Document Type

Conference Document



Embargo Period



malware detection




Other Computer Engineering


Every day thousands of malware are released online. The vast majority of these malware employ some kind of obfuscation ranging from simple XOR encryption, to more sophisticated anti-analysis, packing and encryption techniques. Dynamic analysis methods can unpack the file and reveal its hidden code. However, these methods are very time consuming when compared to static analysis. Moreover, considering the large amount of new malware being produced daily, it is not practical to solely depend on dynamic analysis methods. Therefore, finding an effective way to filter the samples and delegate only obfuscated and suspicious ones to more rigorous tests would significantly improve the overall scanning process. Current techniques of identifying obfuscation rely mainly on signatures of known packers, file entropy score, or anomalies in file header. However, these features are not only easily bypass-able, but also do not cover all types of obfuscation. In this paper, we introduce a novel approach to identify obfuscated files based on anomalies in their instructions-based characteristics. We detect the presence of interleaving instructions which are the result of the opaque predicate anti-disassembly trick, and present distinguishing statistical properties based on the opcodes and control flow graphs of obfuscated files. Our detection system combines these features with other file structural features and leads to a very good result of detecting obfuscated malware.

Additional Information

Published in: 2014 IEEE Military Communications Conference (MILCOM), 6-8 Oct 2014



Submission updated 12/9/15