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Hydrophobic ligand-binding proteins transport diverse and
potentially toxic molecules needed for critical biological pro-
cesses (e. g. [1]). Interphotoreceptor retinoid-binding protein
(IRBP) mediates the transport of 11-cis retinaldehyde and all-
trans retinol between retinal pigment epithelium (RPE) and
the photoreceptors (for reviews see [2-4]). IRBP provides a
unique system to study how directional transport of different
but structurally related ligands can be accomplished by the
same protein.

IRBP is the most abundant soluble protein component of
the extracellular material surrounding the photoreceptors and
separating them from the RPE [5-11].  This material is known
as the interphotoreceptor matrix.  Unlike most retinoid-bind-
ing proteins present in a wide variety of tissues, IRBP expres-
sion is restricted to the retina and pineal gland [12-18]. It has

also been shown that IRBP is expressed by the RPE in zebrafish
[19].  IRBP is large (124 kDa in Xenopus[20]) compared to
other retinoid-binding proteins. Its large size is due to the fact
that the IRBP gene is composed of multiple homologous re-
peats. Each repeat codes for a module of ~300 amino acid
residues. Mammalian and amphibian IRBPs are composed of
four repeats [21-24]. In contrast, teleost IRBP is composed of
only two [25,26].   In all vertebrate classes examined to date,
IRBP’s three introns are located in the repeat coding for the
carboxy-terminal module (Figure 1A).  This suggests that IRBP
arose through the quadruplication of an ancestral gene com-
posed of four exons [27,28].

Although it is not known how IRBP mediates the bi-di-
rectional transport of retinoids across the interphotoreceptor
matrix, several important observations have been made. First,
by binding retinoids, IRBP solubilizes and protects these mol-
ecules from isomeric and oxidative degradation [29].  Sec-
ond, IRBP enhances the delivery of all-transretinol from the
rods to the RPE [30,31], and the transfer of 11-cisretinaldehyde
from the RPE to the rods [31-35].  The mechanism by which
IRBP promotes this bi-directional transport is not understood.
A reduced affinity of 11-cis retinaldehyde for IRBP in the pres-
ence of docosahexaenoic acid may play a role in the delivery
of this retinoid to the photoreceptors [36].  It also has been
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Purpose: Interphotoreceptor retinoid-binding protein (IRBP) is unusual for a lipid-binding protein in that its gene is
expressed uniquely by cells of photoreceptor origin and consists of four homologous repeats, each coding for a module of
~300 amino acid residues. All-trans retinol binding domains, which appear to be present in each module, are composed of
conserved hydrophobic regions [Baer et al, Exp Eye Res 1998; 66:249-262].  Here we investigate the role of highly
conserved arginines contained in these regions.
Methods: To study the arginines in an individual module without the interference of ligand-binding activity elsewhere in
the protein, we expressed in E. coli the fourth module of Xenopus IRBP by itself as a soluble thioredoxin fusion protein
(X4IRBP).  Arginines 1005, 1041, 1073 and 1122 were separately replaced by glutamine using PCR overlap extension
mutagenesis.  The glutamine substitutions were confirmed by liquid chromatography-tandem mass spectrometry.  The
binding of all-trans retinol and 9-(9-anthroyloxy)stearic acid (9-AS) to X4IRBP and each of the mutants was evaluated by
fluorescence spectroscopy. Binding was followed by monitoring the enhancement of ligand fluorescence and the quench-
ing of protein endogenous fluorescence.  The ability of the recombinant proteins to protect all-trans retinol from oxidative
degradation was evaluated by monitoring absorbance at 325 nm over time.
Results: The substitution of Gln for Arg1005 about doubled the amount of ligand necessary to attain saturation and about
doubled the level of fluorescence enhancement obtained at saturation for both all-trans retinol and 9-AS. Although there
was not a significant change in the K

d
, the substitution increased the calculated number of binding sites (N) from ~2 to ~4

per polypeptide.  The other Arg->Gln mutants did not significantly change the K
d
 or N.  None of the mutations compro-

mised the ability of the module to protect all-trans retinol from degradation.
Conclusions: Our data suggest that the function of the conserved arginines in IRBP is fundamentally different from that
of other retinoid-binding proteins.  These residues do not appear to play a role in defining the specificity of the ligand-
binding domain.  Rather, Arg1005 appears to play a role in defining the capacity of the domain.  Our data suggest that the
binding site consists of a single hydrophobic cavity promiscuous for fatty acids and all-transretinol.



postulated that IRBP functions by interacting with cell sur-
face or matrix receptors [34,37].

Insights gained from phylogenetic alignments combined
with recombinant protein expression technology are provid-
ing new information on the relationship between IRBP’s struc-
ture and its function.  An emerging picture is that the protein’s
biochemical [38-40] and physiological activity [41] is con-
tained within each of the protein’s individual modules. This
suggests that there could be advantages in performing site di-
rected mutagenesis studies in the isolated modules rather than
in the full-length protein.  In this way, the effect of specific
substitutions on the ligand-binding properties of individual
domains may be studied without the presence of binding sites
in other modules.  This could be especially helpful for bind-
ing studies employing fluorescence spectroscopy since
nonequivalency of the binding sites and internal quenching
can complicate the interpretation of such ligand-binding as-
says (see  [42]).

