lobo web browser, and illustrate how web applications can use
Escudo for securing their resources. Our evaluation results indicate that Escudo
incurs low overhead. To support backwards compatibility, Escudo defaults to the
same-origin policy for legacy applications.

KEYWORDS: Web browsers, access control, web security

Syracuse University - Department of EECS,
4-206 CST, Syracuse, NY 13244

(P) 315.443.2652 (F) 315.443.2583
http://eecs.syr.edu

ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin
Department of EECS, Syracuse University
{kjayaram,wedu,barajago,chapin}@syr.edu

Abstract

Web applications are no longer simple hyperlinked documents. They have progressively evolved
to become highly complex—web pages combine content from several sources (with varying levels of
trustworthiness), and incorporate significant portions ofclient-side code. However, the prevailing web
protection model, thesame-origin policy, has not adequately evolved to manage the security conse-
quences of this additional complexity. As a result, web applications have become attractive targets of
exploitation. We argue that this disconnection between theprotection needs of modern web applications
and the protection models used by web browsers that manage those applications amounts to a failure of
access control. In this paper, we present ESCUDO, a new web browser protection model designed based
on established principles of mandatory access control. We describe our implementation of a prototype
of ESCUDO in the Lobo web browser, and illustrate how web applicationscan use ESCUDO for securing
their resources. Our evaluation results indicate that ESCUDOincurs low overhead. To support backwards
compatibility, ESCUDOdefaults to the same-origin policy for legacy applications.

1 Introduction

Initially, web applications comprised a set of documents that mostly contained text to be rendered and hy-
perlinks to other documents, with little or no client-side code. All the content originated from a single,
trusted source. Over the last several years, in the race to add interactive features, web applications have pro-
gressively become more complex. In more recent times, web applications have evolved to become highly
interactive applications that execute on both the server and client. As a result, web pages in modern appli-
cations are no longer simple documents–they now comprise highly dynamic contents that interact with each
other. In some sense, a web page has now become a “system”–thedynamic contents are programs running
in the system, and they interact with users, access other contents both on the web page and in the hosting
browser, invoke browser APIs, and interact with programs onthe server side.

Moreover, today’s web pages no longer draw contents from a single source; contents are now derived
from several sources with varying levels of trustworthiness. Contents may be included by the application
itself, derived from user-supplied text, or from partiallytrusted third parties. During parsing, rendering, and
execution inside the browser, the dynamic and static contents of web pages can both act and be acted upon
by other entities—in classic security parlance, they can beinstantiated as both principals and objects. These
principals and objects are only as trustworthy as the sources from which they originate.

The security of a web application is primarily dependent on the integrity and confidentiality of its re-
sources inside the web browser. For example, session identifiers in cookies need to be protected against
access by untrusted principals; code from untrusted sources must be authorized before it is allowed to mod-
ify any trusted content on a web page. Without appropriate access control in web applications, we cannot
preserve the trustworthiness of contents, and security could be compromised. If we consider each web page
as a “system,” we need an adequate protection model in browsers to mediate the interactions within such a
system.

1

All web browsers implement a protection model called thesame-origin policy. Unfortunately, this model
has not adequately evolved to manage the security consequences of the additional complexity in modern web
pages. It cannot distinguish gradations in trustworthiness, nor does it provide sufficient isolation between
web browser objects to ensure proper access control. As a result, web applications have become attractive
targets of exploitation. Both cross-site-scripting attacks and cross-site-request forgery attacks are examples
of untrusted principals exercising control over trusted objects inside the web browser. We argue that the root
cause of the problem is a failure of access control. The same-origin policy clearly violates two important
principles of access control, namely separation of privilege and principle of least privilege [32].

Because of access-control failures, web applications thatembed third party content in their web page
cannot restrict the permissions of the third party code. Forexample, a blog publisher may sell a small
portion of his web page to an advertising network. The advertising network, in turn, accepts Javascript ads
from its clients and displays them on the publisher’s web page. The publisher has no further control over
what appears in that ad space—he trusts the network to have verified all content. An attacker posing as an
advertiser could compromise the integrity of the publishers web application using a malicious JavaScript
program [36]. JavaScript verifiers such as ADsafe [12] couldbe used by an advertisement network to verify
a JavaScript program, but that does not change the publisher’s position: he is relying on a third-party to
vouch for the trustworthiness of Javascript programs that will run in his own web pages.

There have been other approaches for dealing with this access-control failure. Web applications, as a
first line of defense, employ input validation and content filtering at the server when generating the web
page. The objective of this step is preventing known attacksfrom instantiating an untrustworthy principal
inside a web page. For example, to defeat cross-site scripting attacks, we can filter out all the code from
contents originating from untrusted sources. This first-line of defense has proven to be difficult to implement
properly; many vulnerabilities are because of the errors insuch a process [15,17]. Second, there are browser
patches that address specific attacks [18]. In general, all these approaches address the symptoms of specific
problems without addressing the fundamental root cause—the lack of a robust protection model suitable for
modern web applications.

We describe an alternate approach that addresses the access-control failure in web browsers by redesign-
ing the underlying access-control model, attacking the root of the problem. Redesigning the access-control
model for web browsers involves four challenges. First, theaccess-control model should be able to identify
principals and objects at required granularity. Second, the access-control model should use an appropriate
policy to secure content with varying levels of trustworthiness. Third, a challenge unique to web applica-
tions is distributed enforcement–the applications at the server are aware of trustworthiness, but the actual
interactions that have to be restricted happen at the browser. Finally, the new model should be backward
compatible with the same-origin policy to facilitate incremental deployment.

In this paper, we describe ESCUDO, a fine-grained web browser protection model, based on vetted
access-control principles to protect modern web applications. To the best of our knowledge, this is the first
work on redesigning the access-control model for web browsers. ESCUDO is designed to enforce separation
of privilege and the principle of least privilege, and to provide adequate granularity in both specification and
enforcement. We argue that the protection requirements of web applications are similar to operating systems.
Some operating systems use hierarchical protection rings (HPR) to enforce their protection requirements.
ESCUDO is an adaptation of HPR tailored to meet the protection requirements of web applications.

