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ABSTRACT 

Ghrelin is a peptide hormone involved in appetite stimulation, regulation of insulin 

signaling, and other physiological processes. Ghrelin requires acylation of the hydroxyl group of 

a specific serine residue with an octanoyl group to bind its receptor and activate signaling. This 

modification is catalyzed by ghrelin O-acyltransferase (GOAT). Ghrelin is the only known 

substrate of GOAT, making GOAT inhibition a promising avenue for treatment of obesity and 

type II diabetes.  Understanding the interactions between ghrelin and GOAT responsible for 

binding and catalysis will aid in developing specific GOAT inhibitors.  

To identify the nature and location of the ghrelin binding site and active site within 

human GOAT (hGOAT), we have generated a series of hGOAT mutants. The ghrelin acylation 

activity of these mutants will be tested to ascertain which regions of hGOAT are essential for 

function. To develop a profile of the binding site for the acyl-coenzyme A cosubstrate of 

hGOAT, acyl CoA donors with varying acyl lengths were tested for ghrelin acylation activity 

with hGOAT.  Identifying the hGOAT active site and substrate binding site will aid in hGOAT 

characterization and provide information for development of hGOAT inhibitors.  
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INTRODUCTION 

 

Ghrelin is a 28 amino-acid peptide hormone that was discovered in 1999 by Kojima and 

coworkers in the search for the ligand for the growth-hormone secretagogue receptor (GHS-

R1a), a G-protein coupled receptor.1 Ghrelin binds and activates GHS-R1a, leading to the release 

of growth hormone (GH) from the pituitary gland.1 The mechanism for ghrelin-stimulated 

release of GH proceeds through a series of steps, beginning with ghrelin binding to GHS-R1a to 

activate phospholipase C. This activation generates inositol triphosphate (IP3) and diacylglycerol, 

which leads to increased cellular Ca2+ concentrations that causes the release of GH.1, 2 

Upon the discovery of ghrelin, Kojima and coworkers analyzed both naturally isolated rat 

ghrelin and a chemically synthesized ghrelin by reverse-phase HPLC.1 The natural ghrelin 

exhibited a 10-minute delay in retention time relative to the synthetic ghrelin, suggesting that 

ghrelin is modified by a hydrophobic moiety. Using mass spectroscopy, it was found that an 

eight carbon fatty acid (octanoate) acylates the third serine (Ser3) residue of ghrelin, a previously 

unknown peptide modification. Subsequent studies have shown that the Ser3 of ghrelin must be 

acylated (unacylated ghrelin is referred to as des-acyl ghrelin) to exert its endocrine activity 

through GHS-R binding.1, 3, 4, 5 

Ghrelin is secreted primarily from the stomach and other organs in the gastrointestinal 

tract.6, 7, 8 Ghrelin is known to stimulate hunger, as indicated by the ability of injected ghrelin to 

stimulate eating in rodents.8, 9, 10, 11 The role of ghrelin in stimulating appetite is consistent with 

the increased ghrelin concentrations commonly observed in human plasma before mealtimes.12 
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Patients suffering from anorexia nervosa also exhibit increased ghrelin concentrations.8, 13, 14 The 

role of ghrelin in obesity is complex, as decreased plasma concentrations of ghrelin are often 

observed in obese patients.10, 15 This may suggest that ghrelin signaling is disrupted in these 

patients, possibly leading to aberrant coupling between ghrelin levels and appetite.16, 17, 18 

However, patients suffering from the genetic disease Prader-Willi syndrome exhibit elevated 

ghrelin levels.19 This disease is characterized by a number of symptoms including severe obesity 

and constant hunger, suggesting a potential link between elevated ghrelin levels and insatiable 

appetite.1, 19, 20 

Ghrelin is also potentially linked to insulin signaling and diabetes. Although produced 

predominately in the stomach, both ghrelin and its GHS-R1a receptor have been identified in 

pancreatic islets that are responsible for secreting insulin.4, 21, 22 Studies have shown that 

administration of ghrelin inhibits insulin secretion in rodents, and reduces insulin sensitivity in 

humans, thereby blocking glucose-stimulated insulin secretion.23, 24, 25  However, upon injection 

of des-acyl (non-acylated) ghrelin in rodent islet β-cells, the same inhibitory effect on insulin 

secretion is not observed,26 suggesting that perhaps glucose homeostasis can be regulated with 

varying ratios of ghrelin to des-acyl ghrelin.27, 28 A therapeutic option for type II diabetic patients 

could be available if the ghrelin to des-acyl ghrelin ratio could be regulated, thereby controlling 

for insulin resistance and sensitivity.  

Like many secreted proteins, ghrelin undergoes a number of processing steps after 

translation by the ribosome.29, 30 One of these maturation steps involving serine octanoylation 

appears to be unique to ghrelin.  Ghrelin is initially translated as a 117-amino acid precursor 

protein, preproghrelin, which is then trafficked to the endoplasmic reticulum (ER). In the first 

posttranslational processing step, the N-terminal 23 amino acid secretory signal peptide sequence 
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of preproghrelin is excised by a signal peptidase to yield the 94 amino acid proghrelin. 

Proghrelin is proposed to serve as the substrate for ghrelin O-acyltransferase (GOAT), which 

catalyzes octanoylation of the serine 3 residue. After acylation by GOAT and trafficking to the 

Golgi, prohormone convertase 1/3 (PC 1/3) cleaves acylated proghrelin after arginine 28 to 

produce mature ghrelin. Following maturation, both acylated and unacylated ghrelin are 

packaged into vesicles and released into the bloodstream (Figure 1).30, 31, 32 
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Figure 1. Processing of prepro-ghrelin to 
mature ghrelin peptide. 	
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In 2008, two laboratories simultaneously identified the 49 kDa enzyme responsible for 

catalyzing the octanoylation of ghrelin, naming it ghrelin O-acyltransferase (GOAT, Figure 2).33, 

34 GOAT is the fourth member of the membrane-bound O-acyltransferase (MBOAT) family 

composed of integral membrane enzymes that catalyze acylation of a range of small molecule 

and protein substrates, among which include hedgehog acyltransferase (Hhat) which acylates the 

secreted protein sonic hedgehog, and porcupine (Porc) which acylates Wnt.35, 36, 37, 38, 39 Yang and 

coworkers identified GOAT by transfecting a variety of MBOAT family acyltransferases into the 

INS-1 cell line, which contains a mixture and proghrelin and mature ghrelin, and found that 

octanoylated ghrelin was produced when GOAT was transfected.33 In this study, acylation of 

Ser3 of ghrelin by octanoate was verified using labeling with radioactive octanoic acid.  Yang 

and coworkers also used site-directed mutagenesis to mutate two highly conserved residues 

across the MBOAT family to alanine (Asn307 and His338) and found that mutation of these 

residues led to a loss of GOAT-catalyzed ghrelin acylation.  This loss of activity suggests that 

these conserved residues may be important for catalysis.33 Gutierrez and coworkers employed a 

different approach to identify GOAT, using gene-silencing of a number of known acyltransferase 

sequences to screen for GOAT.34 In this study, modification of Ser3 with the octanoate group 

was verified using mass spectrometry fragmentation analysis.34 When the gene for GOAT was 

silenced, only desacyl ghrelin was detected providing a functional linkage between GOAT 

expression and ghrelin octanoylation. 
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Figure 2. hGOAT-catalyzed octanoylation of proghrelin.  
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In a subsequent study, Yang and coworkers developed an in vitro GOAT activity assay 

using membrane fraction isolated from insect cells infected with recombinant baculovirus 

encoding mouse GOAT.40 Using recombinantly expressed proghrelin as a substrate, Yang sought 

to identify the amino acids surrounding Ser3 of proghrelin involved in substrate recognition by 

mouse GOAT using alanine scanning mutagenesis. This study indicated that the first five amino 

acids at the N-terminus of proghrelin (GSSFL), in the context of a C-terminally amidated 

peptide, were sufficient to serve as both a substrate of GOAT and an inhibitor of GOAT-

catalyzed octanoylation of proghrelin. Pentapeptides with an Ala mutation in place of Ser3 also 

serve as GOAT inhibitors without being octanoylated, suggesting that Ser3 is required for 

activity but not substrate binding.40 Yang also found that octanoylated peptides, the product of 

GOAT-catalyzed peptide acylation, serve as more effective inhibitors than the non-acylated 

peptides. This observation of product inhibition raises the possibility of feedback inhibition of 

GOAT, which was tested by substituting the octanoyl (C8) group on the acylated peptide with 

longer acyl chains such as myristoyl (14 carbons) and palmitoyl (16 carbons). Peptides bearing 

these longer acyl modifications proved to be less effective GOAT inhibitors, suggesting that the 

acyl chain binding site of GOAT selects for medium length acyl groups such as octanoate, a 

finding supported by other studies.41 Yang and coworkers also found that replacement of the 

ester in octanoyl ghrelin by an amide, through substitution of serine 3 with (S)-2,3-

diaminopropionic acid (Dap), led to a significant increase in inhibitor binding.40 While this 

substitution leads to a much more stable bond between the ghrelin peptide and the octanoyl 

group due to the ester-amide substitution, the underlying cause for the observed increase in 

inhibitor affinity remains undefined. 
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In addition to the work by Yang and coworkers using short peptides40 several other routes 

have been explored to identify potential GOAT inhibitors.  The Cole laboratory designed a 

“bisubstrate” inhibitor that is capable of crossing mammalian cell membranes.42 This peptide-

based inhibitor (GO-CoA-Tat) links the first 10 amino acids of ghrelin to octanoyl CoA using an 

amide bridge, with a polybasic Tat sequence attached to the peptide C-terminus to enhance cell 

penetration. The GO-CoA-Tat inhibitor reduced weight gain and increased glucose tolerance in 

mice, and also altered feeding behavior in hamsters.42, 43 Janda and coworkers have also explored 

the potential for small-molecule libraries to yield efficient GOAT inhibitors.44, 45 Although these 

inhibitor studies have yielded some promising results, defining the active site of GOAT and the 

interactions used by GOAT to bind and recognize ghrelin is critical to developing effective and 

potent GOAT inhibitors as potential therapeutics.  

Development of a model of how recombinant human GOAT (hGOAT) binds and 

recognizes ghrelin requires identifying the interactions involved in forming the hGOAT-ghrelin 

complex. Using a novel fluorescent peptide substrate that mimics the N-terminal sequence of 

ghrelin, Darling and coworkers in the Hougland lab have employed structure-activity studies to 

define the interactions between hGOAT and ghrelin involved in substrate binding and catalysis.46 

By mutating amino acids of the ghrelin peptide mimic (GSSFLCAcDan) and substituting 

functional groups, they were able to identify multiple interaction points between the hGOAT 

active site and the ghrelin substrate. For example, their work suggests that recognition of the 

Ser2 residue of ghrelin is based on both steric size of the amino acid at this position as well as 

the serine hydroxyl side chain. They also found that the N-terminal amine and lack of side chain 

at the N-terminal glycine residue (Gly1) is critical to hGOAT recognition of ghrelin, as mutating 

the Gly1 residue or acetylating the N-terminal amine eliminated activity with hGOAT.46 This 
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work identifies specific functional groups on the ghrelin substrate that interact with the hGOAT 

active site, but does not provide information on the groups on the enzyme involved in these 

contacts. 

To complement the studies of hGOAT selectivity using modified peptide substrates, my 

research has focused on determining residues and regions of hGOAT involved in substrate 

recognition and catalysis in order to enhance understanding of the hGOAT active site structure. 