We are using the African clawed frog (Xenopus laevis)
because this animal has potential advantages for uncovering
the relationship between the structure and function of IRBP.
First, Xenopus IRBP has a 4-module structure similar to that
of human IRBP [24].  Xenopusare easily cared for under dif-
ferent lighting conditions and their large inner segments fa-
cilitate morphological analysis.  Furthermore, Xenopus eye-
cups are metabolically active for extended periods. Unlike
other amphibians and teleosts, the Xenopus retina can be de-
tached in both light- and dark-adapted animals.  Remarkably,
the detached retina may be re-constituted allowing the intro-
duction of molecules into the adult subretinal space [41,43].
Molecules may also be introduced into the subretinal space of
the embryonic Xenopusretina through optic vesicle injections
[44,45].  Finally, the Xenopus retina is particularly amenable
to transgenic technology [46,47].

The fourth module of Xenopus IRBP as well as regions of
the module corresponding to its exon segments are readily

expressed as soluble thioredoxin-fusion proteins [48]. We
found that all-transretinol binds to two regions within the
fourth IRBP module.  One of these sites is localized to Exons
(2+3), and the other to Exon 4. Exon 1 has no retinol-binding
activity.  The potential importance of Exons 2 through 4 in the
formation of the retinoid-binding site(s) is emphasized by their
similarity with the newly recognized family of C-terminal pro-
cessing proteases (CtpAs) [49].  CtpAs, which have only been
described in plants and prokaryotes, selectively degrade pro-
teins with nonpolar C-termini.  It is possible that IRBP’s hy-
drophobic ligand-binding sites are composed of domains de-
rived from CtpAs.

CtpAs and IRBPs share three highly conserved hydro-
phobic regions [20,26,48,50].  IRBP Exons (2+3) contain two
of the conserved hydrophobic segments, and Exon 4 contains
one [48]. There is no significant similarity between the CtpAs
and the Exon 1 region of module 4.  In CtpAs, the conserved
domains are responsible for recognition and cleavage of hy-
drophobic C-termini. Mutagenesis studies suggest that argin-
ines within the conserved domains form salt bridges with as-
partic acid residues critical to the recognition signal in the D1
precursor protein  [51]. The fact that the arginine residues con-
tained within the conserved IRBP domains are perfectly con-
served between teleost, amphibian and mammalian IRBPs
suggests that they may also be critical to the function of IRBP.

In lipocalins, mutagenesis and X-ray crystallographic
studies have shown that arginine can confer specificity for
retinoic and fatty acids by providing its guanidinium group to
stabilize the carboxylate anion of these ligands  [52-55].  Argi-
nine has a similar role in the binding pocket of retinoic acid
receptors [56,57]. The importance of arginines to retinoid-bind-
ing proteins is further emphasized by the recent finding that
substitution of Gln for Arg150 in cellular retinaldehyde-bind-
ing protein (CRALBP) causes autosomal recessive retinitis
pigmentosa [58].  This substitution in CRALBP appears to
interfere with its ability to bind 11-cis retinaldehyde, presum-
ably leading to disruption of vitamin A metabolism in this dis-
ease.

The function of the conserved IRBP arginines is not
known.  Here, we selected the four most conserved arginines
within the fourth XenopusIRBP module for substitution stud-
ies.  The position of each of these arginines (Arg1005, Arg1041,
Arg1073 and Arg1122) is identified in Figure 1B.  We replaced
Gln for Arg at each of these sites, expressed each of the mu-
tants in E. coli, and compared their ligand-binding properties
for 9-(9-anthroyloxy) stearic acid (9-AS) and all-trans retinol.

METHODS
PCR site-directed mutagenesis, expression and purification:
The fourth module of Xenopus IRBP (X4IRBP) and its mu-
tants were expressed and purified as thioredoxin fusion pro-
teins.  The cDNA B1.B1 corresponding to the fourth module
has been described [20] and used to express this module as
polyhistidine [59] and thioredoxin fusion proteins [48].  This
same cDNA was used to create arginine to glutamine substi-
tutions at positions 1005, 1041, 1073 and 1122.  These num-
bers correspond to the full-length Xenopus IRBP  (Genbank
accession number X95473). The mutations were introduced
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Figure 1. Summary of IRBP gene structure and location of the Arg-
>Gln substitutions. (A) Map of the IRBP gene with exons represented
as rectangles and introns as interrupted lines.  The first exon codes
for protein modules 1 through 3 and part of module 4.  The remain-
der of the fourth module is composed of segments derived from ex-
ons 2 through 4.  Each module consists of ~300 amino acid residues.
(B) Similarity plot of the C-terminal modules of human [22], bovine
[27] Xenopus [20] and zebrafish [26] IRBPs.  The stippled regions
under the plot have a similarity score > 1.0.  The positions of the
Arg->Gln substitutions presented in this paper are indicated. Por-
tions of this figure have been modified from Baer et al. [48].



by PCR overlap extension mutagenesis [60]. The oligonucle-
otide primers and mutagenesis strategy are summarized in
Figure 2A,B.  All plasmid constructs were transformed into
GI724 E. coli [61].