To address the distributed enforcement problem, we describe a method that web applications could use
to identify the principals, objects, and their trustworthiness and configure their resources at the granularity
required by them to reflect their protection needs. The method is backward compatible with non-ESCUDO

browsers, which ignore the configuration and default to the same-origin policy.
We implemented a prototype of ESCUDO for the Lobo browser and our evaluation results show that

ESCUDO incurs around 5% overhead. We illustrate our experience in building web applications for ESCUDO

using two open-source web applications as case studies. We modified two open source web applications to

2

use ESCUDO. We analyzed the web applications to understand their security requirements and configured
them to use ESCUDO to enforce the security requirements. The key contributions of the paper can be
summarized as follows:

• ESCUDO is a new fine-grained web browser protection model to meet theprotection requirements of
modern applications.

• A backward-compatible configuration method that web applications can use to identify the principals,
objects, and their trustworthiness in order to use ESCUDO.

• A prototype implementation of ESCUDOon the Lobo web browser.

• Case studies illustrating our experience of building web applications for ESCUDO.

2 Protection Requirements for Web Applications

In this section, we will describe the protection requirements of web applications by providing an analysis
of the principals, objects, and the characteristics of modern web applications. Finally, we describe the
inadequacy of the same-origin policy in meeting the protection requirements.

2.1 Principals and Objects

In a web application, principals are action-inducing HTML excerpts such as JavaScript programs, and ob-
jects are application resources such as the web page contents and cookies that are targets of actions. Some
HTML excerpts, such as JavaScript programs, may act as both principals and objects. Table 1 describes the
principals and objects inside a web application.

HTTP-request Issuing Principals: HTTP-request issuing principals are HTML tags such asa, img, form,
embed, andiframe that instruct the web browser to issue an HTTP request.

Script-invoking Principals: Script-invoking principals are HTML constructs such asscript and the CSS
expression that can invoke the JavaScript interpreter. Additionally,web applications can specify user-
interface (UI) event handlers to be invoked for specific events using attributes such asonload,onmouseover,
etc.

Plugins: Plugins are content-specific run-time environments for certain types of contents such as Flash,
Silverlight, and PDF. Additionally, browsers such as Firefox provide a framework for creating extensions,
enabling users to extend the functionality of the browser. Plugins and extensions have their own security
models and may or may not be controlled by the web applications. In this paper, we only focus on the
principals that can be controlled by the web applications.

Document object model (DOM): Internally, web browsers represent the contents of a web page using a
data structured called the DOM, in which all the HTML tags andtheir content are organized in a hierarchical
fashion. Each HTML tag is a DOM element. DOM elements have a special feature—they can act as
both principals and objects. Some DOM elements are script-invoking principals or HTTP-request initiating
principals. Such DOM elements act as principals momentarily when they are instantiated. On the other
hand, they act as objects when they are the targets of modification via the DOM API.

3

Principals Objects

HTTP-request issuing prin-
cipals

Document object model
(DOM)

- HTML Form
- HTML Anchor Cookies
- HTML Img
- HTML Iframe Native Code API
- HTML Emded -XMLHttpRequest API

-DOM API
Script-invoking principals
- JavaScript Programs Browser State
- UI event Handlers - History

- Visited link information
Plugins (Cannot be con-
trolled by web applications)

Table 1: Principals and objects inside the web browser.

Cookies: Web applications create cookies in web browsers; cookies typically contain data used to track
sessions. After a cookie is created, web browsers attach thecookies in all subsequent HTTP requests back
to the web application. Therefore, cookies are objects thatare implicitly accessed in all HTTP requests. In
addition, JavaScript programs may explicitly manipulate cookies.

Native Code: Native browser code is exposed to JavaScript programs via anAPI. For example, the
XMLHttpRequest API is an example of native code that helps JavaScript programs interact with server-
side programs. Similarly, the DOM API is used by JavaScript programs to access and modify the web page.
Web applications may not want to expose these API to untrusted code. Therefore, the ability to invoke such
API should be a controllable privilege.

Browser State: Web browsers maintain browsing history and visited link information for each browsing
session with a web site. This information is part of the stateof a browsing session and is accessible to
JavaScript programs through the DOM API. Browsing history is a log of recently visited URL and users
may use this information to instruct the web browser to render a previously visited web page. Visited link
information is used by web browsers to differentiate recently visited from unvisited URL—typically, web
browsers use differing colors to display visited and unvisited links.

2.2 Protection Needs

We outline two characteristics of modern applications thatare relevant for motivating our protection require-
ments:

Increasing Use of Client-side Code: Earlier, web applications primarily executed on the serverand only
web pages were delivered to browsers. With the introductionof JavaScript programs, web applications could
additionally execute in the browser to provide some interactive features. JavaScript programs are commonly
used to display drop-down menus by updating the contents of the web page. Furthermore, AJAX enables
JavaScript programs to communicate with the application atthe server. An instant-messaging application
might use an AJAX-based JavaScript program for communicating with the server and updating the chat
window.

4

Content with Varying Levels of Trustworthiness: In modern applications, the content inside web pages
is derived from multiple sources with nonuniform trustworthiness. Therefore, content inside web pages is
no longer only trusted and provided by the application itself. There are several examples of applications
including untrusted content. Blogs and wikis enable users to provide arbitrary text that will be part of the
web pages. Because the text is supplied by the user, it shouldnot be trusted. There are also examples of
applications including semi-trusted content. An online auction application may enable a seller to create
a web page in its application and may also allow the seller to provide JavaScript programs in the page
to enable some rich functionality. A social networking application may allow users to add applications,
essentially JavaScript programs, in their profile to extendthe functionality of their profile pages. Web
applications frequently add third party JavaScript programs for adding some features. For example, an
application may include third party JavaScript program forkeeping track of site statistics. Online advertising
that we discussed earlier is another example of including semi-trusted content.

As a direct consequence of these two characteristics, we have principals of varying trustworthiness
inside the web page. Currently, these principals access or modify content in the web page, invoke native
API, and communicate with the application at the server, irrespective of their trustworthiness. Saltzer and
Schroeder [32] have summarized eight design principles forbuilding protection mechanisms: economy of
mechanism, fail-safe defaults, complete mediation, open design, separation of privilege, least privilege,
least common mechanism, and psychological acceptability.Of the eight guidelines, the same-origin policy
clearly violates two principles, namely least privilege and separation of privilege, but has done a fairly good
job with respect to the other characteristics. The same-origin policy’s non-conformance with sound design
principles leads directly to its failure to meet the protection needs of modern applications. Based on our
analysis of modern applications and vetted principles, a protection model for web browsers requires three
characteristics:

1. Separation of Privilege: Separation of privilege indicates that, if possible, privileges in a system
should be divided into less powerful privileges, such that no single accident, deception, or breach of
trust is sufficient to compromise the protected information.