Using mutagenesis and enzyme truncation, I have worked to define the contribution of specific 

residues within hGOAT to enzyme function.  To investigate the acyl donor binding pocket of 

hGOAT, I have screened acyl CoA cosubstrates with varying acyl chain lengths for ghrelin 

acylation activity with hGOAT. Defining the active site structure and catalytic mechanism of 

hGOAT will contribute to the development of potent hGOAT inhibitors for evaluation as 

treatments for obesity, diabetes, Prader Willi Syndrome, and other conditions.  
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CHAPTER TWO 

 

CONSTRUCTION OF GHRELIN O-ACYLTRANSFERASE VARIANTS 

 

Introduction 

Ghrelin O-acyltransferase (GOAT) catalyzes an essential step in the maturation of the 

peptide hormone ghrelin, which is centrally involved in hunger signaling.33 Development of 

targeted GOAT inhibitors is proposed to be a route to novel therapeutics for treating obesity, 

diabetes, and a range of other conditions.3, 8, 40, 42, 43, 45 The design and optimization of GOAT 

inhibitors will be aided by a molecular-level understanding of the active site of GOAT.  As 

GOAT is an integral membrane protein, structural studies face significant experimental 

challenges due to the intransigence of membrane proteins to protein crystallographic study.  In 

light of this challenge, we have pursued biochemical and functional studies to localize the 

residues and regions that form the active site within the human isoform of GOAT (hGOAT). 

While the extremely hydrophobic character and structural complexity of hGOAT as an 

integral membrane protein renders identification of the active site difficult, we can use 

computational methods and mechanistic reasoning to rationally search for this region.  The first 

example of this approach deals with identifying the domains within hGOAT required for enzyme 

function.  The transmembrane topology of the human isoform of GOAT (hGOAT) has not been 

experimentally investigated,33 but computational algorithms such as TMHMM (TransMembrane 

by Hidden Markov Model) can provide a prediction of hGOAT domain structure (Figure 3).47 

This algorithm predicts that hGOAT contains seven transmembrane helices connected by six 

soluble “loops” that are not embedded in the membrane. These loop regions are good candidates 
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for the location of the hGOAT active site.  The location of Asn307 and His338, two conserved 

residues that have been shown to be important for GOAT activity, within the Loop D region 

provides further evidence that the hGOAT active site may lie within one or more of the predicted 

loop regions.33 Using both truncations from the protein N-terminus and expression of the 

predicted loop domains, we will assess which domains within hGOAT are required for enzyme 

activity. 
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Figure 3. TMHMM prediction for transmembrane helices and loop domains within 
hGOAT. The red shows the predicted transmembrane residues, the blue shows the 
residues predicted to lie inside the membrane, and the pink shows the residues 
predicted to lie outside the membrane.47 
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 In addition to assessing the functional requirement for individual hGOAT domains, site-

directed mutagenesis was also performed to investigate the potential roles of specific amino acid 

residues within hGOAT for catalytic activity and/or hGOAT structure.  For this analysis, only 

residues located in the loop regions of hGOAT were taken into consideration, as these residues 

would be more accessible to bind the substrate during catalysis. The individual sites for 

mutagenesis were chosen based on amino acid conservation, potential to serve as a ligand for a 

catalytic metal ion, and potential to act as part of charge-relay system for activating the serine 3 

of ghrelin as a nucleophile.  The hGOAT variants constructed in this work will provide insight 

into the location and nature of the active site of this enzyme, thereby advancing our 

understanding of how hGOAT binds and octanoylates ghrelin.  

 

Results and Discussion 

 

Design of hGOAT truncation and loop variants 

To identify which regions/domains of hGOAT are required for enzyme function, 

truncation mutants of hGOAT have been made that sequentially delete domains from the N-

terminus of the protein. When designing the truncation mutants, the two conserved residues 

N307 and H338 located in the fourth “loop” (Figure 3) were taken into consideration. Mutation 

of these residues leads to loss of GOAT activity in the mouse-derived enzyme,33 so loop D was 

maintained in all truncation constructs. The first truncation mutant, trunc2, deletes the first 

transmembrane helix and loop A (deletion of residues 1-42).  Trunc3, the second truncation 

mutant, removes the first two helices along with loops A and B (deletion of residues 1-162) 

while the trunc4 variant (deletion of residues 1-240) eliminates helices 1-3 and loops A, B, and 
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C.  Expressing these truncation mutants and assessing their ability to catalyze ghrelin acylation 

will indicate which domains of GOAT are necessary for enzyme stability and catalytic activity. 
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Figure 4. Design of hGOAT truncation mutants.47 
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In addition to truncation mutants, select loop regions were also cloned from the hGOAT 

sequence for expression (Figure 3).  The loop regions were chosen based on TMHMM topology 

predictions and focused on loops of sufficient size (>40 amino acids) that the loops may fold 

independently.  Based on these criteria, three loops regions were chosen: loop B (residues 62-

162), loop C (184-240), and loop D (residues 262-344).  The TMHMM algorithm also suggests 

the potential of one large loop domain within hGOAT, as indicated by the large BCD region in 

the center of the topology prediction (Figure 3).  Based on this possibility, the combined region 

encompassing all three of these loops (loop BCD, residues 62-344) was also cloned from the 

parent hGOAT sequence for expression. These loops were cloned into bacterial expression 

vectors and their expression was attempted in E. coli, as described below. 

 

Selection of positions for site-directed mutagenesis 

To identify residues potentially involved in the hGOAT active site, several criteria were 

assessed. The first two positions selected for mutagenesis were Asn307 and His338, residues that 

are absolutely conserved residues across the MBOAT family.33 Mutation of these residues in the 

mouse GOAT isoform led to a loss of enzyme activity, providing further evidence for their 

potential roles in GOAT catalysis.33 Based on preliminary studies that suggest that hGOAT may 

require a metal ion for catalysis (Joseph Darling, unpublished data), we sought other conserved 

residues within loop D that could bind and position a catalytic metal ion.  Mutations of potential 

metal binding ligands would disrupt the binding of the catalytic metal ion and would lead to a 

loss of enzyme activity.  The four residues most commonly observed to bind and position 

catalytic metal ions in metalloenzymes are aspartic acid (D), glutamic acid (E), cysteine (C), and 

histidine (H).48 Accordingly, the following conserved residues in loop D were mutated to alanine 
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to test for a loss of activity: H258, D262, D263, E281, E282, D287, D289, E294, D297, H338, 

H341, D358, and H361 (Figure 5).  D358 nor H361 do not lie in loop D, but were mutated due to 

their close vicinity to loop D.  It should be noted that all of these potential coordinating metal 

ligands lie within three amino acids of another potential metal ligand, consistent with structural 

motifs common to metalloenzymes.49  
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Figure 5. Potential metal ligands in loop D of hGOAT. The absolutely 
conserved residues N307 and H338 are noted by stars. 
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Studies of glycerol phosphate acyltransferases (GPATs), an enzyme family that performs 

a similar chemical reaction to ghrelin acylation by hGOAT, suggest another potential role for 

several of the conserved residues selected for mutation above.  GPATs catalyze the first step in 

phospholipid biosynthesis by acylating the sn1 hydroxyl group of glycerol-3-phosphate.50, 51, 52 

Sequence comparisons within the GPAT family highlighted the conservation of an Hx4D motif, 

and structural studies of squash chloroplast GPAT suggest that the histidine and aspartate within 

this motif are positioned to participate in catalysis.50, 53, 54 The loss of enzyme activity upon site-

directed mutagenesis of these residues in bacteria GPAT are consistent with these residues being 

involved in catalysis.50, 53, 54 These studies suggest that the His and Asp in the Hx4D work 

together in a manner similar to a serine protease, with the His residue acting as a base to 

deprotonate the hydroxyl group to promote nucleophilic attack on the acyl donor, while the Asp 

provides electrostatic and hydrogen-bonding stabilization to the transiently protonated His 

residue during catalysis.50 Examination of the hGOAT sequence reveals a Hx4D motif near the 

beginning of loop D composed of three residues (H258, D262, D263) which is highly conserved 

across GOAT isoforms (Figure 6).  The similarity of the observed “HWILDD” motif to the Hx4D 

motif from GPATs provides another mechanistic rationale for exploring the potential roles of 

these three residues in hGOAT catalysis of ghrelin acylation. 
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Figure 6. Clustal-W alignment of GOAT sequences from various 
species illustrating the conservation of the HX4D motif observed in 
glycerol phosphate acyltransferases. 
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PCR amplification to produce hGOAT truncation mutant constructs 

Using the full-length hGOAT as a template, constructs were generated corresponding to 

the three planned truncation mutants using two-step PCR. The first PCR step cloned only the 

region of interest, while the second PCR step appended EcoRI and NotI restriction sites to the 5’ 

and 3’ ends of the truncation constructs to permit ligation of the constructs into expression 

vectors.  A six amino acid leader sequence from hGOAT (Met-Glu-Trp-Lys-Trp) was also 

inserted at the 5’-end of the truncation constructs, as this sequence may be important for hGOAT 

membrane insertion.55 Following the second PCR step, the lengths of the trunc2, trunc3, and 

trunc4 constructs were verified using agarose gel electrophoresis (Figure 7). 
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Figure 7. Analysis of hGOAT truncation constructs by agarose gel electrophoresis. 
The predicted sizes for the constructs are 1341 base pairs for Trunc2, 981 base pairs 
for Trunc3, and 747 base pairs for Trunc4. 
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Ligation of truncation mutant constructs into pFBD_MBOAT4 

The truncation mutant construct were ligated into the pFBD_MBOAT4 vector, using the 

EcoRI and XbaI restriction sites to replace the full length hGOAT gene in this vector with the 

trunc2, trunc3, and trunc4 constructs. All truncation mutants were successfully ligated into 

pFBD_MBOAT4, as verified by XhoI single and EcoRI / XbaI double restriction digests of the 

ligated plasmids (Figure 8).  Successful ligation of the trunc2, trunc3, and trunc4 constructs into 

the pFBD vector adds a new XhoI site in addition to another XhoI site in the non-coding portion 

of the parent vector.  Upon digestion by XhoI, the presence of these two XhoI sites will lead to 

generation of two linear DNA fragments whose sizes depend on the specific truncation construct 

(pFBD_trunc2 vector, 5013 and 1560 bp; pFBD_trunc3 vector, 4913 and 1200 bp; pFBD_trunc4 

vector, 4913 and 966 bp).  Double digestion of these vectors with XbaI and EcoRI should excise 

the truncation construct from the parent vector to yield two fragments (pFBD_trunc2 vector, 

5188 and 1285 bp; pFBD_trunc3 vector, 5188 and 925 bp; pFBD_trunc4 vector, 5188 and 691 

bp).  Analytical digests of the pFBD_trunc2, pFBD_trunc3 vector, and pFBD_trunc4 vectors 

yielded the expected DNA fragments (Figure 8), consistent with successful ligations.  The 

sequences of the truncation mutant plasmids were verified by DNA sequencing.  
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Figure 8. Analytical digests verifying ligations of the truncated mutants into 
pFBD_MBOAT4. a.) Digestion of pFBD_trunc2 vector. b.) Digestion of 
pFBD_trunc3 vector. c.) Digestion of pFBD_trunc2 vector. In all three gels, lane 1 
is uncut pFBD_MBOAT4_truncation mutant vector, lane 2 is single digest with 
Xho1, and lane 3 is a double digest with Xba1 and EcoR1.  All bands in the single 
and double digests match expected fragments as described in the text.	
  

