Document Type




Embargo Period



Average Run Length, Change Detection, Moving Average, Filtered Derivative, Control Charts




Computer Engineering | Electrical and Computer Engineering


Among the various procedures used to detect potential changes in a stochastic process the moving sum algorithms are very popular due to their intuitive appeal and good statistical performance. One of the important design parameters of a change detection algorithm is the expected interval between false positives, also known as the average run length (ARL). Computation of the ARL usually involves numerical procedures but in some cases it can be approximated using a series involving multivariate probabilities. In this paper, we present an analysis of this series approach by providing sufficient conditions for convergence and derive an error bound. Using simulation studies, we show that the series approach is applicable to moving average and filtered derivative algorithms. For moving average algorithms, we compare our results with previously known bounds. We use two special cases to illustrate our observations.

Additional Information



local input


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.