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Thermodynamic limit to photonic-plasmonic light-trapping in thin
films on metals
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(Received 9 May 2011; accepted 6 October 2011; published online 16 November 2011)

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals

due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can

be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on

the statistical distribution of energy in the electromagnetic modes of the structure, which include

surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the

film. The enhancement has the form 4n2 þ nk=h (n – film refractive index, k – optical wavelength,

h – film thickness), which is an increase beyond the non-plasmonic “classical” enhancement 4n2.

Larger resonant enhancements occur for wavelengths near the surface plasmon frequency; these add

up to 2 mA=cm2 to the photocurrent of a solar cell based on a 500 nm film of crystalline silicon. We

also calculated the effects of plasmon dissipation in the metal. Dissipation rates typical of silver

reverse the resonant enhancement effect for silicon, but a non-resonant enhancement remains. VC 2011
American Institute of Physics. [doi:10.1063/1.3658848]

INTRODUCTION

The confinement of light by dielectric waveguides and

by solar cells are companion fields that have been intensely

studied for more than 30 years. The present paper is con-

cerned with “light-trapping” in solar cells. Redfield was

apparently the first to publish that guiding of scattered radia-

tion by total internal reflection in a thin film would enhance

absorption in solar cells.1 Yablonovitch developed a calcula-

tion that quantified the maximal absorptance enhancement

under the simplest, “classical” conditions as 4n2, where n is

the index of refraction of the semiconductor film.2 Yablono-

vitch assumed ergodicity, which is the requirement that all

the electromagnetic modes within the film in a small fre-

quency range have a common photon occupancy under

steady illumination. For simplicity, he used the volume den-

sity-of-states of an infinite dielectric to obtain the 4n2 result.

The ergodic approach has been extended to accommodate

more general forms for the photonic density of states, includ-

ing exact treatments of waveguide modes,3 and of multiple-

layer dielectric structures.4,5 Non-ergodic treatments of peri-

odic gratings imposed on the metal and the thin-film layers

have indicated light-trapping larger than inferred from the

4n2 limit.6,7

In recent years there has been great interest in the possi-

bility that electromagnetic excitations such as surface

plasmons, localized or extended, might further facilitate

light-trapping.8–11 Zhou and Biswas reported calculations

indicating enhancements beyond 4n2 with a photonic crystal

backreflector,12 and recently Biswas and Xu reported that

periodically patterned metal backreflectors also have

enhancements beyond 4n2.13 While photonic effects related

to gratings, such as originally suggested by Sheng et al.,6

might explain these enhancements, a second possibility is

that the sharing of electromagnetic energy between the sur-

face plasmons and the waveguide modes of the thin film is

involved.

In this paper we treat light-trapping in semiconductor

films with metallic backreflectors, which is a simple model

of a solar cell. We assume an ideal antireflection coating and

a non-specific texturing of the interfaces. These assumptions

are illustrated at the bottom of Fig. 1. We have extended the

basic ergodic formalism to incorporate surface plasmon

polaritons at the bottom, metal=semiconductor interface; the

texturing is responsible for ergodic coupling of the photons

and the surface plasmon polaritons (spp’s).

The essential concepts are illustrated at the top of Fig. 1.

The sphere represents the possible wavevectors ~k of photons

with frequency x that are trapped within the film by total in-

ternal reflection; the film is assumed to be thick enough that

effects of cutoff frequencies for the different waveguide

modes can be neglected. The small missing portion at the top

of the sphere corresponds to radiative modes that pass out of

the film instead of being trapped. This part of the image is a

graphical version of Yablonovitch’s original argument. Pho-

tons within the film are assumed to populate all portions of

the spherical surface equally. Assuming that incident pho-

tons arrive through the air, the ratio of the surface area for

the trapped wavevectors to the surface area for the radiative

modes is 4n2—which is the “classical” enhancement effect.