a.) 

b.) 

c.) 
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Generating recombinant baculovirus of the truncation mutants 

The plasmids containing the truncation mutants (pFBD_trunc2, pFBD_trunc3, and 

pFBD_trunc4) were transformed into DH10Bac E. coli cells to generate recombinant bacmids 

for producing baculovirus.  Plasmid transformation was selected for using the gentamicin 

resistance gene in the pFBD_MBOAT4 vector.  Bacmids contain all of the genes necessary for 

expressing baculovirus in Sf9 insect cells and also contain a kanamycin resistance gene for 

bacterial selection. The DH10Bac E. coli cells contain a tetracycline resistant helper plasmid that 

expresses a transposase that inserts the target protein from the recombinant donor plasmid (e.g. 

pFBD_trunc2) into the bacmid using transposition sequences present in both the donor plasmid 

and bacmid (Figure 9). Blue/white screening and antibiotic selection were used to screen for 

colonies in which the gene for the GOAT truncation mutant successfully transposed into the 

bacmid. White colonies indicate a successful transposition as this transposition disrupts the 

lacZα (β-galactosidase) gene on the bacmid.56 
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Figure 9. The Sf9 baculovirus expression system.56 
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As the bacmid is too large for analysis by gel electrophoresis (~135 kb), transposition of 

the target protein into the bacmid must be verified by PCR.  PCR verified the bacmids were the 

proper size and that the recombinant donor plasmid was indeed transposed into the bacmid 

(Figure 10). In the event of successful transposition, the length of resulting PCR product includes 

bacmid sequence (2300 bp) and the size of the recombinant target gene inserted (Figure 10).56 

The expected sizes for the PCR products were 3901 bp for the trunc2 construct, 3541 bp for 

trunc3, and 3307 bp for trunc4.  
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Figure 10. PCR verification of truncation construct bacmids. Lanes 1 and 2: 
trunc2 bacmid, with 30 ng (lane 1) or 100 ng (lane 2) of bacmid template; Lanes 
3 and 4: trunc3 bacmid, with 30 ng (lane 3) or 100 ng (lane 4) of bacmid 
template; Lanes 5 and 6: trunc4 bacmid, with 30 ng (lane 5) or 100 ng (lane 6) of 
bacmid template. All PCR reactions yielded products with the expected sizes for 
successful bacmid construction. 
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Transfection of Sf9 insect cells with recombinant bacmid 

Bacmid transfection into Sf9 insect cells leads to generation of recombinant baculovirus, 

which can subsequently be used to infect Sf9 insect cells for the expression of hGOAT 

truncation mutants.  The initial transfection of bacmid into Sf9 cells is performed using a 

chemical reagent (Cellfectin reagent, Invitrogen), leading to viral expression and amplification 

that results in ~80% cell lysis over the course of 72 hours.  The resulting baculovirus (passage 1 / 

P1 virus) is separated from cell debris by centrifugation, and is then used to infect fresh Sf9 cells 

to generate P2 virus.  The P2 virus is then titered to determine viral concentration for subsequent 

protein expression.  Expression of hGOAT mutant truncations was attempted by infecting Sf9 

cells with P2 baculovirus followed by growth for 72 hours. The Sf9 membrane fractions are then 

collected to isolate the hGOAT mutant truncations as described in Materials and Methods.   
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Testing truncation mutants for ghrelin acylation by hGOAT 

The membrane fractions from Sf9 cells infected with trunc2, trunc3, and trunc4 

baculoviruses were probed for ghrelin acylation activity using a fluorescence-based assay 

developed in the Hougland lab.46 The peptide substrate in this assay is a six amino-acid sequence 

derived from the N-terminal sequence of ghrelin (GSSFLS) with the C-terminal serine of this 

peptide (Ser 6) mutated to cysteine to allow chemoselective attachment of the fluorophore 

acrylodan (6-acryloyl-2-dimethylaminonapthalene) to form the GSSFLCAcDan substrate.57, 58 

GOAT-catalyzed octanoylation of serine 3 of this GSSFLCAcDan substrate leads to an increase in 

retention time.  
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Figure 11.  Octanoylation of GSSFLCAcDan by recombinant hGOAT. a.) Control reaction 
without octanoyl-CoA leaves GSSFLCAcDan unmodified (retention time 6 minutes). b.) 
GSSFLCAcDan acylation catalyzed by hGOAT membrane fraction in the presence of 
octanoyl-CoA, leading to the formation of octanoyl- GSSFLCAcDan (retention time 12 
minutes).  Figure adapted from reference.46 
	
  

a.) 

b.) 
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Similar to the unmodified enzyme, octanoylation activity by any of the truncation 

mutants should lead to formation of the peak for octanoyl- GSSFLCAcDan with a retention time of 

12 minutes.  However, none of membrane fractions from the truncation mutant expresssions 

exhibited octanoylation activity with the GSSFLCAcDan substrate (Figure 12).  The lack of 

observed activity could arise from several factors.  First, the enzyme truncation could lead to loss 

of enzyme activity through either disruption of the enzyme active site or overall enzyme 

destabilization.  Second, as we are currently unable to detect the expression of hGOAT using 

Western blots or other analytical techniques, it is also possible that the truncation mutants were 

not efficiently expressed due to insufficient baculoviral infection during protein expression.  
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c.)	
  

Figure 12. Octanoylation activity assays with hGOAT truncation mutants. a.) trunc2 
mutant. b.) trunc3 mutant c.) trunc4 mutant. Assays were performed with 25 µg, 50 µg, 
100 µg, and 150 µg of membrane protein from truncation mutant expressions and 
compared to a negative control reaction lacking octanoyl-CoA.  Assays were performed 
as described in Materials and Methods.	
  

b.) 

a.) 
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Introduction of hGOAT mutations by PCR mutagenesis 

  Site-directed mutations within hGOAT were introduced by PCR mutagenesis using the 

pFBD_MBOATi_FLAG plasmids as a template. At each targeted position, the natural amino 

acid was mutated to alanine.  Following mutagenesis and plasmid expression and purification, 

the presence of the desired mutations were verified by DNA sequencing. 

 Using these plasmids containing the point mutants (pFBD_MBOATi_FLAG_H258A, 

pFBD_MBOATi_FLAG_D262A, pFBD_MBOATi_FLAG_D263A, 

pFBD_MBOATi_FLAG_E281A, pFBD_MBOATi_FLAG_E282A, 

pFBD_MBOATi_FLAG_D287A, pFBD_MBOATi_FLAG_D289A, 

pFBD_MBOATi_FLAG_E294A, pFBD_MBOATi_FLAG_D297A, 

pFBD_MBOATi_FLAG_N307A, pFBD_MBOATi_FLAG_H338A, 

pFBD_MBOATi_FLAG_H341, pFBD_MBOATi_FLAG_D358A, 

pFBD_MBOATi_FLAG_H361A), bacmids for generation of mutant hGOAT baculovirus were 

generated using transformation into DH10Bac E. coli cells as described above. Insertion of the 

target hGOAT gene into the bacmid was verified by PCR (Figure 13).  Four mutant plasmids did 

not produce bacmid (H258A, D263A, D289A, and H341A) and will be retransformed into 

DH10Bac E. coli. The verified hGOAT mutant bacmids will be transfected into Sf9 insect cells 

and tested for ghrelin acylation activity by HPLC, following the same procedures done for the 

truncation mutants.  
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Figure 13. PCR verification of bacmids for hGOAT site directed mutants. Lane 1: H338A 
mutant; lane 2: H361A mutant; lane 3: D262A mutant; lane 4: D358A mutant; lane 5: 
E281A mutant; lane 6: E282A mutant; lane 7: D287A mutant; lane 8: E294A mutant; lane 
9: D297A mutant; lane 10: N307A mutant. All bacmids with proper hGOAT gene 
insertions should yield a 4060 bp PCR product.    
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PCR amplification to construct isolated hGOAT loop domains 

Constructs for hGOAT loops B, C, D, and BCD (as predicted by the TMHMM 

algorithm) were generated by PCR using full-length hGOAT as a template. The PCR cloned the 

region of interest and inserted NdeI and HindIII restriction sites to permit ligation into expression 

vectors. The lengths of loop B, loop C, loop D, and loop BCD were verified by agarose gel 

electrophoresis (Figure 14). 
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Figure 14. Agarose gel analysis of PCR reactions to generate hGOAT loop 
constructs. PCR product sizes were compared to a DNA standard ladder 
(far left). Lane 1: loop B, 327 bps; Lane 2: loop C, 183 bps; Lane 3: loop 
D, 261 bps; Lane 4: loop BCD, 858 bps.	
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Ligation of hGOAT loop constructs into pDB.His.MBP and pDB.GST vectors 

To increase the solubility and stability of the hGOAT loops, we aimed to express them as 

fusion proteins coupled with either maltose binding protein (MBP) or glutathione S-transferase 

(GST).  MDP and GST fusions are a common method employed to increase soluble expression 

of target proteins.59 To generate these fusion protein constructs, the loop constructs were ligated 

into the pDB.His.MBP and pDB.GST vectors that contain MBP and GST, respectively. Loops C, 

D, and BCD were successfully ligated into the pDB.His.MBP, and loops B, D, and BCD were 

successfully ligated into pDB.GST, as verified by single (NdeI ) and double (NdeI/ HindIII ) 

restriction digests of the ligated plasmids (Figure 15). 
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c.)	
  

b.) a.) 

d.)	
  

Figure 15. Restriction digests verifying ligation of hGOAT loop constructs into the 
pDB.His.MBP and pDB.GST vectors. a.) Lanes 1-3, pDB.His.MBP_loop D (lane 1 uncut, 
lane 2 NdeI single digest, lane 3 NdeI and HindIII double digest); Lanes 4-6, pDB.GST_loop 
B (lane 4 uncut, lane 5 NdeI single digest, lane 6 NdeI and HindIII double digest). b.) Lanes 
1-3, pDB.GST_loop D (lane 1 uncut, lane 2 NdeI single digest, lane 3 NdeI and HindIII 
double digest); Lanes 4-6: pDB.GST_loop BCD (lane 4 uncut, lane 5 NdeI single digest, lane 
6 NdeI and HindIII double digest). c.) pDB.His.MBP_loop BCD (lane 1 uncut, lane 2 NdeI 
single digest, lane 3 NdeI and HindIII double digest). d.) pDB.His.MBP_loop C (lane 1 
uncut, lane 2 NdeI single digest, lane 3 NdeI and HindIII double digest).	
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The pDB.His.MBP- derived plasmids would be predicted to generate the following 

fragments upon NdeI single digestion and double digestion with NdeI and HindIII:  

pDB.His.MBP_loop C (single digestion 6607 bp, double digestion 6431 bp and 176 bp); 

pDB.His.MBP_loop D (single digestion 6685 bp, double digestion 6431 bp and 254 bp); 

pDB.His.MBP_loop BCD  (single digestion 7285 bp, double digestion 6431 bp and 854 bp). 

Similarly, the pDB.GST –derived plasmids would yield the following fragments upon NdeI 

single digestion and double digestion with NdeI and HindIII: pDB.GST_loop B (single digestion 

6271 bps, double digestion 5963 and 308 bps);. pDB.GST_loop D (single digestion 6217 bp, 

double digestion 5963 and 254 bp); pDB.GST_loop BCD (single digestion 6817 bp, double 

digestion 5963 and 854 bps).  For each plasmid, the uncut vector runs at an apparent smaller size 

due to supercoiling.  The restriction digest results were consistent with predictions for each 

plasmid, and the sequences of the loop construct fusion protein plasmids were verified by DNA 

sequencing. 