Descriptions of overlap extension PCR do not mention a
common pitfall. PCR can introduce an adenosine nucleotide
at the 3' end of each strand produced.  If allowed to remain,
these “A overhangs” will be incorporated into the final PCR
overlap extension product.  The initial PCR product was there-
fore treated with T4 DNA polymerase to remove the A over-
hangs. Furthermore, the PCR primers were designed so that
their 3' end is 5' to an adenosine.  In this way, if an A overhang
remained it would not cause a mutation.  The sequence of
each construct was confirmed by automated fluorescence DNA
sequencing (Figure 2C).

Fermentations were carried out as previously described
[48].  A 7-liter fermentor (Applikon, Foster City, CA) was
used to grow the cells at 37 °C in induction media.  After the
cells reached an OD

550
of 0.5, the growth temperature was low-

ered to 30-35 °C before protein expression was commenced
by the addition of tryptophan. The cells were harvested by
centrifugation, resuspended in lysis buffer (50 mM Tris pH
7.4, 100 mM NaCl), and ruptured with a French pressure cell.
Protein purification was carried out at 4 °C in the presence of
1 mM phenylmethysulfonyl-fluoride, 1.4 µM pepstatin A, 0.3
µM aprotinin, and 2 µM leupeptin (Sigma, St. Louis, MO).
The lysate was cleared by centrifugation and treated with
DNAse I (Sigma). The fusion proteins were precipitated from
the supernatant with ammonium sulfate and further purified
by ion exchange chromatography using a 200 mM to 850 mM
NaCl linear gradient (Macro-Prep High Q Support, Bio-Rad,
Hercules, CA). Purity, which ranged from 85-96%, was deter-
mined by laser densitometry (Molecular Dynamics, Sunny-
vale, CA).  The concentration of recombinant protein was de-
termined by absorbance spectroscopy and amino acid analy-
sis.  Extinction coefficients were calculated from the trans-
lated amino acid sequence of the recombinant proteins [62].
To more accurately determine the concentration of IRBP in
stocks used for ligand-binding assays, amino acid analysis was
performed on a PICO-TAG system (Waters, Milford, MA)
using phenylisothiocyanate derivatives [63].  Aliquots of the

purified thioredoxin fusion proteins in PBS (137 mM NaCl,
2.7 mM KCl, 4.3 mM Na

2
HPO

4
, 1.4 mM KH

2
P0

4
) were fro-

zen in liquid N
2
 and stored at -80 °C until use. We found no

difference in the binding properties of X4IRBP that was fro-
zen one time compared to that of freshly prepared material
(data not illustrated).   The frozen aliquots were never refro-
zen.

We have previously confirmed the sequence of X4IRBP
by liquid chromatography-tandem mass spectrometry (LC-MS/
MS) [48]. Here we used LC-MS/MS to confirm the Arg->Gln
substitutions.  Briefly, a Coomassie blue stained SDS-10%
polyacrylamide gel slice containing approximately 3 µg of
purified protein was treated with trypsin and the extracted pro-
teolytic fragments analyzed by LC-MS to measure the mass
to charge ratio of each fragment.  The amino acid sequence of
each of the detected fragments was then determined by colli-
sion activated dissociation mass spectrometry.

Fluorometric titrations and protection of all-trans retinol:
Enhancement of ligand fluorescence and quenching of the in-
trinsic protein fluorescence were used to monitor binding of
9-AS (Molecular Probes, Eugene, Oregon) and all-trans ret-
inol (>99% purity; Acros Organics, Somerville, New Jersey)
to the recombinant IRBPs.  An extinction coefficient (ε) of
8,500 cm-1M-1 at 361 nm in methanol was used to determine
the 9-AS concentration [64].  For all-trans retinol we used the
value of ε (38,300 cm-1M-1 at 325 nm in ethanol) recently re-
ported by Szuts and Harosi [65], who employed high perfor-
mance liquid chromatography in their characterization of this
retinoid.  Titrations were performed by adding 0.5 µL aliquots
of ligand in ethanol directly into the cuvette containing a 1
µM solution of recombinant protein.  The solution was thor-
oughly mixed by inversion. Ligand aliquots were added at 1
min intervals unless otherwise stated.  The final alcohol con-
centration never exceeded 2%. Measurements were made us-
ing an SLM 8000 C photon counting spectrofluorometer.  Fluo-
rescence enhancement was monitored at 440 nm exciting at
360 nm for 9-AS, and at 480 nm exciting at 330 nm for all-
trans retinol.  Quenching of endogenous protein fluorescence
was monitored at 340 nm exciting at 280 nm.  The protein
quenching titrations were corrected for the inner filter effect
as previously described [66].  The titration data were used to
fit an equation described by Baer et al. [59].  For the enhance-
ment titrations, the inner filter effect correction was not in-
cluded because the ligand concentrations were sufficiently low.
Purified recombinant E. coli thioredoxin was obtained from
Promega (Madison, WI).

The ability of X4IRBP and the mutants to protect all-
transretinol from degradation was evaluated as described by
Crouch et al. [29].  Briefly, the absorbance of all-trans retinol
at 325 nm in the presence and absence of the recombinant
protein was monitored as a function of time using a Hitachi
U2000 spectrophotometer (Hitachi Instruments Inc., San Jose,
CA).