The propagation wavevectors ~b of the surface plasmon

polariton (spp) modes at the same optical frequency x as the

waveguide modes are represented by the planar “hoop”

below the sphere; the area of this hoop indicates the areal

density-of-states that is accessible to an electromagnetic

quantum. It is evident that the area corresponding to trapped

modes—waveguide and plasmonic—has increased relative

to the area for radiative modes, which corresponds to an

increased enhancement. This is the essential argument of the

present paper.a)Electronic mail: easchiff@syr.edu.
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In the remainder of the paper, we implement these ideas

for several cases. We first neglect plasmonic dissipation. We

obtain relatively simple formulae for the absorptance of the

semiconductor film in terms of general densities of trapped

and spp modes and the “confinement factors” for the modes.

For the case of surface plasmon polariton modes with fre-

quencies well below the surface plasmon resonance, we find

a simple “supraclassical” extension of the 4n2 relation: The

absorptance enhancement incorporating spp effects is

4n2þ nk=h, where k is the vacuum wavelength of the light,

and h is the thickness of the film. We refer to this as the

“non-resonant” case; remarkably, this limit is independent of

the metal at the interface. The improvement beyond 4n2 can

be significant; for a 250 nm film, a 1000 nm wavelength, and

n¼ 3.6 (typical of silicon films), the spp’s increase the

enhancement from 52 to 67. Since a 250 nm film is too thin

to be well-approximated by the 4n2 limit,3,7 these numbers

do need some refinement.

For photon frequencies that approach the surface plas-

mon resonance frequency, we obtain particular expressions

using the Drude model to describe the dielectric properties

of the metal. We present numerical calculations assuming

that the semiconductor is crystalline silicon. The resonant

enhancements are larger than the non-resonant ones. For ref-

erence, we also calculate the short-circuit photocurrent den-

sity in corresponding solar cells under solar illumination,

with the simplifying assumption that all photons absorbed in

the silicon generate electron-hole pairs that are subsequently

collected.

The absorptance spectra and the photocurrents may be

compared with the recent electromagnetic simulations by

Biswas and Xu that sought the optimum periodic structure of

the metal=semiconductor interface for use in solar cells13

and that achieved photocurrents higher than for the 4n2 cal-

culation. The magnitudes of their photocurrent calculations

appear to be consistent with the calculations that we present,

which (unsurprisingly) indicates that their enhancements

beyond 4n2 are partly plasmonic in origin.

In the final sections we incorporate plasmonic dissipa-

tion and give general results for absorptance in terms of

photonic-plasmonic densities of states, confinement factors,

and dissipation rates for the spp modes. We evaluate these

for a Drude-Lorentz model of the metal and again illustrate

the results numerically for thin silicon films on the metal.

We find that a plasmon dissipation lifetime of thirty femto-

seconds, typical of silver, reverses the resonant enhance-

ment found with lossless surface plasmons. The non-

resonant enhancement effect remains positive over a broader

range of dissipations than does the resonant enhancement.

THERMODYNAMIC ABSORPTANCE IN A THIN
SEMICONDUCTOR FILM

In this paper we shall use the basic formalism developed

by Stuart and Hall for their calculations of the thermodynamic

limit for the absorptance of a thin semiconductor film3; they

note that their approach is an application of the extended radi-

ance theorem proven by Bassett.14 In this section we briefly

reprise some of their results that we use subsequently when

surface plasmon polaritons are incorporated. Their equations

(19) for the absorptance A of a semiconductor film are

A ¼ qrad

qtot

frad þ
X

m

Rm

hqtot

fm; (1a)

qtot ¼ qrad þ
1

h

X
m

Rm; (1b)

where h is the thickness of the film. qrad is the density of

states (per unit volume and frequency) of the “radiative”

photons within the film that are not trapped by total internal

reflection. Rm is the density of states (per unit area and fre-

quency) for a band m of trapped or waveguide modes within

the device, and qtot is the volume average of the density of

electromagnetic modes in the film. In this model, the inci-

dent optical power is distributed evenly across all the electro-

magnetic modes of the film. frad and fm are the fractions of

the energy stored in a radiative or a waveguide mode that are

absorbed by the semiconductor. Each mode stores the same

energy, which is the ergodic assumption of this model.

FIG. 1. (Color online) Ball and hoop drawings illustrating the electromag-

netic modes for a thin dielectric film with a metallic backreflector. The

spheres indicate photons with wavevector ~k lying in various directions.