 

Expression trials for hGOAT loop fusion proteins 

Following construction of the hGOAT loop fusion protein expression plasmids, we 

attempted to express the fusion proteins using several different approaches.  The fusion protein 

plasmids (pDB.His.MBP_loop C, pDB.His.MBP_loop D, pDB.His.MBP_loop BCD, 

pDB.GST_loop B, pDB.GST_loop D, and pDB.GST_loop BCD) were initially transformed into 

BL21-DE3 E.coli cells for protein expression. For these trials, autoinduction media was used in 

place of the classical method using IPTG induction of target protein expression.59 In 

autoinduction media, a mixture of glucose and lactose allows bacteria to grow to high density 

using glucose as a carbon source followed by a switch to lactose metabolism when the glucose 
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supply is exhausted. The induction of lactose metabolism leads to galactose production, which 

can then bind to the lac repressor and induce expression of the target protein.60 

The bacteria transformed with the hGOAT loop fusion protein plasmids were cultured in 

autoinduction media for 24 hours to allow for protein expression, as described in Materials and 

Methods. Bacteria were then harvested and analyzed for soluble protein expression by lysis and 

gel electrophoresis (Figure 16). The parent vectors pDB.His.MBP and pDB.GST gave robust 

expression of MBP (49 kDa) and GST (33kDa) as observed in lanes 1 and 5 of Figure 15, 

respectively.  However, no new bands were observed at the predicted sizes for the loop fusion 

proteins  (MBP-loop C, 54 kDa; MBP-loop D, 57 kDa; MBP- loop BCD, 79 kDa; GST-loop B, 

43kDa; GST-loop D, 41 kDa; GST-loop BCD, 64 kDa).  It appears that fusion to the hGOAT 

loop domains also blocked expression of MBP and GST, perhaps due to the lack of solubility of 

the loops or destabilization of MBP and GST folding.  In the event that fusion to the hGOAT 

loop domains leads to protein insolubility, total cellular protein was analyzed in a 12% 

polyacrylamide gel by urea resolubilization of the insoluble pellet following cell lysis. However, 

this analysis did not provide any evidence for expression of the hGOAT loop fusion proteins. 
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Figure 16.Analysis of hGOAT loop fusion protein expression using 
autoinduction media. Lane 1: pDB.His.MBP parent vector; lane 2: 
pDB.His.MBP_loop C; lane 3: pDB.His.MBP_loop D; lane 4: 
pDB.His.MBP_loop BCD; lane 5: pDB.GST parent vector; lane 6: 
pDB.GST_loop B; lane 7: pDB.GST_loop D; lane 8: pDB.GST_loop BCD. 	
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Following unsuccessful expression of the hGOAT loop fusion proteins by auto-induction 

in BL21-DE3 cells, expression of the loops was attempted in Lemo21-DE3 E. coli. This strain of 

E. coli carries an auxiliary plasmid that allows lysozyme expression under the control of a 

rhamnose-inducible promoter.61 Lysozyme serves as an inhibitor of the T7 RNA polymerase that 

is responsible for transcribing the mRNA for the target protein during IPTG-induced expression.  

Therefore, these bacteria allow for more control of target protein expression through titration 

with IPTG to induce protein expression and titration with rhamnose to control the activity of the 

T7 RNA polymerase.  Studies have demonstrated that slower protein expression can lead to 

higher yields for proteins that are toxic or insoluble when expressed in E. coli.61 

To validate the Lemo21-DE3 expression system, the pDB.His.MBP parent vector and 

pDB.His.MBP_loop BCD vectors were chosen. In these test expressions, IPTG and rhamnose 

were cross-titrated to sample the potential expression conditions, followed by protein expression 

analysis using gel electrophoresis (Figure 17).  Cells transformed with the pDB.His.MBP parent 

vectors expressed MBP in presence of multiple IPTG concentrations without L-rhamnose added, 

while the addition of L-rhamnose effectively blocked MBP expression (Figure 17b).  However, 

cells transformed with the pDB.His.MBP_loop BCD vector did not express either MBP-loop 

BCD (79 kDa) or MBP under any conditions tested (Figure 17c). This lack of expression is 

consistent with the expression trials using auto-induction in BL21-DE3 cells described above, 

suggesting that attachment of the hGOAT loop domains to MBP leads to protein instability. 

Varying trials were done in the Lemo21-DE3 cells, which included changing IPTG and L-

rhamnose concentrations (0, 1.0, 1.5, and 2.0 mM L-rhamnose cross-titrated with 0, 0.2, 0.4, and 

0.6 mM IPTG), incubation temperatures after initiation of induction (15 °C and 28 °C), and 

incubation time (2 hrs, 6 hrs, 8 hrs, and 58 hrs for the expressions growing at 15 °C). However, 
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none of the conditions attempted yielded detectible expression of the MBP-loopBCD fusion 

protein. 
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Figure 17. Expression of pDB.His.MBP and pDB.His.MBP_loop BCD in Lemo21-DE3 E. 
coli. a.) Cross-titration grid for varying IPTG L-rhamnose concentrations in test protein 
expression. The numbers in each cell of the table correspond to the conditions for the 
lane/culture of the same number in the gels in b) and c). b.) Analysis of pDB.His.MBP parent 
vector expression with IPTG and L-rhamnose cross-titration; c.) Analysis of pDB.His.MBP –
loop BCD vector expression with IPTG and L-rhamnose cross-titration	
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b.)	
  

a.)	
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Materials and Methods 

Construction of hGOAT truncation mutants using two-step PCR 

hGOAT truncation mutants were constructed using the pFastBacDual_MBOAT4 plasmid as 

template.  Gene constructs for the truncation mutants were generated in two PCR steps.  In this 

first step, a series of forward (5’) primers were designed to anneal downstream of the domains to 

be deleted, with the reverse (3’) primer used annealing at the C-terminus of the hGOAT gene.  

The reverse primer also installed a NotI restriction site at the 3’ end of the truncated gene 

construct.   Following amplification of the desired truncation mutant construct, a second PCR 

step was used to append a MEWLW leader sequence and EcoRI restriction site to the 5’ end of 

the construct. The same reverse primer was used for all PCR reactions 

((pUC57_Not1_subcloning): 5’-AGAGTTGCGGCCGCAGCTATGACCAT-3’). 

The forward primers used were as follows:   
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Mutation Primers 
Trunc2 Forward: 5’-TTTCTTCTTACTGGTGGAGG-3’ 
Trunc3 Forward: 5’-CTTCCATATTTTTCTTATTTATTA-3’ 
Trunc4 Forward: 5’-ATTTATGTTGTATGGACAACTG-3’ 
 

 

Mutation Primers 
Trunc2 Forward: 5’-

AGTCGAATTCCATGGAGTGGCTTTGGTTTCTTCTTACTGGTGGAGG-3’ 
Trunc3 Forward: 5’-

AGTCGAATTCCATGGAGTGGCTTTGGCTTCCATATTTTTCTTATTTATTA-3’ 
Trunc4 Forward: 5’-

AGTCGAATTCCATGGAGTGGCTTTGGATTTATGTTGTATGGACAACTG-3’ 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Truncation mutant primers used for the first PCR.  

	
  

Table 2. Truncation mutant primers used for the second PCR. 
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PCR reactions (50 µL) consisted of One Taq DNA polymerase (0.5 µl, 2.5 units); dNTPs 

(1 µL of 1 mM stock); forward primer (1 µL of 10 µM stock); reverse primer 

(pUC57_Not1_subcloning, 1 µL of 10 µM stock); hGOAT template (pET24D_MBOAT4, 1 µL 

of 84 ng/µL stock), 5x One Taq standard reaction buffer (10 µL) and ultrapure H2O (35.5 µL). 

The PCR thermocycler program proceeded as follows: initial denaturation (94 °C, 1 min); 30 

cycles of denaturation (94 °C, 30 sec), annealing (56 °C, 1 min); and extension (68 °C, 2 min); 

final extension (68 °C, 5 min). PCR products were analyzed using agarose gel electrophoresis 

(0.8% agarose gel with 1X TAE buffer). Desired DNA bands were excised from the gel using 

EZ-10 Spin Column DNA Gel Extraction Kit (Bio Basic Inc.) following the manufacturer’s 

instructions.  

 To insert EcoR1 and Not1 restriction sites at the 5’ and 3’-terminii of the PCR-generated 

inserts for trunc2, trunc3, and trunc4, a second round of PCR was performed under the same 

conditions as described above using the DNA product isolated from the first PCR step as 

template DNA.  

 

Double digestion of pFastBacDual vector and truncation mutants 

 Truncation mutant inserts and pFD_MBOAT4 vector (pFBD_MBOAT4) were digested 

with EcoRI and XbaI prior to ligation. The double digest reactions were performed under the 

following conditions: pFBD_MBOAT4 (70 µL total volume), pFBD_MBOAT4 (5 µg), EcoRI (1 

µL, 20 units), XbaI (1 µL, 20 units), 100x BSA (0.7 µL), NEB 10x Buffer 4 (7 µL), and ultrapure 

H2O (37.8 µL); Trunc2 (60 µL total volume), Trunc2 PCR product (1 µg), EcoRI (1 µL, 20 

units), XbaI (1 µL, 20 units), 100x BSA (0.6 µL), NEB 10x Buffer 4 (6 µL), and ultrapure H2O 

(35.4 µL); Trunc3 (50 µL total volume), Trunc3 PCR product (1 µg), EcoRI (1 µL, 20 units), 
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Xba1 (1 µL, 20 units), 100x BSA (0.5 µL), NEB 10x Buffer 4 (5 µL), and ultrapure H2O (31.4 

µL); Trunc4 (50 µL total volume), Trunc4 PCR product (1 µg), EcoRI (1 µL, 20 units), XbaI (1 

µL, 20 units), 100x BSA (0.5 µL), NEB 10x Buffer 4 (5 µL), and ultrapure H2O (29.1 µL). 

Reactions were incubated for 2 hours at 37 °C, followed by analysis and purification of the 

vector digestion by agarose gel electrophoresis (0.8% agarose, 1X TAE buffer); the size of the 

truncation inserts and linearized vector (4628 bp) were verified by comparison to a DNA 

standards ladder. The double digested truncation mutants PCR products were purified using the 

EZ-10 Column PCR Purification Kit (Bio Basic Inc.) per the manufacturer’s instructions.  

 

Ligation of truncation mutants into pFastBacDual vector 

 Ligations were performed using a 1:3 molar ratio of vector to insert. Ligation reactions 

were performed under the following conditions:  Trunc2 construct (22 µL total volume), EcoRI-

NotI double digested pFBD_MBOAT4 (31 ng), EcoRI-NotI double digested Trunc2 PCR 

product (26.9 ng), ultrapure H2O (0.9 µL), 2x Quick Ligase buffer (10 µL), and T4 Quick Ligase 

(New England Biolabs, 1 µL); Trunc3 construct (21 µL total volume), EcoRI-NotI double 

digested pFBD_MBOAT4 (31 ng), EcoRI-NotI double digested Trunc3 PCR product (19.7 ng), 

ultrapure H2O (2.2 µL), 2x Quick Ligase buffer (10 µL), and T4 Quick Ligase (New England 

Biolabs, 1 µL); Trunc4 construct (21 µL total volume), EcoRI-NotI double digested 

pFBD_MBOAT4 (31 ng), EcoRI-NotI double digested Trunc4 PCR product (15.0 ng), ultrapure 

H2O (2.7 µL), 2x Quick Ligase buffer (10 µL), and T4 Quick Ligase (New England Biolabs, 1 

µL). Following addition of Quick Ligase, reactions were incubated at room temperature for 5 

minutes.  Ligation mixtures (5 µL) were then transformed into a 50 µL aliquot of chemically 

competent Z-competent DH5α cells (Zymo Research) followed by incubation on ice for 30 
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minutes. Transformed bacteria were spread on LB-ampicillin plates (100 µg/mL) and incubated 

at 37 °C overnight.  