2. Principle of Least Privilege: The protection model should be able to limit the interactions of princi-
pals based on their trustworthiness. Essentially, a principal should not have more privileges to access
information or resources than required for its legitimate purpose. In addition, a principal should not
be able to elevate its privilege in an uncontrolled manner.

3. Fine Granularity: The protection model should be able to identify principals at a sufficient granular-
ity to ascertain their trustworthiness. Therefore, origins alone are insufficient for this purpose. Having
fine granularity is essential for achieving the principle ofleast privileges.

2.3 The Same-Origin Policy is Inadequate

The same-origin policy (SOP) identifies an application’s origin as a unique combination of〈protocol, do-
main, port〉. For instance,http://www.amazon.com/index.php andhttp://www.amazon.
com/search.php belong to the same origin, buthttp://www.gmail.com and http://www.
amazon.com do not belong to the same origin because they have differing domains. Similarly,http:
//www.gmail.com andhttps://www.gmail.com do not belong to the same origin because they
use different protocols. Web browsers associate application resources such as cookies and document object
model (DOM) to their origin, and the SOP prevents JavaScriptprograms from one origin from accessing
application resources belonging to other origins.

Under the SOP, all principals inside the web application areassociated with a single principal identified
by the origin and are associated with all the privileges irrespective of their trustworthiness, violating the

5

principle of least privilege. In addition, principals and resources across applications are not appropriately
isolated from one another. Both cross-site-scripting (XSS) attacks and cross-site-request forgery (CSRF)
attacks are a side effect of these inadequacies.

In XSS attacks, an attacker deftly constructs input data foran application that is interpreted as JavaScript
by the web browser and executes with all privileges. Ideally, the JavaScript program should execute with
limited or no privileges because it was derived from untrusted web content.

In CSRF attacks, a malicious site forges and injects a request into a victim user’s active session with
a trusted site. Some HTML tags such asa, img, andiframes can initiate an HTTP request. There are no
restrictions on the URL that can be used in these HTML tags. Inaddition, web browsers automatically attach
the target site’s cookies to the HTTP request, irrespectiveof who is making the request. A malicious site
abuses this weakness to forge a request for a trusted site. Ideally, principals and objects across applications
should be isolated from these types of unintended interferences.

3 Our Approach

We need fundamental changes to the existing web browser protection model to address the protection needs
of modern applications. Our approach is to design a web browser protection model based on vetted manda-
tory access-control (MAC) principles. In our proposed model, developers can configure their application by
appropriately specifying the principals, objects, and their trustworthiness. Web applications communicate
the configuration to the web browser, where the proposed access-control model enforces access decisions
based on the configuration. This is typical of any MAC system,where a system administrator configures the
system and system-level mechanisms enforce access decisions based on the configuration [8].

Conceptually, access control is the ability to decide who can do what to whom in a system. An access-
control system consists of three components: principals, objects, and an access-control model. Principals
(the who) are the entities in the system that can manipulate resources. Objects (the whom) are the resources
in the system that require controlled access. An access-control model describes how access decisions are
enforced in the system; the expression of a set of rules within the model is an access-control policy (the
what).

Based on the analysis of the protection needs in web applications, it is clear that a hierarchical multi-
level MAC model can address these needs. In such models, a system organizes its principals and objects
into hierarchies based on their trustworthiness, and assigns appropriate privileges to each hierarchy. Access
decisions are based on the hierarchy of the principals and objects. For example, SELinux and Windows
Vista have adopted a MAC model to enforce restrictions on programs based on their trustworthiness.

We analyzed several existing multi-level MAC models such asBiba [7], Bell-LaPadula [6], and hier-
archical protection rings (HPR) [33]. There are several similarities between the protection needs of web
applications in web browsers and those of programs in operating systems. In operating systems, a pro-
gram with user-level privileges must be isolated from a program with kernel-level privileges. In addition,
the memory address spaces of user programs should be isolated from one another. Our design is primarily
motivated by this similarity to protection needs in operating systems.

HPR was first introduced in the Multics operating system. In Multics, the access permissions are orga-
nized into hierarchical rings numbered from0 to n (Figure 1). Ring 0 is the most privileged ring and ring
n is the least privileged ring. The access permissions in a ring x are a subset of access permissions in ring
y, wheneverx > y. A process in a particular ring is limited to use the access permissions in its own ring or
outer rings. There are special gates between rings to allow aprocess from an outer ring to request some re-
sources from an inner ring in a controlled fashion. To isolate the memory address spaces of user programs,
Multics uses segment descriptors. Organizing the program in rings provides separation of privilege, and
memory isolation enforced via segment descriptors furtherincreases the granularity of protection offered by

6

Figure 1: Protection rings: All principals and objects are organized into protection rings. The innermost
ring is the most restricted ring and the outermost ring is theleast restricted ring.

rings and enforces the principle of least privilege. ESCUDO is an adaptation of HPR to meet the protection
requirements of web applications.

4 The ESCUDO Access Control Model

ESCUDOconsists of four components:

• Rings: ESCUDO treats each web page as a “system,” and all the elements in this system are placed in
a static set of per-page protection rings. This is similar toHPR in operating systems. However, unlike
in operating systems, where there is only one set of rings, a browser can simultaneously host multiple
systems (i.e. web pages), the set of rings for each web page isindependent from the others. The rings of
web pages belonging to the same origin are compatible with each other.

• Ring Assignments: A web application should provide the ring assignments for all the elements in the
system based on the trustworthiness of the elements and protection needs. The ring assignment method
varies depending on the type of element and is discussed in section 4.1. This step is called “configu-
ration,” analogous to a system administrator configuring a system. Our configuration method provides
fine-grained granularity in specification.

• Access Control List (ACL): ESCUDOallows objects to additionally use an ACL to improve the granularity
of protection provided by the model. Essentially, the ACL used by each object enforces the principle of
least privilege. Section 4.1 describes how an object can configure its ACL.