RESULTS
Expression and purification: Each of the Arg->Gln substitu-
tion mutants could be expressed in E. coli as a soluble
thioredoxin fusion protein using conditions previously opti-
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Figure 2. Creation of Arg->Gln substitution mutants by overlap ex-
tension mutagenesis. (A) The table provides the sense primers con-
taining the mutated codon (underlined). (B) Diagram of the overlap
PCR mutagenesis strategy (see Methods). (C) The mutants have been
confirmed by automated fluorescence DNA sequencing.  The se-
quences shown correspond to the non-coding strand.
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mized for X4IRBP [48].  The yield after purification was ~15
mg (320 nmoles) per liter of culture.  There was no apparent
difference in the chromatographic behavior, yield, or solubil-
ity of the mutants compared to that of X4IRBP.

The replacement of Gln for Arg at positions 1005 and
1122 was directly confirmed by LC-MS/MS.  Tryptic pep-
tides containing amino acid residues 1005 and 1122, could be
extracted from in-gel tryptic digests and identified by their
mass to charge ratio (Figure 3).  The amino acid sequence of
these peptides was determined by collision-activated disso-
ciation mass spectrometry.  In contrast, tryptic peptides con-
taining the Arg1041->Gln and Arg1073->Gln substitutions could
not be identified.  However these peptides, which have a large
predicted size, either could not be extracted from the
acrylamide, or could not be eluted from the reversed phase
column. Since tryptic digests of the wild type protein gener-
ate peptides with C-terminal Arg1041 and Arg1073, the absence
of these peptides in the digests indicates that the desired sub-
stitutions were created.

Binding of 9-AS: The binding of 9-AS was monitored by
following the enhancement of 9-AS fluorescence and quench-
ing of protein endogenous fluorescence.  In each experiment,
titrations of X4IRBP were done along side that of the mutant.
To confirm that the concentrations of X4IRBP and the mu-
tants were the same, samples of the aliquots used in the fluo-
rescence assays were run side by side on SDS-polyacrylamide
gels.  A representative set of gels is shown in Figure 4. Note
that although each of the modules of IRBP are ~36 kDa in
size, the fusion protein migrates with an M

r
 ~45 due to the

presence of the thioredoxin fusion protein.
Compared to X4IRBP, the overall shape of the enhance-

ment curves was not significantly changed by substituting Gln
for Arg at positions 1041, 1073, and 1122 (Figure 5B-D).  In
contrast, although the initial slopes of the curves were similar
for the Arg1005->Gln mutant and X4IRBP, this mutant required

about twice as much 9-AS to reach saturation (Figure 5A).
Furthermore, this mutant attained twice the level of fluores-
cence enhancement at saturation compared to X4IRBP (see
below).  We have seen a similar effect for the same substitu-
tion expressed as a polyhistidine fusion protein within inclu-
sion bodies (data not illustrated).  Thus, the effect is not de-
pendent on whether the protein is expressed in an insoluble
form requiring renaturation, or in a soluble form as a
thioredoxin fusion protein.

The dissociation constants (K
d
) of all four Arg->Gln mu-
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MSDKIIHLTDDSFDTDVLLADGAILVDFWAHWCGPCKMIAPILDEIADEYQGKLTVAKLNIDHNPGTAPKYGIRGIPTLL

                                                         !
LFKNGEVAATKVGALSKGQLKEFLDANLAGSGSGDDDDKVPMHELEIFEFRGRRGDPTKIPTVIQTAAKLVADNYAFADT

GANVASKFIALVDKIDYKMIKSEVELAEKINDDLQSLSKDFHLKAVYIPENSKDRIPGVVPMQIPSPELFEELIKFSFHT

          *                                   *                                *
DVFEKNIGYIQFDMFADSDLLNQVSDLLVEHVWKKVVDQDALIIDMRFNIGGPTSSIPIFCSYFFDEGTPVLLDKIYSRT
      ---------                           ----------

                                               *
SNAMTDIWTLPDLVGKTFGSKKPLIILTSSLTEGAAEEFVYIMKRLGRAYVVGEVTSGGCHPPQTYHVDDTHLYLTIPTS
                                              ------------

RSASAEPGESWEGKGVLPDLEISSETALLKAKEILESQLEGRR

Figure 3. Confirmation of Arg1005->Gln substitution by liquid chromatography tandem mass spectrometry. This figure shows the amino acid
sequence of the Arg1005->Gln thioredoxin fusion protein mutant.  The exclamation mark (!) denotes the end of the thioredoxin fusion protein.
The blueregions indicate the tryptic fragments that were identified by their mass to charge ratio.  The amino acid sequences of these tryptic
fragments were confirmed by collision-activated dissociation mass spectrometry.  The asterisks (*) denote the location of the four arginines
that were mutated: (Arg1005, Arg1041, Arg1073, and Arg1122).  The underlined regions are highly conserved between the carboxy-terminal modules
of IRBPs and CtpAs [48].

Figure 4. Coomassie blue stained SDS-10% polyacrylamide gels of
purified recombinant X4IRBP and the four Arg->Gln mutants. In
each panel X4IRBP was run along side one of the 4 Arg->Gln mu-
tants (loading level = 5 µg).  All of the mutants were expressed in E.
coli as soluble thioredoxin fusion proteins with similar yields as
X4IRBP.  The proteins shown here were purified by ammonium sul-
fate precipitation followed by ion exchange chromatography.  The
purity ranged from 85 to 96% based on densitometric scans of the
Coomassie blue stained gels. The concentration of the protein was
determined by amino acid analysis.
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tants were similar to that of X4IRBP which had a K
d
 of

0.065±0.029 µM (Table 1).  The number of binding sites in
each mutant was also similar to that of X4IRBP except for
Arg1005->Gln.  This mutant had a significantly enhanced 9-AS
binding capacity; X4IRBP and Arg1005->Gln bound 1.88±0.06
and 4.27±0.09 equivalents respectively.

