#### Title

Quantum field theory in a noncommutative geometry: The Moyal spacetime

#### Date of Award

2010

#### Degree Type

Dissertation

#### Degree Name

Doctor of Philosophy (PhD)

#### Department

Physics

#### Advisor(s)

Mark Kleiner

#### Second Advisor

Cristian Armendariz-Picon

#### Keywords

Quantum field theory, Noncommutative geometry, Moyal spacetime

#### Subject Categories

Physics

#### Abstract

Noncommutative field theories constitute a class of theories beyond the standard model of elementary particle physics. Their importance may be summarized in two facts. Firstly as field theories defined on noncommutative spacetimes they come with natural regularization parameters. Secondly they are related in a natural way to theories of quantum gravity which typically give rise to noncommutative space-times. Therefore noncommutative field theories can shed light on the problem of quantizing gravity. An attractive aspect of noncommutative field theories is that they can be formulated so as to preserve spacetime symmetries and to avoid the introduction of unwanted extra degrees of freedom and so they provide models of consistent fundamental theories. In this dissertation we review the formulation of symmetry aspects of noncommutative field theories on the simplest type of noncommutative spacetime, the Moyal plane. We discuss violations of Lorentz, P, CP, PT and CPT symmetries as well as causality. Some experimentally detectable signatures of these violations, involving Planck scale physics of the early universe and linear response in finite temperature field theory, are also presented.

#### Access

Surface provides description only. Full text is available to ProQuest subscribers. Ask your Librarian for assistance.

#### Recommended Citation

Akofor, Earnest, "Quantum field theory in a noncommutative geometry: The Moyal spacetime" (2010). *Physics - Dissertations.* Paper 105.

http://surface.syr.edu/phy_etd/105

http://libezproxy.syr.edu/login?url=http://proquest.umi.com/pqdweb?did=2188808921&sid=2&Fmt=2&clientId=3739&RQT=309&VName=PQD