• Access-control Model: ESCUDOuses a MAC model based on HPR for enforcing access restrictions inside
the browser. The access decisions are based on the configuration (ring assignment and ACL) provided by
the application. The rules in the access-control model are described in section 4.2.

This design reflects the three principles we summarized in Section 2.2. With rings and ACLs, privileges
in a web applications are divided into many pieces; these pieces are organized into a widely-used hierarchical
model, making them easy to use. The fine granularity of principals and privileges is also achieved through
the introduction of multiple rings. With fine-grained principals, fine-grained privileges, and well-isolated
privileges, the principle of least privilege can be easily enforced in web applications.

4.1 Rings, Ring Assignment, and ACL

ESCUDO allows web developers to choose a set of rings for their applications, and assign the elements of
the web applications into these rings. The set of rings for one web application is independent from that of

7

others; therefore, other than defining the relationships among different rings, ESCUDOdoes not define what
each ring means, nor does it stipulate the total number of rings. The definitions are up to the web application
designers. Designers can choose the total number of rings that fit their application needs; they can make
their own ring assignment, independent of other applications.

Rings in ESCUDOare labeled0, 1, . . ., N , whereN is application dependent. In the HPR model, higher
numbered rings have lesser privileges than lower numbered rings. Ring0 is the highest-privileged ring, and
ring N is the least-privileged ring. All examples in this paper, for the sake of simplicity in illustration, use
N = 3. This is a large enough number to demonstrate interaction between rings without being cumbersome;
other than that, 3 is arbitrary.

In this subsection, we describe how various principals and objects in the web application are assigned
to rings. Web applications can communicate the ring assignment to ESCUDO either using HTML tags or
optional HTTP headers, depending on the type of the object.

DOM Elements: Recall that DOM elements can act as both principals (e.g. script-invoking constructs)
and objects (e.g. HTML excerpts). We use the HTMLdiv tag to label each DOM element. HTMLdiv tags
were originally introduced to specify style information for a group of HTML tags; recently they have been
extended for other purposes [35]. We introduce a new attribute called thering attribute for thediv tag. This
attribute of thediv tag assigns a ring label to all the DOM elements within the scope of the tag, which is the
region enclosed by thediv and/div tags (Figure 2). We refer to suchdiv tags as access-control (AC) tags.

<div ring=2 r=1 w=0 x=2>
...
<div ring=3 r=2 w=0 x=2>
...
</div>

</div>

Figure 2: Ring assignment

HTML allows hierarchicaldiv scopes, i.e., adiv scope can be enclosed entirely within anotherdiv scope.
Therefore, ring assignments can also be hierarchical. To maintain the integrity of the ring assignment, ring
numbers in the inner scope must be equal to or higher than the ring numbers in the outer scope (i.e. fewer
privileges). Figure 2 gives an example of ring assignment. Special attention must be taken to ensure the
integrity of the ring assignment. In Section 5, we will describe specific mechanisms to thwart attempts to
compromise the integrity of ring assignment.

When a DOM element acts as an object, ESCUDO allows web applications to further specify a finer
grained security policy on how this object can be accessed, in addition to the policy already imposed by
the rings. ESCUDO uses Access Control Lists (ACL) for this purpose. Each ACL consists of three items:
permissions forread, write, anduse operations. The meanings forread andwrite operations are
straightforward; theuse operation needs more explanation. In some scenarios, web browsers implicitly
access objects on behalf of principals, even though the principal does not explicitly request the access. For
example, whenever an HTTP request is generated for a target URL, web browsers automatically attach the
cookies belonging to the target site to the HTTP request. However, the principal who initiated the request
did not explicitly reference the cookies. Another example is delivering a UI event to a DOM element using
a JavaScript program. We call these implicit accesses theuse operation.

An ACL is specified using a list of attributes (r, w, x) in the div tag, wherer, w, x refer to the
read, write, anduse operations respectively. The value of each attribute identifies the outermost ring
required for the operation. For example, in Figure 2, the outermostAC tag maps the objects inside its scope
to ring 2 (“ring=2”). However, only principals in ring0 can modify any DOM elements embedded inside

8

the outermostAC tags (“w=0”).

Cookies: Typically, web applications instruct the web browser to store a cookie in the browser using a
set-cookie header in HTTP. In ESCUDO, we use an additional optional HTTP header to communicate to
the browsers the ring assignment and ACL for cookies. Cookies that contain sensitive data such as session
identifiers should be mapped to a higher-privileged ring. Other cookies could be mapped to lesser-privileged
rings. If ring mappings are omitted from the HTTP header, by default, all cookies are assigned to ring0.

Native Code API: The ring mappings for native code APIs such as XMLHttpRequest are also commu-
nicated to ESCUDO using an optional HTTP header. By default, ESCUDO assigns native code API such
as XMLHttpRequest to the highest-privileged ring 0, conforming to the fail-safe defaults guideline. Web
applications may assign the native code APIs to different rings.

Browser State: ESCUDO mandatorily assigns internal browser state such as cache and browsing history
to ring 0. In our current model, the ring assignment of browser state is not configurable. The web browser
could manipulate or use the state information. However, JavaScript programs in the applications cannot
manipulate the state, unless they belong to ring 0. This is because there are well-known attacks that abuse
this information for tracking users [18].

4.2 The Mandatory Access Control Policy

ESCUDO defines a Mandatory Access Control (MAC) policy based on rings and ACLs, and this policy
controls how principals in a web page can access the objects.

For the sake of presentation, we use the following notation for describing the policy:〈P ⊲ O〉 denotes a
principalP trying to perform an operation⊲ on objectO. R(P) andR(O) denote the rings of the principal
and object respectively.O(P) andO(O) denote the origin of the principal and object. We use⊓(O,⊲)
to denote the least-privileged ring that is allowed to conduct the operation⊲ on the objectO. An access
request〈P ⊲ O〉 is permitted if and only if the access is permitted by all the following three rules:

1. The Origin Rule: O(P) = O(O)

Origin is the unique combination of〈protocol, domain, port〉 in the URL of the web application that
instantiates the principal or object. The origin rule requires the principal and object to belong to the
same origin. However, unlike the SOP, this is not the only basis for access-control decisions.

