Yixing Chen

Date of Award


Degree Type


Embargo Date


Degree Name

Doctor of Philosophy (PhD)


Mechanical and Aerospace Engineering


Jianshun Zhang


Building design process, CHAMPS-Multizone, Co-simulation, EnergyPlus, Energy simulation, Indoor air quality simulation


The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design.

Based on the review and analysis of existing professional practices in building system design, particularly those used in U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It included Assess, Define, Design, Apply, and Monitoring (ADDAM) stages. The current VDS focused on the first three stages.

The VDS considers the building design as a multi-dimensional process involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of "who", "what" and "when". It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to the energy efficiency and IEQ performance with particular focus on thermal, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings.

The VDS software framework contains four major functions:

1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via internet.

2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis.

3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building.

4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predict the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment.

The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium size five story office building that received the LEED Platinum Certification from USGBC.


Open Access