 Following overnight incubation at 37 oC, single colonies were inoculated into LB media 

(5 mL) containing ampicillin (100 µg/mL) in sterile culture tubes. These cultures were incubated 

overnight at 37 °C with shaking (225 RPM). Following overnight growth, plasmids were purified 

from the saturated cultures using EZ-10 Spin Column Plasmid DNA kit (Bio Basic Inc.) per 

manufacturer’s instructions.  Truncation inserts were verified by double digestion with EcoRI 

and XbaI to excise the ligated insert followed by agarose gel electrophoresis (Figure 7) and DNA 

sequencing (Genscript).  

Construction of single-point hGOAT mutants 

 PCR mutagenesis primers were designed per manufacturer protocols (Strategene) and 

were synthesized by Integrated DNA Technologies (Table 1). Primers were dissolved in purified 

water and concentrations were measured by UV absorbance at 260 nm (1 OD = 50 ng/µL). PCR 

mutagenesis reactions (50 µL total volume) contained the following components: 10x Pfu reaction 

buffer (5 µL), pFBD_MBOATi_FLAG template (10 ng), forward primer (125 ng), reverse primer 

(125 ng), dNTPs (1 µL, 1 mM stock), and Pfu Turbo DNA polymerase (1 µL, Agilent). The 

thermocycler program for PCR mutagenesis proceeded as follows: initial denaturation (95 °C, 1 

min); 18 cycles of denaturation (95 °C, 50 sec); annealing (60 °C, 50 sec); extension (68 °C, 12 min); 

and final extension (68 °C, 12 mins). Following PCR, reactions were digested with DpnI (1 µL, 10 

units) at 37 °C for 1 hour. After DpnI digestion, the PCR reaction mixture (5 µL) were then 

transformed into a 50 µL aliquot of chemically competent Z-competent DH5α cells (Zymo 

Research) followed by incubation on ice for 30 minutes. Transformed bacteria were spread on 

LB-ampicillin plates (100 µg/mL) and incubated at 37 °C overnight. 
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Following overnight incubation at 37 oC, single colonies were inoculated into LB media 

(5 mL) containing ampicillin (100 µg/mL) in sterile culture tubes. These cultures were incubated 

overnight at 37 °C with shaking (225 RPM). Following overnight growth, plasmids were purified 

from the saturated cultures using EZ-10 Spin Column Plasmid DNA kit (Bio Basic Inc.) per 

manufacturer’s instructions. Single site mutations were verified by DNA sequencing (Genscript).  
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Mutation Primers 
H258A Forward: GCTGACCTACTACTCAGCCTGGATCCTCGACG 

Reverse: CGTCGAGGATCCAGGCTGAGTAGTAGGTCAGC 
D262A Forward: CACACTGGATCCTCGCCGATTCGCTCTTGC 

Reverse: GCAAGAGCGAATCGGCGAGGATCCAGTGTG 
D263A Forward: CTGGATCCTCGACGCTTCGCTCTTGCACG 

Reverse: CGTGCAAGAGCGAAGCGTCGAGGATCCA 
E281A Forward: GACAGTCACCAGGAGCGGAAGGTTACGTTCC 

Reverse: GGAACGTAACCTTCCGCTCCTGGTGACTGTC 
E282A Forward: GTCACCAGGAGAGGCAGGTTACGTTCCTG 

Reverse: CAGGAACGTAACCTGCCTCTCCTGGTGAC 
D287A Forward: GGTTACGTTCCTGCCGCTGATATCTGGACC 

Reverse: GGTCCAGATATCAGCGGCAGGAACGTAACC 
D289A Forward: CGTTCCTGACGCTGCTATCTGGACCCTGG 

Reverse: CCAGGGTCCAGATAGCAGCGTCAGGAACG 
E294A Forward: GATATCTGGACCCTGGCAAGGACTCACAGAATC 

Reverse: GATTCTGTGAGTCCTTGCCACGGTCCAGATATC 
H297A Forward: CCCTGGAAAGGACTGCCAGAATCTCGGTCTTC 

Reverse: GAAGACCGAGATTCTGGCAGTCCTTTCCAGGG 
N307A Forward: CTCCCGTAAGTGGGCCCAAAGCACTGCTCGC 

Reverse: GCGAGCAGTGCTTTGGGCCCACTTACGGGAG 
H338A Forward: CAGCTTGGTGGGCCGGACTGCACCCTGG 

Reverse: CCAGGGTGCAGTCCGGCCCACCAAGCTG 
H341A Forward: GCACGGACTGGCCCCTGGACAGGTTTTCGG 

Reverse: CCGAAAACCTGTCCAGGGGCCAGTCCGTGC 
D358A Forward: GTTATGGTGGAGGCCGCCTACCTGATCCAC 

Reverse: GTGGATCAGGTAGGCGGCCTCCAGCATAAC 
H361A Forward: GCCGACTACCTGATCGCCTCCTTCGCTAACGAG 

Reverse: CTCGTTACGGAAGGAGGCGATCAGGTAGTCGGC 
 
 

 

 

 

 

 

 

Table 3. Single point mutation quick-change mutagenesis primers used for the PCR.  
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Generation of recombinant baculovirus using pFastBacDual vectors 

To generate bacmid for transfecting into Sf9 insect cells, pFastBacDual vectors were 

transformed into DH10Bac E. coli cells by adding chilled plasmid (100 ng) to an aliquot of Z-

competent DH10Bac cells (50 µL), followed by incubation on ice for 15 minutes. The 

transformed bacteria were then spread onto LB agar plates containing kanamycin (50 µg/mL), 

tetracycline (10 µg/mL), gentamicin (7 µg/mL), IPTG (40 µg/mL), and XGal (100 µg/mL). 

Plates were incubated at 37 °C for 48 hours, at which point bacteria with successful bacmid 

recombination were identified by blue/white screening. White colonies were re-streaked onto LB 

agar plates containing kanamycin, tetracycline, gentamicin, IPTG, and XGal and incubated for 

48 hours at 37 °C to verify bacmid recombination by blue/white screening. White colonies from 

the second blue/white screening were inoculated into 5 mL LB cultures containing kanamycin 

(50 mg/mL), gentamicin (10 mg/mL), and tetracycline (5 mg/mL) to amplify bacmids containing 

MBOAT sequences. Following initial growth of 5 mL cultures at 37 oC with shaking (225 rpm) 

for 7 hours, the total volume of the initial culture was used to inoculate a 500 mL culture in a 2 L 

sterile flask (500 mL LB media, kanamycin (50 mg/mL), gentamicin (10 mg/mL), and 

tetracycline (5 mg/mL). These 500 ml cultures were incubated at 37 oC with shaking (175 rpm) 

overnight. Following overnight incubation, bacmids were purified using Nucleobond Bac 100 

maxi purification kit (Macherey-Nagel) per the manufacturer’s instructions and stored at 4 °C. 

 Following purification, bacmid samples were prepared for transfection in tissue culture to 

generate baculovirus. To generate P1 virus, Grace’s basal media (Cellgro, 4 mL) was added to 

T25 flasks and inoculated with a volume of 8 x 106 sf9 insect cells (1 mL). Following cell 

addition, flasks were incubated at room temperature for 30 minutes to allow cell attachment. 

During this incubation, solutions of Cellfectin II reagent (Invitrogen, 20 µL) in Grace’s basal 
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media (230 µL, total volume 250 µL) and bacmid (2 µg) in Grace’s basal media (250 µL) were 

prepared.  These solutions were then combined and incubated at room temperature for 30 

minutes. The combined solution was added dropwise to the T25 flasks containing Sf9 cells, 

followed by incubation at 27 °C for 4 hours. The transfection media was then removed from the 

Sf9 cells and replaced with 5 mL of Sf9 Insectagrow (Cellgro), followed by cell incubation at 27 

°C until 80% cell lysis is observed (~96 hours total incubation).  

 Baculovirus (P1 virus) was harvested from the transfected cells by transferring media 

from the T25 flasks to 15 ml conical tubes, followed by centrifugation (500 x g, 5 minutes) to 

pellet cellular debris. The supernatant containing the P1 virus was then transferred to new sterile 

conical tubes and stored at 4 °C.   

To produce P2 virus, a volume of 2 x 106 cells/ mL(7 mL) was combined with P1 virus (2 

mL) and 41 mL of Insectagro growth media for a total of 50 mL and incubated at 27 °C for 96 

hours. Following incubation, P2 virus is syringe filtered with a 0.45 µM syringe and stored in a 

50 mL conical tube at 4 °C.  

  P2 baculoviral concentration (titer, pfu/mL) was determined with the FastPlax Titer Kit 

(Novagen) per manufacturer’s instructions.  For P2 stocks with concentrations below that needed 

for protein expression, the P2 baculovirus was concentrated by ultra-centrifugation (80,000 x g, 

60 minutes). The pellet for each P2 stock was resuspended in sufficient Insectagro media to 

generate baculoviral stocks at sufficient titer for protein expression (10 pfu/mL); pellet 

resuspension requires storage of the media and viral pellets at 4 °C for 5 days.  
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Baculoviral Expression of MBOAT and MBOAT variants  

 

 For protein expression, Sf9 insect cell cultures (1 x 106 cell/mL) were infected with P2 

baculovirus at a multiplicity of infection (MOI) of 10; culture volumes were determined by the 

amount of P2 virus available (e.g. Trunc2: 100 mL culture; Trunc3: 12 mL culture; Trunc4: 80 

mL culture). Cultures were infected with P2 virus and incubated at 27 °C with stirring (150 rpm) 

for 72 hours.  

 

Membrane fraction enrichment from Sf9 insect cells 

 Following protein expression, Sf9 cultures were harvested by centrifugation (500 x g, 5 

minutes) at 4 °C.  Cell pellets were resuspended in 1/20 culture volume of lysis buffer [150 mM 

NaCl, 50 mM Tris-HCl pH 7.0, 1 mM NaEDTA, 1 mM DTT, complete mini-tab protease 

inhibitor (Roche Pharmaceuticals), 10 µg/mL Pepstatin A, 100 µM bis (4-nitrophenyl) 

phosphate]. The resuspended cells were transferred to a dounce homogenizer and lysed by 40 

dounce strokes on ice, followed by removal of cell debris by centrifugation (3000 x g, 5 minutes) 

at 4 °C. The membrane protein fraction was isolated from the resulting supernatant by 

ultracentrifugation (100,000 x g, 1 hour) at 4 °C.  The isolated membrane fraction pellet was 

resuspended in buffer (50 mM HEPES, pH 7.0) by pipetting (25 strokes).  Protein concentration 

was determined by Bradford assay (Bio-Rad, Hercules, CA), and the resuspended membrane 

fractions were aliquoted (50 µL) and stored at -80 °C until use.  
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hGOAT activity assay 

Membrane fractions from Sf9 cells expressing hGOAT variants were thawed on ice and 

passed through an 18 gauge needle ten times. Membranes were then centrifuged (1000 x g, 1 

min), with the supernatant collected and added to hGOAT reactions.  Reactions contained the 

desired concentration of membrane fraction as determined by Bradford assay (25 µg, 50 µg, 100 

µg, or 150 µg).  Unless noted otherwise, assays were performed with 1.5 µM acrylodanylated 

peptide substrate (GSSFLCAcDan), 500 µM octanoyl-CoA, and 50 mM HEPES pH 7.0 in a total 

volume of 50 mL.  Assays were initiated by addition of the acrylodanylated peptide substrate. 