2. The Ring Rule: R(P) ≤ R(O)

The ring rule factors the trustworthiness of the principalsand objects into the model. The ring rule
requires that the principal’s ring should be of equal of greater privilege than the object’s ring.

3. The ACL Rule: R(P) ≤ ⊓(O,⊲)

The ACL rule further limits the access control on objects. The ACL rule requires that the principal’s
ring be at least as privileged as that specified for the operation by the object’s ACL. Web applications
can avoid interference between JavaScript programs belonging to the same ring by assigning a more
restrictive ring in the ACL.

However, it should be noted that web applications cannot associate an ACL with an object that is
less restrictive than the object’s ring. For example, an object assigned to ringn cannot have an ACL
that permits a principal belonging ton′, wheren′ > n, to access the object. Even if the ACL is set
incorrectly, the ACL will be ineffective because the Ring Rule prevents such an access.

9

Figure 3: Assigning DOM elements to rings: This is the web page of a blog application. The original posted
message is isolated from the user comments by assigning themto different rings.

4.3 An Example

To help understand our model, we give a more complete examplein Figure 3. This is an example of a blog
application. In Line 2, the original blog post (Lines 2-11) is assigned to ring 2 as a principal, and its ACL
indicates that only ring 0 has the permission toread/write/use it 1. The user comment (Lines 14-19)
is assigned to ring 3, so even if there is a malicious script inthe user comment, the script cannot access
anything in the original blog post. If a ring specification ismissing, ESCUDOassumes a safe default value,
i.e. the ring attribute will be set to the least-privileged ring, and the ACL will be set tor=0, w=0, x=0,
allowing only the principals in ring 0 to access it.

5 Security Analysis of Escudo

The key to Escudo’s security enforcement is the safety and integrity of the configuration provided by the
application. Because Escudo is a MAC model, Escudo reads theconfiguration information provided by the
application and performs the ring mapping exactly once. Escudo’s implementation disallows reassignment
of rings, because the configuration information is not exposed to JavaScript programs for modification.

We describe additional measures to ensure the safety of the configuration from tampering. The con-
figuration information for all the principals and objects maintained inside the browser is not exposed to
JavaScript programs. However, because the ring mapping forDOM elements is communicated via HTML,
it is vulnerable to certain tampering methods via HTML and JavaScript. Escudo enforces some additional
rules to prohibit such tampering methods. Broadly, there are two ways that HTML or JavaScript could be
used for illegally elevating privilege.

(1) A Principal Increasing Privilege: A JavaScript program may attempt to remap anAC tag to a higher
privileged ring using the DOM API functionsetAttribute. Recall that the configuration information is not
exposed to JavaScript programs. Therefore, such attempts to modify the attributes cannot succeed.

1Please temporarily ignore the number in thenonce attribute. We will explain the purpose of that attribute in Section 5.

10

(2) A Principal Trying to Create a New Principal with Elevated Pr ivilege: HTML tags could be vulnera-
ble to node-splitting because of vulnerabilities in the application [21]. In a node-splitting attack, an attacker
may prematurely terminate adiv region using</div>, and then start a newdiv region with a different set
of ring assignments (potentially with higher privileges).This attack escapes the privilege restriction set on
a div region by web developers. Node-splitting attacks can be prevented by using markup randomization
techniques, which involve incorporating random nonces in thediv tags (See Lines 2, 11, 14, and 19 in Fig-
ure 3). Escudo ignores any</div> tag whose random nonce does not match the number in its matchingdiv

tag. The random nonces are dynamically generated when constructing a web page, so adversaries cannot
predict those numbers before they insert their malicious contents into a web page.

JavaScript programs can add new DOM elements. A malicious JavaScript program may attempt to use
this feature to create a newAC tag with higher privileges. Escudo enforces ascoping ruleto protect against
such attempts. The scoping rule restricts all child elements of a DOM element to be mapped to either the
same ring or some less privileged ring. Formally speaking, when adiv tag is labeled withring="n", then
the privileges of the principals within the scope of thisdiv tag, including all sub scopes, are bounded by
ring leveln. Escudo’s implementation strictly enforces this even if the ring specification of the sub scope
violates this rule.

In a properly configured web application, a malicious principal would belong to the least privileged
ring. As a result, such a malicious principal can only modifyDOM elements that are mapped to the least
privileged ring for write operation. That is, a malicious principal can add new DOM elements in only the
least privileged ring. The scoping rule restricts all childelements of a DOM element to be mapped to either
the same ring or a less privileged ring. As a result, a malicious principal cannot create a new principal that
has higher privileges than itself. All the DOM modificationsdone using the DOM API are subject to the
scoping rule.

6 Evaluation

We implemented a prototype of ESCUDOon the Lobo web browser and evaluated the prototype to ascertain
the feasibility of deploying and using ESCUDO. Our evaluation assessed the following: (1) how web ap-
plications can take advantage of ESCUDO (2) compatibility with legacy web applications, (3) resistance to
common XSS and CSRF attacks, and (4) performance overhead.

6.1 Implementation

We implemented a prototype of ESCUDO for the Lobo web browser [34], an extensible Java-based web
browser. Lobo is intended to be a platform for building new client-side web languages. Therefore, the
browser architecture is designed to be easily extensible. Implementing ESCUDO on Lobo involved 500
lines of code for extracting, tracking, and enforcing the ESCUDO policy specified by the web application.
ESCUDO’s implementation can be categorized into three parts: extracting the security contexts, tracking
the security contexts, and enforcing the access control policy. The ESCUDO implementation maintains a
security context derived from the configuration information provided by the application, tracks it through
the browser, and makes it available whenever a principal makes a request. The security context is internally
maintained data such as the ring assignments, domain, and ACL for all the principals and objects. We
implemented the ESCUDOReference Monitor (ERM), which enforces access-decisionsbased on the security
contexts. The ERM is spread over several places because the places to embed the checks is specific to the
object type.

