An intriguing mix of fossils and minerals can be found in the lobby of Heroy Geology Laboratory. One display case is dedicated to locally found trilobites (second from left, and far right), while other displays include such minerals as malachite and azurite (left), pyrite, and amethyst quartz.

Contemplating Prehistoric Creatures and Myriad Minerals

ander around the lobby of Heroy Geology Laboratory and you may get lost 200 million years ago in the Jurassic Period, contemplating the ramifications of an encounter with a crocodile-like creature called Teleosaurus Mandelslohi. It’s one of several framed antique castings of prehistoric Earth inhabitants on display, along with an intriguing mix of minerals, fossils, and other items. “Sometimes I wish I were a time traveler just to see what these sons of guns looked like alive,” says Heroy lab manager Phillip Arnold, who oversees the displays.

Several years ago, the castings—which came from dig sites in England and Germany—were locked away in storage, forgotten pieces of the past until Arnold restored them. They aren’t the only prehistoric pieces that zap a visitor back in time. There’s a nearly 6-foot fossil tree that was extracted from a Pennsylvania coal mine and given to the University in 1894; a series of growth stages of New York State’s official fossil, Eurypterus remipes, a 400-million-year-old distant relative of the scorpion; and huge trilobites that swam around Central New York in the Devonian Period some 375 million years ago. There’s also an object from our own little blip of geologic time: the cross-section of a 125-year-old hickory tree rescued from Green Lakes State Park by earth sciences professor Hank Mullins and students following the 1998 Labor Day storm. To put the tree’s history in context, Arnold added a timeline of SU- and geology-related facts among the rings.

Amid the fossils are a multitude of minerals from around the world, including many from the Empire State. While one display case may have amethyst quartz from Brazil or pyrite from Peru, another may include wollastonite from the Lake Champlain region, talc from northern New York, or celestite from nearby Chittenango Falls. “I try to educate people with the displays, and at the same time amuse them—like an infomercial,” says mineral curator John Davis.

Davis took mineral courses at SU in the late sixties and, after seeing the offerings at that time, told his professor he had better stuff in his basement. “He told me, ‘I’d like to see your basement,’” Davis says. “Ever since then, he’s contributed to the department’s mineral collection, indexed it, and organized the displays. ‘Many of these are basic rocks people will run across,’” he says. “And if students miss something covered in class, they can always come here and check it out.”

Many of the exhibited items do more than just gather dust. As part of an Honors project last year, Isla Castaneda ’99 examined 102 specimens of the trilobite Dipleura dekayi, including several on display. “The juveniles sometimes exhibit features the adults don’t,” says Castaneda, now a graduate student at the University of Colorado. During her research, Castaneda encountered a lot of conflicting literature about trilobites, so she made a series of measurements on each specimen and studied their differences and similarities. Young trilobites, she discovered, had curved rostral sutures (like little facial lines), while adults had straight ones. “I liked going through the whole research process,” she says. “It was fascinating to study the changes in the trilobite that occurred from the juvenile to adult stages.”