Assays were incubated at room temperature and stopped by addition of 50 µL of 20% acetic acid 

in isopropanol. Assays were analyzed by reverse phase HPLC (Zorbax Eclipse XDB column, 4.6 

x 150 mm) using a gradient from 30% acetonitrile in water containing 0.05% TFA to 63% 

acetonitrile in water containing 0.05% TFA flowing at 1 mL/min over 14 min, followed by 100% 

acetonitrile for 5 min; acrylodanylated peptides were detected by UV absorbance at 360 nm and 

fluorescence (lex 360 nm, lem 485 nm).  Peptide substrates typically eluted with a retention time 

of 5-7 minutes, with the octanoylated peptide product eluting at ~12 min.  Chromatogram 

analysis and peak integration was performed using Chemstation for LC (Agilent Technologies).  

  

Construction of hGOAT loop mutants constructs 

Constructs for the predicted soluble loops within hGOAT (loops B, C, D, and BCD) were 

generated by PCR amplification of the corresponding regions within the pUC57 MBOAT4 

vector.  The forward (5’) primers anneal upstream of the desired loop region and install a NdeI 

restriction site at the 5’-end of the PCR product. Similarly, the reverse (3’) primers anneal 

downstream of the desired region and install a 3’ HindIII restriction site. For the BCD loop 
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region, the loop B forward and loop D reverse primers were used.  The primers used were as 

follows (restriction sites noted in bold): 
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Mutation Primers 
Loop B Forward: 5’-TCGATCCATATGTTAGTATTTACTCCAGCAGTTT-3’ 

Reverse: 5’-GATCGAAAGCTTAGCTTTACAAACATGTTCACTC-3’ 
Loop C Forward: 5’-TCGATCCATATGCAACGATTTCAAGCTCGTGTT-3’ 

Reverse: 5’-GATCGAAAGCTTACATTCAAATTGTTGACAATCAG-3’ 
Loop D Forward: 5’-TCGATCCATATGGATGATTCACTTTTGCATGCTG-3’ 

Reverse: 5’-GATCGAAAGCTTTTGACCAGGATGTAATCCATC-3’ 
Loop BCD Forward: 5’-TCGATCCATATGTTAGTATTTACTCCAGCAGTTT-3’ 

Reverse: 5’-GATCGAAAGCTTTTGACCAGGATGTAATCCATC-3’ 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Loop mutation primers used for the PCR.  
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PCR reactions (50 µL) consisted of One Taq DNA polymerase (0.5 µL, 2.5 units); 

dNTPs (1 µL of 1 mM stock); forward primer  (1 µL of 10 µM stock); reverse primer (1 µL of 

10 µM stock); pUC57_MBOAT4 template (60 ng), 5x One Taq standard reaction buffer (10 µL) 

and ultrapure H2O (35.5 µL). The PCR thermocycler program proceeded as follows: initial 

denaturation (94 °C, 1 min); 30 cycles of denaturation (94 °C, 30 sec), annealing (56 °C, 1 min); 

and extension (68 °C, 2 min); final extension (68 °C, 5 min). PCR products were analyzed using 

agarose gel electrophoresis (0.8% agarose gel with 1X TAE buffer). Desired DNA bands were 

excised from the gel using EZ-10 Spin Column DNA Gel Extraction Kit (Bio Basic Inc.) 

following the manufacturer’s instructions. 

 

Double digestion of pDB.His.MBP and pDB.GST vectors and loop mutants 

 hGOAT loop mutant inserts (loop B, loop C, loop D, loop BCD) and fusion protein 

expression vectors (pDB.His.MBP and pDB.GST) were digested with NdeI and HindIII prior to 

ligation. The double digest reactions were performed under the following conditions: 

pDB.His.MBP (total volume 40 µL), pDB.His.MBP (3 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 

20 units), 100x BSA (0.4 µL), NEB 10x Buffer 2 (4 µL), and ultrapure H2O (22.7 µL); pDB.GST 

(total volume 40 µL), pDB.GST (3 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 20 units), 100x 

BSA (0.4 µL), NEB 10x Buffer 2 (4 µL), and ultrapureH2O (25.3 µL); loop B (total volume 60 

µL), loop B PCR product(1 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 20 units), 100x BSA (0.6 

µL), NEB 10x Buffer 2 (6 µL), and ultrapure H2O (33.2 µL); loop C (total volume 60 µl); loop C 

PCR product (1 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 20 units), 100x BSA (0.6 µL), NEB 

10x Buffer 2 (6 µL), and ultrapure H2O (35.4 µL); loop D (total volume 70 µL), loop D PCR 

product (1 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 20 units), 100x BSA (0.7 µL), NEB 10x 
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Buffer 2 (7 µL), and ultrapure H2O (37.2 µL; loop BCD (total volume 50 µL), loop BCD PCR 

product (1 µg), NdeI (1 µL, 20 units), HindIII (1 µL, 20 units), 100x BSA (0.5 µL), NEB 10x 

Buffer 2 (5 µL), and ultrapure H2O (30 µL).  

Reactions were incubated for 2 hours at 37 °C, followed by analysis of the vector 

digestions by agarose gel electrophoresis (0.8% agarose, 1X TAE buffer) to verify the size of the 

linearized pDB.His.MBP and pDB.GST vectors (6431 and 6963 bp, respectively). The digested 

vectors were purified using an EZ-10 Spin Column DNA Gel Extraction Kit (Bio Basic Inc.) per 

the manufacturer’s instructions. The double digested loop PCR product inserts were purified 

using the EZ-10 Column PCR Purification Kit (Bio Basic Inc.) per the manufacturer’s 

instructions.  

 

Ligation of loop mutants into pDB.His.MBP and pDB.GST vectors 

 Ligations were performed using a 1:3 molar ratio of vector to insert. Ligation reactions 

were performed under the following conditions:  Loop C and pDB.His.MBP construct (24 µL 

total volume), HindIII-NdeI double digested pDB.His.MBP (18.7 ng), HindIII-NdeI double 

digested loop C PCR product (1.58 ng), ultrapure H2O (7.1 µL), 2x Quick Ligase buffer (10 µL), 

and T4 Quick Ligase (New England Biolabs, 1 µL); Loop D and pDB.His.MBP construct (24 µL 

total volume), HindIII-NdeI double digested pDB.His.MBP (18.7 ng), HindIII-NdeI double 

digested loop D PCR product (2.25 ng), ultrapure H2O (7.1 µL), 2x Quick Ligase buffer (10 µL), 

and T4 Quick Ligase (New England Biolabs, 1 µL); Loop BCD and pDB.His.MBP construct (24 

total volume), HindIII-NdeI double digested pDB.His.MBP (18.7 ng), HindIII-NdeI double 

digested loop BCD PCR product (7.41 ng), ultrapure H2O (3.1 µL), 2x Quick Ligase buffer (10 

µL), and T4 Quick Ligase (New England Biolabs, 1 µL); Loop B and pDB.GST construct (22 µL 
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total volume), HindIII-NdeI double digested pDB.GST (12 ng), HindIII-NdeI double digested 

loop B PCR product (2 ng), ultrapure H2O (2.1 µL), 2x Quick Ligase buffer (10 µL), and T4 

Quick Ligase (New England Biolabs, 1 µL); Loop D and pDB.GST construct (22 µL total 

volume), HindIII-NdeI double digested pDB.GST (12 ng), HindIII-NdeI double digested loop D 

PCR product (1.6 ng), ultrapure H2O (2.1 µL), 2x Quick Ligase buffer (10 µL), and T4 Quick 

Ligase (New England Biolabs, 1 µL); Loop BCD and pDB.GST construct (22 µL total volume), 

HindIII-NdeI double digested pDB.GST (12 ng), HindIII-NdeI double digested loop BCD PCR 

product (5.1 ng), ultrapure H2O (1.1 µL), 2x Quick Ligase buffer (10 µL), and T4 Quick Ligase 

(New England Biolabs, 1 µL). Following addition of Quick Ligase, reactions were incubated at 

room temperature for 5 minutes.  Ligation mixtures (5 µL) were then transformed into a 50 µL 

aliquot of chemically competent Z-competent DH5α cells (Zymo Research) followed by 

incubation on ice for 30 minutes. Transformed bacteria were spread on LB-ampicillin plates (100 

mg/mL) and incubated at 37 °C overnight.  

 Following overnight incubation at 37 oC, single colonies were inoculated into LB media 

(5 mL) containing ampicillin (100 µg/mL) in sterile culture tubes. These cultures were incubated 

overnight at 37 °C with shaking (225 RPM). Following overnight growth, plasmids were purified 

from the saturated cultures using EZ-10 Spin Column Plasmid DNA kit (Bio Basic Inc.) per 

manufacturer’s instructions.  Truncation inserts were verified by double digestion with HindIII 

and NdeI to excise the ligated insert followed by agarose gel electrophoresis (Figure 13) and 

DNA sequencing (Genscript).  
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Expression of hGOAT loop fusion proteins using autoinduction media 

 Plasmids encoding the hGOAT loop fusion proteins (pDB.His.MBP_loop C, 

pDB.His.MBP_loop D, pDB.His.MBP_loop BCD, pDB.GST_loop B, pDB.GST_loop D, 

pDB.GST_loop BCD) were transformed into BL21 (DE3) E. coli cells. Plasmids (100 ng) were 

transformed into a 50 µL aliquot of chemically competent Z-competent BL21 (DE3) cells (Zymo 

Research) followed by incubation on ice for 30 minutes. Transformed bacteria were spread on 

LB-kanamycin plates (50 µg/mL) and incubated at 37 °C overnight. 

Following overnight incubation, single colonies were used to inoculate 1 mL culture of 

autoinduction media (1% tryptone, 0.5% yeast extract, 25 mM Na2HPO4, 25 mM KH2PO4, 50 

mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4, 0.2x trace metals (0.01 mM FeCl3, 0.004 mM CaCl2, 

0.002 mM MnCl2�7H2O, 0.002 mM ZnSO4�7H2O), 0.5% glycerol, 0.05% glucose, 0.2% α-D-

lactose, and 50 µg/mL kanamycin) in one well of a 96-deep well plate.  The plates were sealed 

with gas permeable seals (Thermo Scientific) and shaken for 24 hours at 400 rpm at 28 °C. 

Following growth, bacteria were harvested by centrifugation (6000 x g, 15 min) and the 

supernatant removed.  The bacterial pellet was resuspended in B-PER lysis reagent (Thermo 

Scientific, 150 µL), vortexed on high for 1 min, and cell debris was removed by centrifugation 

(15,000 x g ,5 mins). Proteins in the resulting supernatant were then analyzed 12% acrylamide 

gel electrophoresis and Coomassie staining (Figure 14).  

 

Expression of hGOAT loop fusion proteins using Lemo21 E. coli 

 The pDB.His.MBP parent vector and pDB.His.MBP_loop BCD were transformed into Z-

competent Lemo21(DE3) E. coli cells. Plasmids (100 ng) were added to 50 µL aliquots of Z-

competent Lemo21(DE3) E. coli, followed by incubation on ice for 30 min.  Following 
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incubation on ice, SOC media (200 µL) was added and transformations were shaken for 2 hours 

at 225 rpm for 2 hours at 37 °C. The entire volume of the transformation was spread onto LB 

agar plates containing kanamycin (50 µg/mL) and chloramphenicol (20 µg/mL) and incubated 

overnight at 37 °C.  