The rate of 9-AS binding to X4IRBP and Arg1005->Gln is
compared in Figure 6.  The half time for 9-AS association to
X4IRBP and Arg1005->Gln was 1.2 and 4.2 minutes respec-
tively.  To investigate whether the calculated binding capacity
of the Arg1005->Gln mutant could have been overestimated due
to the slower association rate, we allowed more time for equi-
librium to be reached during the titrations.  This was done by
extending the time interval between the addition of each ali-
quot of 9-AS from 1 min to 25 min for Arg1005->Gln and to 7

min for X4IRBP.  To obtain more data points near saturation,
we extended the titration to ~9 µM 9-AS compared to only
~4.5 µM in Figure 5.  The titration is shown in Figure 7.  De-
spite the additional time provided for equilibrium to be reached,
the binding capacity of the Arg1005->Gln mutant remained high
(N = 5.00±0.29).  For X4IRBP 0.87±0.12 binding sites were
calculated compared to 1.88±0.06 in Figure 5.  This reduction
may be more apparent than real because fewer points are
present in the dynamic range of the titration. The above re-
sults suggest that the enhanced binding capacity of the Arg1005-
>Gln mutant for 9-AS can not be attributed to an artifact re-
lated to its apparent lower association rate.

9-AS binding was also followed by monitoring protein
fluorescence quenching (Figure 8).  Despite the offsets, which
are due to small differences in protein concentration, the overall
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Figure 5. Binding of 9-AS to X4IRBP and the four Arg->Gln mutants monitoring fluorescence enhancement of 9-AS upon binding (excitation
360 nm; emission 440 nm). Each panel is a separate experiment comparing a single Arg->Gln mutant (open symbols) to that of module 4 of
wild type sequence (filled symbols).  The calculated binding parameters are summarized in Table 1.  9-AS binding to the Arg1005->Gln mutant
required more 9-AS to reach saturation and had a markedly higher level of 9-AS fluorescence.  Protein concentration was 1 µM.

© Molecular Vision



shape of the curves are similar for X4IRBP and each mutant.
The K

d
’s for X4IRBP and the four Arg->Gln substitution mu-

tants were all in the submicromolar range (Table 2).  Arg1005-
>Gln had an enhanced binding capacity compared to the other
mutants and X4IRBP.  The N’s were lower for the titrations
monitoring quenching compared to those monitoring enhance-
ment.  This effect is probably due to internal quenching (see
Discussion).

Binding and protection of all-trans retinol: In Figure 9
the binding of all-trans retinol was followed by monitoring
the enhancement of all-trans retinol fluorescence.  As with 9-
AS, the titrations of the four mutants were similar to each other
and X4IRBP except for that of the Arg1005->Gln mutant.  This
Arg1005->Gln substitution approximately doubled the amount
of all-trans retinol required to attain saturation (N = 1.28±0.19,
X4IRBP; N = 2.95±0.19 Arg1005->Gln).  In contrast to N, the
K

d
’s were not significantly different for any of the proteins.

Purified recombinant E. coli thioredoxin did not support all-
transretinol fluorescence enhancement, indicating that the fu-
sion moiety does not alter binding.

A titration carried out to a higher all-trans retinol con-
centration is shown in Figure 10.  Note, particularly for the
normalized curves, that the Arg1005->Gln substitution required
approximately twice as many moles of all-trans retinol as
X4IRBP to attain saturation (N = 1.50±0.31, X4IRBP; N =
3.67±0.49, Arg1005->Gln).  Although the number of binding
sites for X4IRBP reported here is slightly less than 2.20±0.39
reported by Baer et al.  [48], we still detected more than one
binding site in X4IRBP.  The K

d
 for all-trans retinol binding

to X4IRBP was similar to that reported by Baer et al. [48].
The K

d
’s of all four mutants were not significantly different

from that of X4IRBP.

Emission spectra of X4IRBP and the Arg1005->Gln mu-
tant in the presence and absence of all-trans retinol are shown
in Figure 11.  No significant difference was found in the emis-
sion spectra of these two proteins.  Protein quenching is rep-
resented by the decrease in fluorescence emission at 340 nm.
The emission at ~480 nm can be accounted for by the absor-
bance of all-trans retinol at 280 nm. Although the absorbance
maximum for all-trans retinol is 325 nm, this ligand does ab-
sorb at 280 nm, the wavelength used to excite the protein.
Consequently upon excitation at 280 nm, all-trans retinol will
have some fluorescence at 480 nm as indicated by the small
peak at 480 nm in Figure 11.  The size of the 480 nm peak can
be largely accounted for by this fluorescence (calculation not
shown), and therefore does not represent transfer of energy
from the protein to its bound ligand.
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TABLE 1. SUMMARY  OF BINDING PARAMETERS DETERMINED BY

FLUORESCENCE ENHANCEMENT TITRATIONS

The binding of 9-(9-anthroyloxy) stearic acid (9-AS) and all-trans
retinol to X4IRBP and the Arg->Gln substitution mutants was fol-
lowed by monitoring ligand-fluorescence enhancement.  The num-
ber of ligand-binding sites (N) and the dissociation constant (Kd)

were determined as described by Baer et al. [48].