11

6.2 Building ESCUDO-based Web Applications

We analyzed two open-source web applications, phpBB and PHP-Calendar, and created ESCUDO configu-
rations for securing them. phpBB (http://www.phpbb.com/)is a multi-user message board application and
PHP-Calendar (http://www.php-calendar.com/) is a multi-user online calendar application. We analyzed the
principals and objects in these web applications and understood their security requirements. It did not take
more than a day for modifying either application to use ESCUDO. A developer who knows the application
better would be able to make the changes faster.

phpBB: phpBB is primarily used to create an online community, in which users may interact with one
another by posting new topics for discussion, responding toexisting discussion threads, or sending private
messages to other users. The key security concern in phpBB isappropriately limiting the capabilities of
messages posted by users. Table 2 describes the security requirements. Application contents, such as trusted
JavaScript programs and HTML forms included into the web page by the application, require access to the
messages, cookies, and the XMLHttpRequest object. Topics,replies, and private messages, however, do not
require such privileges. Furthermore, user-provided topics, replies, and private messages are not expected
to manipulate the contents of the web page. We created an ESCUDO configuration that enforces these
requirements.

Principal Modify Messages (DOM) Access Cookies Access XMLHttpRequest

Application contents Yes Yes Yes
Topics and replies No No No
Private messages No No No

Table 2: Application contents can modify messages, access cookies, and access the XMLHttpRequest ob-
ject. However, topics, replies, and private messages do nothave such capabilities.

The ESCUDO policy for phpBB is described in Table 3. The head portion of the page contains style
information and some trusted JavaScript programs. These are all assigned to ring 0 and can be manipulated
only from ring 0. The content enclosed between thebody and /body tags is a mix of application provided
content and user-provided topics, replies, and private messages. The body tags are assigned to ring 1 and can
only be manipulated by principals in rings 0 and 1. Topics, replies, and private messages appearing inside the
body are assigned to ring 3, but their ACL is configured so thatthey can be manipulated only by principals
in ring 0, 1, and 2. Therefore, content provided by one user iscompletely isolated from content provided
by another. There are two cookies in the web application, namely phpbb2mysql data andphpbb2mysql sid.
Both cookies are assigned to ring 1. The cookies are attachedonly to HTTP requests generated by principals
belonging to rings 0 and 1.

phpBB uses a template engine similar toSmarty for separating the HTML layout from the internal

Configuration Cookies XMLHttpRequest Application contents Topics& Replies Private Messages

Ring 1 1 1 3 3
Access-control List

Read access ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2
Write access ≤ 1 ≤ 1 ≤ 1 ≤2 ≤ 2

Table 3: ESCUDO security configuration for phpBB: Application contents, cookies, and the XMLHttpRe-
quest object are assigned to ring 1. The ACL for cookies and application-content is set so that it can be
accessed only from rings 0 and 1. Topics, replies, and private messages are assigned to ring 3. The ACL for
topics, replies, and messages are configured to allow only principals in ring 0-2 to manipulate it, providing
isolation between the messages.

12

processing that produces content for the web page. To specify the ESCUDOconfiguration, we made changes
in the template for each web page. Moreover, phpBB creates two session cookies and sends them to the
browser using theset-cookie header. There were two places in the source code that create the cookies. We
used theheader function to add an additional HTTP header to specify the ringmapping for these cookies.

PHP-Calendar: PHP-Calendar is meant to facilitate a group’s collaborative creating and tracking of
events. An event in PHP-Calendar consists of a text message describing the event, time, and date of the
event. The key security concern in PHP-Calendar is appropriately limiting the capabilities of events inside
the web application. Table 4 describes the security requirements for PHP-Calendar. Application content re-
quires privileges to modify events, session cookies, and use the XMLHttpRequest object. However, events
should be prohibited from modifying other events via the DOMAPI and are not expected to manipulate
cookies or use the XMLHttpRequest object. The security requirements for the PHP-Calendar application
are very similar to phpBB.

Principal Modify Messages (DOM) Access Cookies Access XMLHttpRequest

Application content Yes Yes Yes
Calendar events No No No

Table 4: Application content can modify messages, access cookies, and access the XMLHttpRequest object.
However, calendar events do not have such capabilities.

Configuration Cookies XMLHttpRequest Application content Calendar events

Ring 1 1 1 3
Access-control List

Read access ≤ 1 ≤ 1 ≤ 1 ≤ 2
Write access ≤ 1 ≤ 1 ≤ 1 ≤ 2

Table 5: ESCUDO security configuration for PHP-Calendar: Application content, cookies, and the XML-
HttpRequest object are assigned to ring 1. The ACL for cookies and application-content is set so that it can
be accessed only from rings 0 and 1. Calendar events are assigned to ring 3. The ACL for calendar events is
configured to allow only principals in ring 0-2 to manipulateit, providing isolation between the events.

We created an ESCUDO configuration for enforcing the security requirements. Table 5 describes the
ESCUDO policy for PHP-Calendar. In all the web pages inside PHP-Calendar, the body of the web page
is a mix of application content and user created events. The content enclosed between the body tags is
mapped to ring 1 and its ACL is configured to permit manipulation only by rings 0 and 1. However, as
allowed by the scoping rule, the individual calendar eventsthat appear within the body are assigned to ring
3 and configured to allow manipulation by rings 0, 1, and 2. Therefore, the various calendar events are
isolated from one another. All the session cookies in the application are assigned to ring 1, along with the
XMLHttpRequest object.

PHP-Calendar has created an HTML type system using PHP classes for separating the HTML layout
from the internal processing required for producing content for the web page. This organization made
it easier to modify the layout to incorporate the isolation policies. For specifying the ring mapping for
cookies, we use the same technique as we used for phpBB.

Framework Support for E SCUDO Configuration: Creating ESCUDOconfigurations for static web pages
is very straightforward because the configuration can be directly embedded in the web page and is not
expected to change. In the case of web applications with significant portions of dynamic code, we need

13

more systematic methods for specifying the configurations.Otherwise, specifying the configuration will be
cumbersome.

HTML template engines provide a structured method for isolating the view elements from the business
logic. The view elements are specified in a template and data computed at run-time is plugged into the
template to create the web page. The ESCUDO configuration can be specified in the template, isolating the
configuration from dynamic data. Sophisticated template engines such as StringTemplate [29] provide a
stricter separation between view and model, making it easy to manage ESCUDO configurations for large-
scale web applications.