Following overnight incubation, single colonies were inoculated into 5 mL cultures of LB 

media containing kanamycin (50 µg/mL) and chloramphenicol (20 µg/mL).  These cultures were 

incubated at 37 °C approximately 2 hours until slight turbidity was evident (OD600 ~0.1). 

Expression cultures consisting of 50 mL of 2xYT media with kanamycin (50 µg/mL) and 

chloramphenicol (20 µg/mL) were inoculated with 1 mL of the starter cultures, followed by 

incubation with shaking at 225 RPM at 37 °C until cultures reached an OD600 of 0.6-0.8. Once 

the cultures reached the desired optical density, the cultures were split into 1 mL aliquots and 

varying amounts of IPTG and L-rhamnose were titrated into each 1 mL cultures contained in a 

96-deep well plate to induce protein expression. The plates were then sealed with gas permeable 

seals (Thermo Scientific) and shaken at 225 rpm for 6 hours at 37 °C.  Following growth and 

induction, bacteria were harvested by centrifugation (6000 x g, 10 min) and the resulting cell 

pellets were stored at -80 °C until expression analysis by cell lysis and gel electrophoresis 

followed by Coomassie staining (Figure 16).  
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CHAPTER THREE 

 

CHARACTERIZING THE ACYL DONOR SPECIFICITY OF HUMAN GHRELIN O-

ACYLTRANSFERASE 

 

 

Introduction 

A number of different acyl modifications of ghrelin by hGOAT besides octanoylation 

were screened for activity to test the specificity of hGOAT modification. The initial isolation and 

identification of ghrelin revealed the presence of an octanoyl (C8 fatty acid) group attached to 

serine 3 of ghrelin.1 In the initial study identifying ghrelin O-acyltransferase (GOAT), Yang and 

coworkers reported that GOAT accepted octanoyl-CoA as the acyl donor for ghrelin 

modification.33 GOAT was also shown to be able to catalyze transfer of this octanoyl group from 

octanoyl CoA to a mock ghrelin substrate composed of the first five N-terminal amino acids of 

ghrelin.40  

However, subsequent research indicated that ghrelin could be modified with acyl groups 

other than octanoate.  In a study where rats were fed diets high in C6 or C10 fatty acids, the 

acylation state of ghrelin was observed to mirror the diet composition.62 For example, 

consumption of high levels of C6 fatty acids led to detection of hexanoyl-ghrelin in the animal’s 

bloodstream.62 However, this in vivo study could not prove that GOAT was responsible for the 

alteration in ghrelin acylation.  To investigate whether GOAT is capable of acylating ghrelin 

with fatty acids other than octanoate, Ohgusu and coworkers screened acyl donors with varying 

acyl chain lengths, including hexanoyl-CoA (C6, 6 carbons long), decanoyl-CoA (C10), 
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myristoyl-CoA (C14), and palmitoyl CoA (C16) for activity with the mouse form of GOAT.41 

They found that both hexanoyl-CoA and decanoyl-CoA showed activity as acyl donors, with 

GOAT exhibiting higher activity with hexanoyl-CoA than octanoyl-CoA. This suggests that 

cellular octanoyl-CoA levels are higher than hexanoyl-CoA to allow for ghrelin octanoylation.   

 Characterizing the range of acyl donors accepted by GOAT will aid in defining the size 

and nature of the acyl donor binding site within GOAT.  Using the human isoform of GOAT 

(hGOAT) and a fluorescence-based GOAT peptide substrate developed in the Hougland lab, we 

have systematically investigated the activity of acyl-CoA donors in ghrelin acylation. These 

studies present the first step towards characterization of acyl donor selectivity by hGOAT.   

 

Results and Discussion 

Selection of acyl CoA donors for activity screening 

 To select acyl donors for screening, we started with the known octanoyl-CoA substrate 

for hGOAT and adjust the length of the acyl chain in two carbon increments to both longer and 

shorter acyl groups.  Several groups, including our own, have shown that long chain acyl donors 

myristoyl CoA (C14) and palmitoyl-CoA (C16) do not serve as efficient cosubstrates for either 

the mouse or human forms of GOAT.41 Based on this methodology and limiting criteria, we 

chose to screen five acyl donors for activity with hGOAT: acetyl-CoA (C2), butyryl-CoA (C4), 

hexanoyl-CoA (C6), decanoyl-CoA (C10), and lauroyl-CoA (C12).  

 

Screening for ghrelin acylation activity using various acyl CoA’s 

 Previous studies of hGOAT activity with octanoyl-CoA indicated that hGOAT activity 

reaches a maximum in the presence of 500 µM octanoyl-CoA.46 For activity screening, we 
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investigated ghrelin acylation activity in the presence of either 500 µM or 1 mM of each acyl-

donor. Following incubation of the GSSFLCAcDan peptide substrate with hGOAT and the acyl 

donors, reactions were analyzed using reverse-phase HPLC to detect the presence of the acylated 

GSSFLCAcDan peptide product. 

Compared to control reactions lacking any acyl-CoA cosubstrate (green traces in Figure 

18), new peaks corresponding to acylated forms of the GSSFLCAcDan substrate were observed in 

reactions with several of the acyl-CoA donors (Figure 18).  In addition to the presence of the new 

peak with longer retention time indicating acylation of the GSSFLCAcDan substrate, the relation of 

the observed product reaction time to the length of the acyl-CoA donor acyl chain provides 

further evidence for ghrelin acylation.  Under the reverse phase HPLC gradient used in this 

study, acylation of the GSSFLCAcDan peptide substrate with octanoyl-CoA leads to the formation 

of the octanoyl-GSSFLCAcDan product with a retention time of 12.1 minutes (Figure 18d), 

consistent with previous studies.46 However, reaction with hexanoyl-CoA yields a new product 

peak with a retention time of 10 minutes and reaction with decanoyl-CoA produces an product 

peak with a retention time of ~14 min (Figures 18c and 18e).  These results indicate that the 

human form of GOAT, like the mouse form studied by Ohgusu and coworkers,41 can accept 

hexanoyl-CoA and decanoyl-CoA as acyl donors.   

In addition to confirming similar acyl donor tolerances for the human and mouse forms of 

GOAT, the products from reaction with these three acyl donors establish a pattern relating the 

addition or subtraction of two methylene units from the acyl chain to an approximately two 

minute shift in product retention time under our HPLC conditions.  This pattern predicts 

retention times for the acylated products of reaction with acetyl-CoA (6 minutes), butyryl-CoA 

(8 minutes), and lauroyl-CoA (16 minutes).  Neither acetyl-CoA nor butyryl-CoA demonstrated 
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any evidence for acylation activity with hGOAT and GSSFLCAcDan at either 500 µM or 1 mM 

concentrations (Figures 18b, c, d, and e); it should be noted that the product peak for acylation by 

acetyl-CoA (if present) may be difficult to distinguish from the large peak for unreacted 

GSSFLCAcDan at 5-6 minutes retention time. However, reaction with lauroyl-CoA led to the 

formation of a new peak with a retention time of approximately 16 min, consistent with the 

predicted retention time for lauroyl- GSSFLCAcDan (Figure 18 l, and m). 

In reactions where a product peak was detected by HPLC, the area of the substrate and 

products peaks were integrated and the percent conversion was calculated (Figure 19).  These 

integrations suggest that octanoyl-CoA serves as the best acyl donor for acylation of the 

GSSFLCAcDan substrate by hGOAT.  The increase in percent conversion observed for hexanoyl-, 

decanoyl-, and lauroyl-CoA when the acyl-CoA concentration was increased from 500 mM to 1 

mM suggests that these other acyl-CoA cosubstrates may not bind as tightly to hGOAT as 

octanoyl-CoA. 

In summary, we have demonstrated that hGOAT can utilize a range of acyl-CoA 

cosubstrates to acylate ghrelin.  This substrate promiscuity suggests that the acyl donor-binding 

pocket within hGOAT is flexible and can accommodate changes in acyl change lengths without 

loss of catalytic activity. This knowledge of the flexibility of the hGOAT binding pocket allows 

for inhibitor design of ghrelin acylation by hGOAT. Product-based inhibitors can be designed 

with various acyl length chains, ranging from six to twelve carbons.  
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Figure 18. Screening of acyl-CoA reactivity with hGOAT. (a.) negative control (no 
acyl-CoA). (b. and c.) 500 µM  and 1000 µM acetyl CoA; no evidence of acetylated 
product peak. (d. and e.) 500 µM and 1000 µM butyryl CoA; no evidence of 
butyrylated-peptide product peak. (f. and g.) 500 µM and 1000 µM hexanoyl CoA; 
potential hexanoyl-GSSFLCAcDan peak observed with a retention time of 10.0 
minutes. (h. and i.) 500 µM and 1000 µM octanoyl CoA; octanoyl- GSSFLCAcDan 
observed with 12.1 minute retention time. (j. and k.) 500 µM and 1000 µM 
Decanoyl-CoA; potential decanoyl- GSSFLCAcDan detected with 14.4 minute 
retention time (l. and m.) 500 µM and 1000 µM lauroyl CoA; potential lauroyl-
GSSFLCAcDan peak observed with retention time of 16.5 min.  
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Figure 19. Product peak areas for reaction with acyl-CoA donors with varying acyl 
chains lengths. Comparison of acyl-CoA activities is relative to the positive control 
octanoyl-CoA. Percent conversion was calculated integrating the areas of the 
peptide substrates and acylated peptide product peaks and dividing the area of the 
product peak by the total peptide area (substrate plus product). 
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Materials and Methods 

General materials. 

 Acetyl coenzyme A (acetyl CoA), butyryl CoA, hexanoyl CoA, octanoyl CoA, decanoyl 

CoA, and lauroyl CoA (Advent Bio) were solubilized in 10 mM Tris-HCl (pH 7.0) to 5 mM and 

stored at -80 °C until use (Darling). 

 

hGOAT expression and purification 

 A gene encoding hGOAT with a His10 tag at the C-terminus, an EcoRI restriction site at 

the 5’ end and a XbaI restriction site at the 3’ end was synthesized (Genscript). The gene hGOAT 

was cloned into the pFastBac Dual vector (Invitrogen) using the EcoRI and XbaI restriction sites. 

Baculovirus was then produced using the resulting pFastBac Dual-hGOAT vector and the Bac-

to-Bac baculovirus expression system protocol (Invitrogen) following the manufacturer’s 

instructions.  

For protein expression, Sf9 insect cell cultures (1 x 106 cell/mL) were infected hGOAT 

baculovirus at a multiplicity of infection (MOI) of 10 and incubated at 27 °C with stirring (150 

rpm) for 72 hours. Following protein expression, Sf9 cultures were harvested by centrifugation 

(500 x g, 5 minutes) at 4 °C.  Cell pellets were resuspended in 1/20 culture volume of lysis buffer 

[150 mM NaCl, 50 mM Tris-HCl pH 7.0, 1 mM NaEDTA, 1 mM DTT, complete mini-tab 

protease inhibitor (Roche Pharmaceuticals), 10 µg/mL Pepstatin A, 100 µM bis (4-nitrophenyl) 

phosphate]. The resuspended cells were transferred to a dounce homogenizer and lysed by 40 

dounce strokes on ice, followed by removal of cell debris by centrifugation (3000 x g, 5 minutes) 

at 4 °C. The membrane protein fraction was isolated from the resulting supernatant by 

ultracentrifugation (100,000 x g, 1 hour) at 4 °C.  The isolated membrane fraction pellet was 
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resuspended in buffer (50 mM HEPES, pH 7.0) by pipetting (25 strokes).  Protein concentration 

was determined by Bradford assay (Bio-Rad, Hercules, CA), and the resuspended membrane 

fractions were aliquoted (50 µL) and stored at -80 °C until use.  