Protein          9-AS Enhancement*        All-trans retinol Enhancement#
------------   ---------------------------  ----------------------------
                   N             Kd                N            Kd
               ---------   --------------      ---------   ------------
X4IRBP         1.88 ±0.06   0.065 ±0.029 µM      1.28 ±0.19   0.72 ±0.18 µM
Arg1005->Gln   4.27 ±0.09   0.16 ±0.06  µM      2.95 ±0.15   0.80 ±0.11 µM
Arg1041->Gln   2.10 ±0.17   0.19 ±0.11  µM      0.76 ±0.30   1.36 ±0.31 µM
Arg1073->Gln   2.59 ±0.09   0.083 ±0.047 µM      1.38 ±0.30   0.92 ±0.25 µM

Arg1122->Gln   2.18 ±0.06   0.11 ±0.04  µM      1.15 ±0.21   1.36 ±0.26 µM

* Monitored at 440 nm upon excitation at 360 nm.
# Monitored at 480 nm upon excitation at 330 nm.

Figure 6. Normalized association curves of 9-AS with X4IRBP and
the Arg1005->Gln mutant monitored by fluorescence over time. The
association curve of X4IRBP (filled symbols) shows the increase in
absolute fluorescence after addition of 0.92 µM 9-AS to 1.3 µM
X4IRBP. The association curve of Arg1005->Gln (open symbols) shows
the increase in absolute fluorescence after the addition of 0.96 µM 9-
AS to 0.92 µM Arg1005->Gln. In both cases fluorescence was moni-
tored at 440 nm upon excitation at 360 nm.  The half-time for asso-
ciation increased from 1.24 min for X4IRBP to 4.19 min for the
Arg1005->Gln mutant.

Figure 7. Normalized 9-AS fluorescence enhancement titrations com-
paring X4IRBP and the Arg1005->Gln mutant. The binding of 9-AS to
1.33 µM of X4IRBP (filled symbols) and 0.92 µM of the Arg1005-
>Gln mutant (open symbols) was monitored at 440 nm upon excita-
tion at 360 nm.  For X4IRBP, N = 0.87±0.12 and K

d
 = 0.51±0.09

µM.  For Arg1005->Gln, N = 5.00±0.29 and K
d
 = 0.05±0.07 µM.

Nonnormalized data is shown as an insert.
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Protein fluorescence quenching was also used to monitor
the binding of all-trans retinol.  The overall shape of the titra-
tion curves and level of quenching achieved at saturation were
similar for each protein except for the Arg1005->Gln mutant
(Figure 12). This mutant had a slightly greater level of quench-
ing compared to that of X4IRBP (Figure 12A).  This is re-
flected in its higher number of binding equivalents (N =
0.51±0.11, Arg1005->Gln; N = 0.15±0.08, X4IRBP). The Arg1005-
>Gln mutant also had a slightly increased affinity for all-trans
retinol compared to that of X4IRBP and the other three Arg-
>Gln mutants (Table 2).  There were no significant differences
in the K

d
’s of the other three mutants compared to that of

X4IRBP (Table 2).  In panel B, the offset in the titration curves
was due to a small difference in protein concentration between

X4IRBP and the mutant. N was less for titrations monitoring
quenching compared to those monitoring enhancement prob-
ably due to internal quenching (see Discussion).

Protection of all-trans retinol from degradation in the pres-
ence of the recombinant IRBPs was evaluated by monitoring
the absorbance of retinol at 325 nm as a function of time.  The
ability of X4IRBP and the mutants to protect all-trans retinol
is compared in Figure 13. For a control the stability of all-
trans retinol in PBS was assessed. Only ~60% of the original
absorbance of all-trans retinol at 325 nm remained after 2 h in
the absence of an IRBP.  Compared to the PBS control, all
four of the Arg->Gln substitution mutants and X4IRBP greatly
reduced the rate of decline of absorbance at 325 nm.
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Figure 8. Binding of 9-AS to X4IRBP and the four Arg->Gln mutants monitoring quenching of protein fluorescence (excitation 280 nm;
emission 340 nm). Each panel is a separate experiment comparing a single Arg->Gln substitution (open symbols) to that of X4IRBP (filled
symbols).  Note that the shape of the quenching curves is similar for X4IRBP and the mutants.  Protein concentration was 1 µM.
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DISCUSSION
We have expressed X4IRBP and the Arg1005->Gln substitution
mutant in two E. coli-based systems.  When expressed with
polyhistidine tags in the pRSET system, both proteins were
insoluble, requiring renaturation from inclusion bodies.  The
remarkable feature of the thioredoxin fusion protein system
was that the proteins were expressed primarily in a soluble
form.  Thioredoxin enhances the solubility of a variety of pro-
teins in E. coli.  It does this by facilitating the reduction of
abnormal disulfide bonds in partly folded intermediates
[67,68].  The relative amount of protein in the soluble fraction
can be further increased by optimizing the temperature of pro-
tein induction [48,61].  For X4IRBP and the substitution mu-

tants described here, lowering the incubation temperature from
37 °C to 30-32 °C before inducing expression significantly
enhanced the yield of soluble protein.  This phenomenon,
which is not unique to thioredoxin fusion proteins, may be
due to lower temperatures slowing the rate of protein produc-
tion thus providing more time for limiting amounts of chaper-
one proteins to refold the overexpressed recombinant protein.