The dark “caps” represent radiative modes that are not trapped in the film;

the rest of the sphere represents trapped photons. The hoops indicate the sur-

face plasmon polaritons. Results are shown at two optical frequencies, one

of which approaches the surface-plasmon resonance frequency xsp. The sur-

face areas of the elements are proportional to the trapped mode and surface

plasmon polariton mode densities-of-states; light trapping may be consid-

ered as a random walk among these states, with escape when the quantum of

energy reaches the radiative modes.
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Assuming that photons are incident on the device from

air or vacuum with a unity index of refraction, Stuart and

Hall’s equation (18a) becomes

frad ¼
ah

ahþ nq0= 4qtotð Þ ; (1c)

where a is the absorption coefficient of the film, and n is its

index of refraction. q0 � x2
�
p2c3 is the density-of-states for

photons in air, including the two polarizations of light.

Stuart and Hall showed that these expressions yield

what we shall term the classical value Acl for the absorp-

tance. For thicker films (h� k=n), the average volume den-

sity of states qtot in the film including both the radiative and

waveguide modes approaches the “classical” value:

qtot ffi qcl �
x2n3

p2c3
: (2a)

Additionally, the fraction fm of the electromagnetic mode

energy that is absorbed in the semiconductor approaches frad

for nearly all modes; Eq. (1a) then yields for the total

absorptance:

Acl ¼
4n2ah

1þ 4n2ah
: (2b)

Acl was originally proposed based on a less rigorous argu-

ment by Tiedje, Yablonovitch, Cody, and Brooks.15 For

ah� 1, this expression reduces to Acl¼ 4n2ah, which is the

“4n2” limit proposed by Yablonovitch2; we define the

“classical” enhancement factor Ycl¼ 4n2.

THERMODYNAMIC ABSORPTANCE INCORPORATING
A LOSSLESS SURFACE PLASMON POLARITONS

Stuart and Hall’s treatment can be adapted for a band of

surface plasmon polaritons with areal density Rspp; we

neglect dissipation by the metal in this section and treat

lossy spp’s later. For strictly planar interfaces, spp’s do not

couple to the radiative and waveguide modes; one may think

of two independent spaces of modes—one for the semicon-

ductor waveguide, and one for the surface plasmon polari-

tons—that are uncoupled.16,17 When the interface between

the semiconductor and the metal becomes textured, the two

types of mode become coupled. This coupling has been

extensively studied; all that is needed for the present calcu-

lation is that the coupling be strong enough that electromag-

netic energy is shared evenly between the radiative,

waveguide, and spp modes at an optical frequency x; we

will return to this subject briefly when we discuss lifetime

broadening for the spp modes.

We denote the areal energy density that is stored in a

specific electromagnetic mode m as um. The semiconductor

film absorbs power from this mode at the rate rm¼ cCmum.

Cm is the “confinement factor” for a mode, which is the frac-

tion of the electromagnetic energy in the mode that lies

within the semiconductor film; the remainder lies within the

metal at the back of the film or in a dielectric or in air at the

top of the film. The value of c is related to the absorption

coefficient of the semiconductor by the equation

c � ac=n; (3)

which is obtained by consideration of the radiative modes.

The fractional absorption fm due to the trapped modes of the

film—waveguide or spp—then has the form

fm ¼
Cmc

Cmcþ q0c= 4hqtotð Þ ¼
Cmah

Cmahþ nq0= 4qtotð Þ : (4)

This expression is based on Eq. (18b) of Stuart and Hall’s

paper,3 but is simpler because of a somewhat different inter-

pretation of absorption coefficients a. This issue is treated in

the Appendix. The form for frad (Eq. (1c)) is unchanged.