Language-based information flow could also be used to createESCUDOconfigurations. The SIF frame-
work is an extension of the Java Servlet framework to enforceconfidentiality and integrity policies at run-
time using language-based information flow [10]. In SIF, developer provides annotations in the source
code to mark the confidentiality and integrity policies. These policies are then enforced at run-time when
the program executes at the server. The confidentiality and integrity policies on the data can be used to
automatically derive the ESCUDO configuration for the web page, when the web page is created. We are
currently working on an SIF extension that could achieve this. We are unable to describe the extension in
detail because of space limitations.

6.3 Compatibility with Legacy Applications

There are two types of compatibility concerns with respect to ESCUDO: (1) compatibility of ESCUDO-
configured applications with non-ESCUDObrowsers, and (2) compatibility of ESCUDO-based browsers with
non-ESCUDOapplications.

ESCUDO-configured applications are compatible with non-ESCUDO browsers. The only aspect that
distinguishes an ESCUDO-based application is the availability of ring mappings forcookies, the XML-
HttpRequest API, and DOM objects. For DOM objects, ring mappings are specified usingAC tags, which
are additional attributes in thediv tag. Non-ESCUDO browsers would simply ignore these attributes. For
cookies and the XMLHttpRequest API, ring mappings are specified using an optional HTTP header; they
also will be ignored by non-ESCUDObrowsers.

ESCUDO-based browsers are also compatible with non-ESCUDO applications. Non-ESCUDO appli-
cations do not provide any ring mapping. Therefore, all principals and object inside the application are
assigned to a single ring, effectively mimicking the same-origin policy.

6.4 Defense Effectiveness

We evaluated the effectiveness of ESCUDO in addressing common XSS and CSRF problems. We created
XSS and CSRF attacks for both applications. For the purpose of evaluation, we removed some protection
mechanisms in the applications to facilitate the attacks. In both applications, we removed the input validation
routines to facilitate XSS attacks. In phpBB, we removed thesecret-token validation protection to facilitate
CSRF attacks. PHP-Calendar had no protection mechanisms for CSRF attacks.

We created 4 XSS attacks for each web applications. In phpBB,we created XSS attacks for posting new
messages on behalf of victim users and for modifying existing messages. In PHP-Calendar, we created XSS
attacks for creating new events on behalf of victim users, and modifying existing events. All the attacks
were neutralized in the presence of ESCUDO. This is because we structured the application to map all
user-influenced regions to belong to ring 3.

We created five CSRF attacks for each web applications. We setup a malicious web site that crafted
cross-origin requests for the two web applications, when accessed by a user. When accessed using our
ESCUDO-enabled Lobo browser, the malicious site still issued the requests for the two web applications.

14

 20

 40

 60

 80

 100

 120

 140

 160

 180

P
ar

si
ng

 a
nd

 r
en

de
rin

g
tim

e
(m

s)

Without Escudo Escudo

Figure 4: Performance overhead in parsing and rendering (in8 different scenarios).

However, ESCUDOdid not attach the session cookie automatically to the requests (because of the insufficient
privileges of the principals), neutralizing the attacks.

6.5 Performance Overhead

ESCUDO’s execution is invoked during both parsing and rendering ofweb pages and while responding to UI
events. Therefore, to measure the performance overhead from using ESCUDO, we measured the slowdown
in both activities. We instrumented Lobo to measure the amount of time taken to parse the web page and also
to respond to UI events. In both cases, we did not observe any noticeable overhead in any of the activities.
We setup 8 web pages varying amounts ofAC tags and dynamic content. To measure the overhead we
compared the time taken for parsing and rendering the 8 pagesand averaged the rendering time over 90
executions (Figure 4). The average overhead was 5.09%. ESCUDO primarily does bookkeeping to keep
track of the principals and this activity does not add any significant cost. Similarly, we did not notice any
overhead for UI event handling.

7 Related Work

Same-origin policy (SOP) extensions:Jackson et al. [18] extends the SOP to browser cache content and
visited link information to protect user privacy. Livshitsand Ulfar [27] extends the SOP to additionally
account for the principal names added to tag groups for neutralizing code-injection attacks. Karlof et al. [24]
extends the SOP to account for certificate errors in the origin to distinguish resources in the authentic domain
from a spoofed domain to detect dynamic-pharming attacks. While each of these proposals addresses a
specific shortcoming in the SOP, they do not address the general gap between the fundamental model and the
security requirements of modern web applications. ESCUDO is a fine-grained protection model specifically
designed to meet the protection needs of modern web applications.
New browser architectures: The OP web browser isolates each web page instance and various browser
components using OS processes [14]. The architecture makescommunication between components explicit
and interposes itself in all inter-process communication to provide isolation guarantees. Tahoma isolates
each instance of a web application inside the browser using separate virtual machines [20]. The policy
for identifying program boundaries and the permissible characteristics, such as which URL may be visited
in each VM, are specified in a manifest. Essentially, these are two different approaches for isolating web
applications from one another and limiting their permissible behavior. Both share the weakness that the
granularity of protection is the web page, rather than objects within the page. In comparison, ESCUDO

provides more fine-grained protection.

15

Chromium [5, 31] and Gazelle [38] are two new web browser architectures that bifurcate the browser
into two portions, kernel and applications, for achieving better security and reliability. However, the access
control mechanism is still based on the same-origin policy.
XSS and CSRF solutions:Current work has proposed several solutions for XSS and CSRFsolutions.
Approaches to XSS include taint-tracking [16, 28, 30], pureclient-side solutions [26, 37], pure server-side
approaches [9], and co-operating defenses [21]. Similarly, cross-site-request forgery solutions can be cate-
gorized into client-side methods [22], HTTP referrer header validation [25], proposals for new headers [4],
and secret-token validation techniques [23]. All these solutions are attack-specific patches to the application,
framework, or browser. In contrast to these solutions that address the symptoms of the underlying problem,
ESCUDO is not a patch for XSS or CSRF problems. Rather, ESCUDO is a fine-grained protection model
for web browsers. XSS and CSRF problems are thwarted as a sideeffect of addressing the fundamental
weakness in the protection model.