Mutagenesis studies typically rely only on DNA sequenc-
ing to confirm the desired mutation.  LC-MS/MS allows for a
higher level of confidence. We previously used LC-MS/MS
to sequence peptides generated from in-gel trypsin digests of
X4IRBP [48].  Each of these peptides could be matched to
IRBP or thioredoxin with a 60% coverage of the fusion pro-
tein.  In the present study, we found that the same peptides can
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Figure 9. Binding of all-trans retinol to X4IRBP and the Arg->Gln mutants followed by monitoring ligand fluorescence enhancement upon
binding (excitation 325 nm; emission 480 nm). Each panel is a separate experiment comparing a single Arg->Gln mutant (open symbols) to
that of X4IRBP (filled symbols).  The binding curves are similar except for the Arg1005->Gln mutant where more ligand was required to reach
saturation and the level of fluorescence enhancement attained was higher (panel A).  Protein concentration was 1 µM.
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generally be isolated from the digest if the mutation has not
disrupted the trypsin cleavage sites.  Since trypsin cuts at argi-
nine, the peptide profile was different for each of the mutants
compared to X4IRBP.  For Arg1005->Gln and Arg1122->Gln, a
new peptide could be isolated that contained the desired amino
acid substitution.  For Arg1041->Gln and Arg1073->Gln the in-
creased size of the resulting tryptic peptide precluded its di-
rect characterization by LC-MS/MS.

Since the individual modules may represent functional
units of IRBP each containing its own ligand-binding site(s)
[38-40,48], studying the effect of mutations in isolated mod-
ules may be more useful than in the whole protein.  Subtle
effects of the mutation may be more easily identified without
the presence of binding sites in other modules. Limitations of
fluorescence spectroscopy may be circumvented by examin-
ing the modules individually.  Since each module has differ-
ent properties [38-40], the assumption of equivalent binding
sites is not valid when studying the full-length IRBP.  Further-
more, as pointed out by Ward [42]:

If the effect of ligand binding does affect the fluores-
cent properties of other binding sites, a nonlinear de-
pendence of fluorescent change on fractional occu-
pancy would result even for equivalent and indepen-
dent binding sites.  This type of effect could be caused
by a conformational change on ligand binding affect-
ing the fluorescent properties associated with conse-
quent binding of ligand or via fluorescent energy
transfer.

Such a mechanism accounts for the nonlinear quenching
of the intrinsic protein fluorescence of lactate dehydrogenase
on binding of NADH [69] and BSA on binding of 1-anilino-

8-naphthalene sulfonate (reviewed in [42]).  In the present
study, such internal quenching could explain why N deter-
mined from titrations following quenching of intrinsic pro-
tein fluorescence was less than N determined from titrations
monitoring ligand fluorescence enhancement.  An alternative
explanation is that not all the binding sites support protein
quenching.

In a screen of patients with retinitis pigmentosa, McGee
et al. [70] found several point mutations in human IRBP that
did not segregate with disease.  None of these mutations cor-
respond to the substitutions made in the present study.  Lin et
al. [38] studied two amino acid substitutions in human IRBP:
Arg725->Cys and Gly719->Ser.  Although Arg725->Cys does not
correspond directly to any of the mutations made here, this
amino acid residue in the third module of human IRBP corre-
sponds to Arg1005 in the fourth module of Xenopus IRBP.   Al-
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TABLE 2. SUMMARY  OF BINDING PARAMETERS DETERMINED BY

QUENCHING TITRATIONS

The binding of 9-(9-anthroyloxy) stearic acid (9-AS) and all-trans
retinol to X4IRBP and the Arg->Gln substitution mutants was fol-
lowed by monitoring quenching of protein endogenous fluorescence.
The number of ligand-binding sites (N) and the dissociation constant

(Kd) were determined as described by Baer et al. [48].

  Protein           9-AS Quenching*       All-trans retinol Quenching*
------------   ------------------------   ----------------------------

                   N            Kd             N            Kd
               ---------   ------------    ---------   ------------
X4IRBP         0.24 ±0.10   0.46 ±0.08 µM    0.15 ±0.08   0.58 ±0.08 µM
Arg1005->Gln   1.06 ±0.18   0.10 ±0.06 µM    0.51 ±0.11   0.28 ±0.04 µM
Arg1041->Gln   0.32 ±0.13   0.38 ±0.09 µM    0.33 ±0.06   0.55 ±0.06 µM
Arg1073->Gln   0.39 ±0.16   0.36 ±0.09 µM    0.17 ±0.07   0.60 ±0.06 µM

Arg1122->Gln   0.12 ±0.07   0.35 ±0.05 µM    0.12 ±0.08   0.53 ±0.06 µM

* Monitored at 340 nm upon excitation at 280 nm.

Figure 10. Normalized all-trans retinol fluorescence enhancement
titrations showing direct comparison between X4IRBP and the Arg1005-
>Gln mutant. The binding of all-trans retinol to 1.33 µM of X4IRBP
(filled symbols) and 0.92 µM of the Arg1005->Gln mutant (open sym-
bols) was monitored at 480 nm upon excitation at 330 nm. For
X4IRBP, N = 1.50±0.31 and K

d
 = 0.80±0.26 µM.  For Arg1005->Gln,

N = 3.67±0.49 and K
d
 = 0.93±0.26 µM. Nonnormalized data is shown

as an insert.

