Document Type




Embargo Period



Spatially-distributed MIMO radar, maximum likelihood estimation, localization, tracking, particle filter, Kalman filter




Electrical and Computer Engineering


For a non-coherent MIMO radar system, the maximum likelihood estimator (MLE) of the target location and velocity, as well as the corresponding CRLB matrix, is derived. MIMO radar’s potential in localization and tracking performance is demonstrated by adopting simple Gaussian pulse waveforms. Due to the short duration of the Gaussian pulses, a very high localization performance can be achieved, even when the matched filter ignores the Doppler effect by matching to zero Doppler shift. This leads to significantly reduced complexities for the matched filter and the MLE. Further, two interactive signal processing and tracking algorithms, based on the Kalman filter and the particle filter respectively, are proposed for non-coherent MIMO radar target tracking. For a system with a large number of transmit/receive elements and a high SNR value, the Kalman filter (KF) is a good choice; while for a system with a small number of elements and a low SNR value, the particle filter outperforms the KF significantly. In both methods, the tracker provides predictive information regarding the target location, so that the matched filter can match to the most probable target locations, reducing the complexity of the matched filter and improving the tracking performance. Since tracking is performed without detection, the presented approach can be deemed as a track-before-detect approach. It is demonstrated through simulations that the non-coherent MIMO radar provides significant tracking performance improvement over a monostatic phased array radar with high range and azimuth resolutions. Further, the effects of coherent integration of pulses are investigated for both the phased array radar and a hybrid MIMO radar, where only the pulses transmitted and received by co-located transceivers are coherently integrated and the other pulses are combined non-coherently. It is shown that the hybrid MIMO radar achieves significant tracking performance improvement when compared to the phased array radar, by using the extra Doppler information obtained through coherent pulse integration.