Document Type

Article

Date

2012

Embargo Period

10-5-2012

Keywords

Distributed Detection, Dependent Observations, Likelihood Quantizer

Language

English

Disciplines

Electrical and Computer Engineering | Engineering

Description/Abstract

Distributed detection with conditionally dependent observations is known to be a challenging problem in decentralized inference. This paper attempts to make progress on this problem by proposing a new framework for distributed detection that builds on a hierarchical conditional independence model. Through the introduction of a hidden variable that induces conditional independence among the sensor observations, the proposed model unifies distributed detection with dependent or independent observations. This new framework allows us to identify several classes of distributed detection problems with dependent observations whose optimal decision rules resemble the ones for the independent case. The new framework induces a decoupling effect on the forms of the optimal local decision rules for these problems, much in the same way as the conditionally independent case. This is in sharp contrast to the general dependent case where the coupling of the forms of local sensor decision rules often renders the problem intractable. Such decoupling enables the use of, for example, the person-by-person optimization approach to find optimal local decision rules. Two classical examples in distributed detection with dependent observations are reexamined under this new framework: detection of a deterministic signal in dependent noises and detection of a random signal in independent noises.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.