For completeness, we write the corresponding version of

Eq. (1):

Aspp ¼
qrad

qtot

frad þ
X

m

Rm

hqtot

fm þ
Rspp

hqtot

fspp: (5a)

Equations (4) and (5) are a complete description as long as

we can neglect losses to the metal backreflector or direct

decay of the waveguide modes by radiation; we generalize

Eq. (5) in a subsequent section. Although it will not be

needed in the present paper, where we use the classical

approximation for the waveguide modes, Stuart and Hall’s

definition of qrad (their Eq. (2)) reduces to the following form

when the top interface is with air3

qrad ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n2

p� �
qcl: (5b)

Non-resonant enhancement by surface plasmon
polaritons

One complication in using Eq. (5) is the presence of the

confinement factors in Eq. (4). For the classical 4n2 enhance-

ment, the confinement factors Cm for the waveguide modes

are unity, which requires a sample of thickness h� k=2n;

this yields fm¼ frad, and what we will call the supraclassical

absorptance

Ascl ¼ frad
qcl

qtot

þ fspp
Rspp

hqtot

: (6)

A similar simplification occurs for the surface plasmon

polariton modes when the optical frequency for an experi-

ment lies well below the surface plasmon resonance fre-

quency. In this case the spp confinement factor also

approaches unity (i.e., fspp¼ frad), as we will show shortly.

With these simplifications, we can factor frad out of the ab-

sorptance expression (5). The total absorptance is

Anr ¼ frad
qrad

qtot

þ
X

m

Rm

hqtot

þ Rspp

hqtot

 !
¼ frad Cm;Cspp ¼ 1

� �
:

(7)

For the classical limit we are using the thick-sample approxi-

mation for the total density of photonic states (the sum of the

radiative and the dielectric waveguide modes)

104501-3 E. A. Schiff J. Appl. Phys. 110, 104501 (2011)
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qrad þ
X

m

Rm

h
ffi qcl �

x2n3

p2c3
:

The “supraclassical” density is then qscl � qcl þ Rspp

�
h. We

obtain the following expression for the non-resonant absorp-

tance Anr¼ frad by evaluating Eq. (1c):

Anr ¼
4n2ah 1þ Rspp

�
hqclð Þ

� �
1þ 4n2ah 1þ Rspp

�
hqclð Þ

� � : (8a)

The classical enhancement Ycl¼ 4n2 is now increased to an

spp-enhanced value:

Ynr ¼ 4n2 1þ Rspp

�
hqclð Þ

� �
: (8b)

In the non-resonant regime, spp’s have essentially the same

dispersion relation as the photons in the thin film; they are

like a two-dimensional photon gas confined to the metal=se-

miconductor interface and moving at a speed of c=n.16 The

non-resonant density of spp states is then

Rnr
spp ¼

n2x
2pc2

: (9a)

Since qcl ¼ x2n3=p2c3, we obtain the non-resonant enhance-

ment factor Ynr incorporating spp’s by substitution into

Eq. (8b)

Ynr ¼ 4n2 þ nk=hð Þ: (9b)

Remarkably, this expression does not depend on the metal’s

properties. Figure 2 shows calculations for three films of c-

Si based on the latter’s measured refractive index.18 The

spp’s increase the enhancement substantially for thinner

films, but for these the 4n2 approximation is not accurate. A

similar effect would obtain in a-Si:H, which has essentially

the same refractive index at this wavelength. The relative

gain over 4n2 increases in low-index materials such as or-

ganic semiconductors.4,10

Surface plasmon polariton density at a planar
interface

The last section evaluated Rspp in the low-frequency re-

gime; more generally it must be evaluated using the full dis-

persion relation for the in-plane propagation wavevector

b(x) of spp’s (Ref. 16)

b2 ¼ k2
0

e1e2

e1 þ e2

; (10)

where k0¼x=c is the vacuum wavenumber for an electro-

magnetic wave, e1(x) is the relative dielectric function of the

metal, and e2(x) is the dielectric function of the semiconduc-

tor. e1 and e2 are often complex; when both are real, b2

diverges at the surface plasmon frequency xsp defined im-

plicitly by e1(xsp)þ e2(xsp)¼ 0.