Figure 11. Emission spectra of X4IRBP and the Arg1005->Gln mutant
showing the quenching of intrinsic protein fluorescence upon bind-
ing all-trans retinol. Solutions of 1 µM mutant and X4IRBP were
excited at 280 nm. Emission was measured from 300 nm to 540 nm
in the absence of all-trans retinol (A) and then five min after adding
7.1 µM all-trans retinol (B).  Note the quenching of protein fluores-
cence at 340 nm upon addition of all-trans retinol.
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though we saw a significant effect on ligand binding caused
by changing this residue to glutamine, Lin et al.  [38] found
little effect on ligand binding by substituting Cys for Arg at
residue 725.  Although species differences may account for
this apparent discrepancy, it is also possible that the differ-
ence reflects the different residue that the Arg was changed to
and/or the fact that Lin et al. [38] examined the full-length
protein while we studied an individual module.

Our results suggest that none of the Arg->Gln substitu-
tions resulted in a global disruption of the module’s structure.
First, we found no reduction in the ability of any of the mu-
tants to protect retinol from degradation, a property of IRBP
that is regarded to be important in its function.  Second, the
substitutions did not appreciably change the K

d
 for 9-AS or

all-trans retinol binding.  It should be pointed out that for the
most accurate determination of K

d
, titrations should be car-

ried out at a protein concentration that is less than the K
d
 (for

discussion see [71]).  Since the recombinant IRBPs were used

at 1 µM, which is usually higher than the K
d
s, we may have

missed subtle changes caused by the substitutions.  A more
detailed analysis of the binding kinetics using stop-flow meth-
odologies is underway in our laboratory.

In contrast to the lack of effect on K
d
, substitution of Gln

for Arg1005 increased the amount of all-trans retinol or 9-AS
required to reach saturation.  Furthermore, the substitution ap-
proximately doubled the amount of fluorescence enhancement
at saturation.  The simplest explanation for these findings is
that this substitution increased the module’s ligand-binding
capacity.  The protein concentration used in these titrations
was in an ideal range for evaluating the stoichiometry change.
Fitting the ligand-binding equation, without any assumptions
regarding how N or K

d
should change, resulted in a approxi-

mate doubling of N.  This doubling is supported by the fact
that the level of fluorescence enhancement also doubled.  Al-
though a change in fluorescence enhancement could be caused
by altering the hydrophobicity of the ligand-binding domain,
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Figure 12. Binding of all-trans retinol to X4IRBP and the Arg->Gln mutants monitoring quenching of protein fluorescence (excitation 280 nm;
emission 340 nm). Each panel is a separate experiment comparing a single Arg->Gln mutant (open symbol) to that of X4IRBP (filled symbol).

© Molecular Vision



the large change observed is difficult to explain by a local
environmental change alone.  The apparent reduced rate of 9-
AS association was considered as an explanation for the high
value of N.  However, the same result was obtained when even
more time was allowed for equilibrium to be reached.  Under-
estimating the protein concentration would also result in over-
estimating N.  Absorbance spectroscopy can lead to errors in
determining protein concentration due to inaccuracies in the
extinction coefficient and the fact that contaminants can ab-
sorb at 280 nm.  For these reasons we also employed amino
acid analysis to determine the concentration of the IRBP used
in the ligand-binding assays.  The values obtained by the two
methods were similar.  SDS-PAGE analysis confirmed that
the protein concentrations used in the side by side titrations of
wild type and mutant were very similar (Figure 4).

In many lipocalins, conserved arginines form electrostatic
interactions with bound ligand.  For example, in cellular
retinoic acid-binding protein, myelin P2, muscle fatty acid-
binding protein, and intestinal fatty acid-binding protein, the
carboxylate of the bound retinoic acid or fatty acid coordi-
nates with specific conserved Arg residues [52-55].  In con-
trast, we found that the K

d
’s for 9-AS and all-trans retinol

binding were not significantly different for X4IRBP compared
to that of any of the Arg->Gln mutants.  The lack of notable
ionic involvement of the conserved arginines studied here sug-
gests that the mode of ligand binding in IRBP is different from
that of the above lipocalins.  This is consistent with the recent
finding that the binding of retinol to native bovine IRBP is
stabilized mainly by hydrophobic interactions [72].

Although our finding that substituting a Gln for an Arg
can enhance binding capacity is unprecedented for a retinoid-
binding protein or any lipocalin, a parallel may be drawn with
liver fatty acid binding protein (L-FABP).  Compared to other
FABP’s, which bind one molecule of long chain fatty acid, L-
FABP binds two.  The crystal structure of L-FABP suggests
that the increase in binding capacity is due to a decrease in the

bulkiness of the amino acid side chains lining the binding cav-
ity, thus increasing the volume of this cavity [73].  Mutagen-
esis of Arg122 to Gln of L-FABP enhances its binding to
lysophospholipids [74].  It is plausible that the enhanced bind-
ing of L-FABP (Arg122->Gln) and of Arg1005->Gln IRBP mu-
tant produced here is the result of an increased flexibility of
the binding cavity due to reduced hydrogen-bonding con-
straints resulting from the absence of the arginine.
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