Acyl CoA activity assay 

Membrane fractions from Sf9 cells expressing hGOAT variants were thawed on ice and 

passed through an 18 gauge needle ten times. Membranes were then centrifuged (1000 x g, 1 

min), with the supernatant collected and added to hGOAT reactions.  Reactions contained the 

desired concentration of membrane fraction as determined by Bradford assay (50 µg).  Unless 

noted otherwise, assays were performed with 1.5 µM acrylodanylated peptide substrate 

(GSSFLCAcDan), 500 µM acyl-CoA, and 50 mM HEPES pH 7.0 in a total volume of 50 mL.  

Assays were initiated by addition of the acrylodanylated peptide substrate. Assays were 

incubated at room temperature and stopped by addition of 50 µL of 20% acetic acid in 

isopropanol. Assays were analyzed by reverse phase HPLC (Zorbax Eclipse XDB column, 4.6 x 

150 mm) using a gradient from 30% acetonitrile in water containing 0.05% TFA to 63% 

acetonitrile in water containing 0.05% TFA flowing at 1 mL/min over 14 min, followed by 100% 

acetonitrile for 5 min; acrylodanylated peptides were detected by UV absorbance at 360 nm and 

fluorescence (360 nm excitation, 485 nm emission).  Peptide substrates typically eluted with a 

retention time of 5-7 minutes, with the octanoylated peptide product eluting at ~12 min.  

Chromatogram analysis and peak integration was performed using Chemstation for LC (Agilent 

Technologies).  

 

 

 



	
   73	
  

 

CHAPTER FOUR 
 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Investigating the active site of hGOAT in order to develop more potent inhibitors 

presents a promising avenue for treatment of various health conditions which may be tied to 

ghrelin signaling, such as type II diabetes, obesity, and Prader Willi Syndrome. Octanoylation of 

ghrelin by hGOAT provides an ideal target point for blocking ghrelin signaling. Specific and 

potent hGOAT inhibitors are needed to both validate ghrelin signaling as a therapeutic target and 

to serve as leads in preclinical trials. In order to develop potent novel hGOAT inhibitors, a 

greater understanding of the interactions within the ghrelin-hGOAT complex is required.  

Defining these interactions will be aided by identifying which regions/domains of hGOAT, and 

the specific residues within those regions, are most vital in ghrelin binding and catalysis.  

To identify which domains and residues within hGOAT constitute the enzyme active site, 

we developed truncation mutants, loop mutants, and single point mutants of hGOAT to examine 

which regions within hGOAT are required for enzyme activity. When the truncation mutants that 

removed the first one, two, or three transmembrane domains and intervening soluble loops were 

tested for octanoylation activity, none exhibited activity in our in vitro assay using a short 

peptide mimic of ghrelin.  This lack of activity may arise from disruption of the enzyme active 

site, overall enzyme destabilization, or insufficient protein expression. To test for disruption of 

the enzyme active site  that could have occurred due to these mutations, we have generated 
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putative catalytic residue point mutations that will be tested for activity, which will tell us what 

residues need to be present in order for the enzyme to octanoylate ghrelin. To control for 

insufficient protein expression, we need to get a clean western blot using an antibody against 

GOAT.    

Using the predicted transmembrane topology of hGOAT as a guide, we also attempted to 

express the predicted loop domains of hGOAT in attempt to generate a soluble form of hGOAT.  

Activity from these loop domain variants would both help identify the location of the enzyme 

active site and also provide a route to bacterial expression of hGOAT for use in enzyme 

purification and enzymological characterization.  Unfortunately, the loop mutant constructs did 

not show any expression either by themselves or when fused to MBP or GST to increase protein 

solubility.  Surprisingly, expression of neither MBP nor GST alone were detected when fused to 

the loop domain constructs, suggesting that attachment of the hGOAT loop domains to MBP or 

GST leads to severe protein destabilization. In an attempt to recover protein stability, the 

hGOAT loops are being cyclized with the use of split inteins. Inteins are segments of protein that 

excise themselves from nascent polypeptide chains following translation, and a resulting peptide 

bond is formed between the remaining portions.63 Using these split inteins for the hGOAT loop 

expressions in E. coli should hopefully help in stabilization of the native structure of the loops, 

which has been shown to be effective in previous studies when proteins were cyclized by 

peptide-bond formation of the NH2- and COOH- terminal ends.64, 65, 66 In addition to offering 

protein stability, these split inteins are also useful in protection from exo-proteases, which cleave 

at the terminal ends of proteins.67 

Development of single point mutants was then done with the idea that single point 

mutants would provide less perturbation of the enzyme rather than excising whole domains in 
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order to identify which residues are required for activity, which could provide vital mechanistic 

information. The residues chosen for mutagenesis were selected based upon two criteria: amino 

acid conservation across the known MBOAT4 isoforms and the potential to lie in loop domains 

rather than transmembrane helices, as predicted by the TMHMM server.  We also limited our 

selections to residues that could bind and position a catalytic metal ion or participate in general 

acid-base catalysis. Of particular interest are residues His258, Asp262, and Asp263, located in 

loop D, which form a sequence consistent with the Hx4D catalytic motif observed in glycerol 

phosphate acyltransferases (GPATs). In GPATs, these residues have been shown to participate in 

catalysis by forming a “catalytic triad” similar to those seen in serine proteases using the 

conserved histidine and aspartate residues along with a hydroxyl group from the substrate to be 

acylated.50, 53, 54 The similarity of the “HWILDD” motif in hGOAT to the HX4D motif from 

GPATs may indicate the potential for a shared catalytic mechanism and suggests that hGOAT 

may employ and active site histidine as a general base when catalyzing ghrelin acylations. If the 

His258, Asp262, or Asp263 mutants were to result in a loss of activity, it may be evidence that 

these are putative catalytic residues potentially located in the hGOAT active site. Vital 

mechanistic information on hGOAT can be acquired if any of these mutants results in a loss of a 

hGOAT activity. Additionally, it has recently been found that hGOAT also octanoylates a 

cysteine residue as well a serine (Joe Darling, unpublished data). Taking into consideration that 

the thiol group of cysteine would be a far better nucleophile than the hydroxyl group of serine, if 

one of these mutants were to lose activity with the wild type substrate (GSSFLCAcDan) due to 

disruption of the “catalytic triad” machinery, the Cys3 substrate (GSCFLCAcDan) theoretically 

should not experience the same drop in activity due to its ability to be a better nucleophile and 

not require the general His base to abstract its proton. This trend would give further insight as to 
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how putative catalytic residues interact with one another in the hGOAT active site and therefore 

help in developing hGOAT inhibitors.  

 To complement our studies using enzyme modification to locate the hGOAT active site, 

we also examined the range of acyl-CoA donors accepted by hGOAT to ascertain the flexibility 

of the acyl donor binding pocket within the hGOAT active site.  Similar studies of the mouse 

isoform of GOAT indicated some promiscuity in the activity of the acyl-CoA donor.41 We tested 

a set of five acyl-CoA donors with varied acyl chain lengths- acetyl-CoA (C2 acyl chain), 

butyryl-CoA (C4), hexanoyl-CoA (C6), decanoyl-CoA (C10), and lauroyl-CoA (C12). We found 

that although octanoyl-CoA provided the best octanoylation efficiency of the GSSFLCAcDan 

substrate in our HPLC assay, hexanoyl-CoA, decanoyl-CoA, and lauroyl-CoA demonstrate 

hGOAT-catalyzed acylation activity as well, indicating that the acyl binding site within hGOAT 

accepts a range of acyl chain lengths.  The increased substrate acylation observed with hexanoyl-

CoA, decanoyl-CoA, and lauroyl-CoA at a higher acyl-CoA concentration (1 mM versus 500 

µM) suggests that these acyl-CoA donors may not bind as tightly to hGOAT as octanoyl-CoA. 

Therefore, hGOAT has been shown to utilize a range of acyl-CoA cosubstrates to acylate 

ghrelin, suggesting that the acyl-donor binding pocket within hGOAT can accommodate changes 

in acyl chain lengths without loss of catalytic activity. Using this information, optimization of the 

acyl chain length can be explored to maximize inhibitor binding. In addition, the alternative 

acylated forms of ghrelin can be further investigated for their biological impact to see if they 

bind differently to the GHSr1a receptor or to other receptors.   

In addition to the work described herein aimed at identifying regions of hGOAT required 

for activity, substrate photocrosslinking will be used to identify the amino acids within hGOAT 

potentially involved in ghrelin binding and acylation. Photocrosslinking involves incorporation 
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of a photoreactive probe into a target molecule such as an enzyme substrate.  Following the 

target substrate binding to the enzyme, the photoreactive probe is activated by irradiation with 

UV light to generate a covalent bond between the enzyme and the substrate.68, 69, 70 By locating 

the resulting covalent crosslinks within the enzyme primary sequence using mass spectrometry, 

we will identify amino acids within hGOAT that are spatially close to the target substrate bearing 

the photocrosslinking group. A well-known photocrosslinker used as a probe in studying protein-

protein interaction is benzophenone, which is activated by UV irradiation between 350-365 

nm.68, 71 This photoactivation leads to formation of a transient diradical that can subsequently 

react with methionine sidechains and C-H bonds.68, 71 Due to the persistence of the activated 

diradical with a lifetime of 120 µs and the ability of benzophenone to be repeatedly illuminated 

and activated in the event of diradical recombination, benzophenone has a high crosslinking 

efficiency.68, 71 In 2010, Barnett and coworkers were successfully able to covalently crosslink 

their GO-CoA-Tat inhibitor to solubilized and microsomal GOAT by replacing either Phe4 or 

Leu5 of their inhibitor with photoreactive amino acid benzoyl-phenylalanine, giving proof that 

the inhibitor was indeed binding to GOAT.42 Additional photo labeling work has also been done 

on a different membrane protein, Ras converting enzyme (Rce1p), to find residues in or near the 

active site. For this particular enzyme, a benzophenone containing peptide substrate analogue 

was employed, and shown to be a substrate for Rce1p.72, 73 When structural models are not 

available (as is the generally the case with membrane bound proteins), substrate 

photocrosslinking has shown to be an efficient way to identify regions near the active site for 

subsequent study, such as where to perform additional site directed mutagenesis.    

The overall goal of my project has been to understand the enzyme selectivity and 

catalytic mechanism of hGOAT. Defining how hGOAT binds ghrelin and catalyzes its 
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octanoylation using the single-point mutations and photo-crosslinking, more potent and novel 

hGOAT inhibitors can be developed. By generating various hGOAT mutants constructs, we are 

well on our way towards testing these constructs for hGOAT octanoylation of ghrelin, which will 

further our understanding on which regions of hGOAT are critical in catalysis so that more 

potent inhibitors can be developed. Inhibiting GOAT provides a direct pathway to modulate 

ghrelin-dependent signaling proposed to be involved in diseases such as Prader Willi syndrome, 

type II diabetes, and obesity arising from aberrant levels of ghrelin, and could be used for 

therapeutic treatment. 
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