With typical dielectric functions at lower frequencies x,

b2 is nearly real, positive, and monotonically increasing. Rspp

is then evaluated using a textbook procedure. The total den-

sity Nspp(x) of spp states (per unit area of interface) having

frequencies less than some value x is given by the expression

Nspp xð Þ ¼ 1

2p

� 	2

pb2
� �

; (11)

where (1=2p)2 is the density of possible eigenvectors b in

the two-dimensional space of spp wavevectors. The density

of surface plasmon polaritons Rspp(x) (per unit area and fre-

quency) is obtained from

Rspp xð Þ ¼ @Nspp

@x
¼ 1

4p
d

dx
b2
� �

: (12)

Drude model for surface plasmon polaritons

We analyze the spp contribution to the absorptance in

more detail using the Drude-Lorentz model for e1 (Ref. 16)

e1 ¼ e1 �
x2

p

x2 þ icpx
; (13)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, xp is the bulk plasmon frequency, and cp is

the plasmon thermalization frequency. In this section we

assume that cp¼ 0. The density of surface plasmon polari-

tons Rspp(x) (per unit area and frequency) is then

Rspp xð Þ ¼ @Nspp

@x
¼ b2

2px
1þ

x2
pe2

x2e1 e1 þ e2ð Þ

 !
; (14)

where we neglect a term corresponding to the dispersion of

the semiconductor de2=dx.

In addition to the density-of-states we will need the con-

finement factor Cspp of an spp, which is the fraction of its

electromagnetic energy that lies in the dielectric or semicon-

ductor; this is related to the wavevectors k1 and k2 describing

the evanescent decay of the electromagnetic field amplitude

FIG. 2. (Color online) Light-trapping enhancement factor Y as a function of

wavelength for light absorption by thin films of silicon with a metal backre-

flector; three thicknesses are shown. The curve labeled 4n2 is the classical

enhancement due to waveguide trapping. It does not include surface plasmon

polaritons (spp’s), which cause a non-resonant enhancement beyond 4n2.

104501-4 E. A. Schiff J. Appl. Phys. 110, 104501 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



into the metal and the dielectric, respectively, which we take

over from Maier’s textbook (equations (2.10)-(2.14))17

k2
1 ¼ b2 � e1 x2

�
c2

� �
;

k2
2 ¼ b2 � e2 x2

�
c2

� �
:

Squaring each component of the electric field and summing

obtains the amplitude17

E2
1 ¼ C2 k2

1 þ b2

e2
1

exp 2k1zð Þ z < 0ð Þ;

E2
2 ¼ C2 k2

2 þ b2

e2
2

exp �2k2zð Þ z > 0ð Þ;

where C is an arbitrary amplitude. Using the expression for

the time-averaged electromagnetic energy density

u ¼ ðe0=16pÞ E2ðd=dxÞ xeð Þ,19 and integrating out from the

interface to obtain an areal energy density, we obtain

U1 ¼
e0

16p
e1 þ

x2
p

x2

 !
C2 k2

1 þ b2

2e2
1k1

; (15a)

U2 ¼
e0

16p
C2 k2

2 þ b2

2e2k2

; (15b)

where we have again neglected the dispersion of the semi-

conductor de2=dx. The confinement factor Cspp is defined as

the ratio

Cspp ¼
U2

U1 þ U2

: (15c)

In Fig. 3 we graph Rspp using parameters for silver:

xp¼ 1.3� 1016 s�1, e1 ¼ 3:3.20–22 We used the measured

dielectric function for c-Si,18 which is complex and prevents

divergence of the expression for Rspp near the surface plas-

mon resonance frequency of xsp¼ 3.0� 1015 s�1. We set

Rspp¼ 0 for Re(b2)< 0.

We convolved Rspp with a Lorentzian representing a

sR¼ 20 fs lifetime broadening to account for radiation of

the spp energy back into waveguide or radiative modes. The

present formalism that assumes ergodic contact between the

waveguide modes, spp’s, and radiative modes requires that

this lifetime be much shorter than the residence time of a

photon in the cell. The residence time is roughly 4n2(hn=c),

which is about 0.6 ps in a silicon cell of one micron thick-

ness. Experimental measurements of the radiative lifetime

for spherical silver nanoparticles in fluid (n¼ 1.5) are in the

range 1–6 fs for particle sizes 150 nm–20 nm.23

Resonant enhancement of absorptance of a silicon
film

In Fig. 4, the lower panel shows the numerical calcula-

tion for the absorptance of a 500 nm film based on the supra-

classical Eq. (6) above for a series of metal interfaces with

differing surface plasmon frequencies and using the meas-

ured optical properties of c-Si.18 The three different curves

were calculated by varying the bulk plasmon frequency pa-

rameter xp of the metal to obtain different surface plasmon

frequencies xsp. Each of the absorptance curves shows a fea-

ture that is close to the wavelength of its surface plasmon.