In addition to patching, input validation and sanitizationis a basic and primitive defensive coding tech-
nique for avoiding XSS. Frameworks such as PHP and ASP.NET provide libraries for this purpose. Fil-
tering and sanitizing input, although useful as a sanity check, may be bypassed by known evasion tech-
niques [15,17]. As we showed earlier in the paper, ESCUDOprevents such attacks even when the front-line
defense has been bypassed.
Mashup solutions: Mashups applications integrate content from several applications from differing origins
into one web page. A key security concern in such applications is isolating the resources of each application
from one another. Several frame-based design proposals formashups have contributed new primitives and
communication methods with minimal or no changes to the browser [3, 11, 13, 19]. Still, these proposals
have a coarse-grained privileged model because they are based on the same-origin policy. Mashups are
outside the scope of this paper. However, ESCUDO’s fine-grained protection model could be extended to
address security requirements for mashup applications by appropriately describing the relationship between
the rings of applications from different origins.
JavaScript verifiers: There are several static and dynamic verifiers that could be used to verify conformance
of a JavaScript program to a safe subset of the language [1, 2,12, 39]. The primary target of these tools are
applications that embed untrusted and semi-trusted JavaScript programs from third parties. Verifiers can be
considered as an alternative approach to dealing with the web browser access-control failure. However, a
publisher should trust the content provider to use the verifier on the JavaScript program. For example, a
publisher may lease a portion of his page to an advertisementnetwork. Currently, the publisher has to trust
the advertising network to use a verifier on the JavaScript program provided to display the advertisement. In
the case of ESCUDO, a publisher could take advantage of the browser protectionmodel to enforce restrictions
on the embedded JavaScript content rather than trusting an advertisement network. Furthermore, ESCUDO

is generic protection model and constraints not only JavaScript programs, but also HTTP-request initiating
principals. Therefore, ESCUDOcan restrict the actions of an untrustworthy HTTP-request initiating principal
manipulating more trustworthy resources (eg. CSRF attacks), but JavaScript verifiers cannot do this because
these principals are outside the scope of their protection.

8 Conclusion

There is a disconnection between the protection needs of modern web applications and the prevailing pro-
tection model–same-origin policy. We outlined three characteristics that a protection model should have to
address the disconnection. We presented ESCUDO, a new protection model that is systematically designed
to fulfill the three requirements using mandatory access-control principles. We implemented a prototype of
ESCUDO in the Lobo web browser, and illustrated how web applications can use ESCUDO to secure their
resources using case studies. Our evaluations results indicate that ESCUDO is a practical access-control

16

model. In addition, ESCUDOcan be incrementally deployed because it retains backward compatibility with
legacy applications.

References
[1] Caja.http://code.google.com/p/google-caja/.

[2] Web Sandbox.http://websandbox.livelabs.com/.

[3] MashupOS: operating system abstractions for client mashups. InHOTOS, 2007.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust defensesfor cross-site request forgery. InACM CCS, 2008.

[5] A. Barth, C. Jackson, and C. Reis. The security architecture of chromium browser.http://crypto.stanford.edu/
websec/chromium/.

[6] D. E. Bell and L. J. La Padula. Secure Computer System: Unified Exposition and Multics Interpretation, 1976.

[7] K. J. Biba. Integrity Considerations for Secure Computer Systems, April 1977.

[8] M. A. Bishop. The Art and Science of Computer Security. Addison-Wesley Longman Publishing Co., Inc., 2002.

[9] P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise Dynamic Prevention of Cross-Site Scripting Attacks . InDIMVA,
2008.

[10] S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing confidentiality and integrity in web applications. InUSENIX-SS, 2007.

[11] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web mashups via object abstractions. InACM CCS, 2008.

[12] D. Crockford. ADSafe.http://www.adsafe.org.

[13] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama. Smash: secure component model for cross-domain
mashups on unmodified browsers. InWWW, 2008.

[14] C. Grier, S. Tang, and S. T. King. Secure web browsing with the op web browser. InIEEE S&P, 2008.

[15] J. Grossman. Cross-site scripting worms and viruses. The impending threat and the best defense.http://www.
whitehatsec.com/downloads/WHXSSThreats.pdf.

[16] M. V. Gundy and H. Chen. Noncespaces: Using randomization to enforce information flow tracking and thwart cross-site
scripting attacks. InNDSS, 2009.

[17] R. Hansen. XSS cheat sheet.http://ha.ckers.org/xss.html.

[18] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser state from web privacy attacks. InWWW, 2006.

[19] C. Jackson and H. J. Wang. Subspace: secure cross-domain communication for web mashups. InWWW, 2007.

[20] R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform for web applications. In
IEEE S&P, 2006.

[21] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-enforced embedded policies. InWWW,
2007.

[22] M. Johns and J. Winter. RequestRodeo: Client-side protection against session riding. InOWASP Europe, 2006.

[23] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. InIEEE S&P, 2006.

[24] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharming attacks and locked same-origin policies for web
browsers. InACM CCS, 2007.

[25] F. Kerschbaum. Simple cross-site attack prevention. In SecureComm, 2007.

[26] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:a client-side solution for mitigating cross-site scripting attacks. In
ACM SAC, 2006.

[27] B. Livshits and U. Erlingsson. Using web application construction frameworks to protect against code injection attacks. In
PLAS, 2007.

[28] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust basis for cross-site scripting defense. InNDSS,
2009.

[29] T. J. Parr. Enforcing strict model-view separation in template engines. InWWW, 2004.

[30] T. Pietraszek and C. V. Berghe. Defending against injection attacks through context-sensitive string evaluation. In RAID,
2005.

[31] C. Reis and S. D. Gribble. Isolating web programs in modern browser architectures. InEuroSys, 2009.

17

[32] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.Proceedings of the IEEE, 1975.

[33] M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing protection rings.Commun. ACM, 15(3), 1972.

[34] J. Solorzano. The Lobo Project.http://lobobrowser.org/.

[35] M. Ter Louw, P. Bisht, and V. Venkatakrishnan. Analysisof hypertext isolation techniques for XSS prevention. InW2SP,
2008.

[36] A. Vance. Times web ads show security breach.http://www.nytimes.com/2009/09/15/technology/
internet/15adco.html.

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. InNDSS, 2007.

[38] H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudury, andH. Venter. The multi-principal os construction of the gazelle web
browser. InUSENIX-SS, 2009.

[39] K. Zyp. Secure Mashups with dojox.secure. http://www.sitepen.com/blog/2008/08/01/
secure-mashups-with-dojoxsecure/.

18

	ESCUDO: A Fine-grained Protection Model for Web Browsers
	Recommended Citation

	tmp.1283347294.pdf.dNynE