The classical absorptance Acl (Eq. (2b)) is also graphed and

forms the lower envelope of the curves. The 20 fs lifetime

broadening noted earlier causes a small absorptance at wave-

lengths longer than the bandgap threshold for c-Si, which is

at about 1100 nm.

FIG. 3. (Color online) (Lower) Areal state density Rspp as a function of opti-

cal frequency for surface plasmon polaritons (spp’s) at the silver=silicon

interface; the surface plasmon frequency xsp is marked on the top axis. The

areal densities of trapped waveguide modes for 500 nm and 1000 nm thick

silicon films are also illustrated. (Upper) The spp confinement factor Cspp as

a function of frequency; Cspp is the fraction of the energy in an spp that lies

in the semiconductor. Confinement factors Cm are assumed to be unity for

the waveguide modes.

FIG. 4. (Color online) (Lower panel) Supraclassical absorptance spectra cal-

culated for 500 nm films of c-Si incorporating lossless surface plasmon

polaritons with three different surface plasmon frequencies; the classical,

4n2 absorptance is also drawn and is the lower envelope of the supraclassical

curves. (Upper) Short-circuit photocurrent current densities JSC under solar

illumination for a solar cell based on a 500 nm silicon film; the values are

calculated using absorptance curves for a wide range of surface plasmon res-

onance wavelengths.

104501-5 E. A. Schiff J. Appl. Phys. 110, 104501 (2011)
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The upper panel shows the short-circuit current densities

JSC calculated for the corresponding crystalline silicon solar

cells. JSC is calculated by integrating the product of the ab-

sorptance, the photon flux spectrum derived from a standard

for solar illumination24 and the electronic charge. In physical

solar cells current densities are lower than the value calcu-

lated from these absorptances because of imperfect antire-

flection coatings, absorption by the doped layers that does

not contribute to the photocurrent, photocarrier recombina-

tion, etc.. The horizontal lines are independent calculations

based on absorptances for classical “Ycl¼ 4n2” enhancement

(Eq. (2)) and for the non-resonant spp enhancement

Ynr ¼ 4n2 þ nk=h (Eq. (9b)).

For the shortest surface plasmon wavelengths, JSC

approaches the non-resonant enhanced value of 30 mA=cm2.

The nearly 20% increase in the enhancement factor (cf. Fig.

2), beyond its classical value of 4n2, integrates out to just a

2% increase in JSC. As the surface plasmon resonance shifts

to the center of the graph, the resonant enhancement increases

the current to a maximum value near 31.5 mA=cm2. The

enhancement maximum occurs near ksp� 850 nm because

that is the wavelength for which the classical absorptance for

a 500 nm film is about 0.5, as can be verified by examining

the figure. Enhancements at shorter wavelengths do not much

affect the photocurrent, since all those photons are absorbed

even without enhancement. At longer wavelengths, little pho-

tocurrent is collected with or without enhancement. As the

spp band shifts to still longer wavelengths, the photocurrent

falls to 29.3 mA=cm2, which is the value for classical

enhancement 4n2.

Biswas and Xu have recently published full electromag-

netic calculations of absorptances for silicon on silver struc-

tures that can be compared with these results.13 Their

calculations assumed a particular type of profile for periodic

structuring of this interface, and they calculated the absorp-

tances for a wide range of profile parameters to identify an

optimum shaping. They also assumed negligible plasmonic

loss. For a 500 nm c-Si film, they report 3 mA=cm2 enhance-

ment beyond the classical calculation that is due to opti-

mized interface structure. The present calculation yielded

about 2 mA=cm2 of increase (cf. Fig. 4). We speculate that

the specific texture they applied moved the surface plasmon

resonance from its planar value of 630 nm (cf. Fig. 3) out to

about 850 nm; this is a well-established effect.16 We think

this effect would yield about the same 2 mA=cm2 that we

found by adjusting the Drude parameters of the metal inter-

face for the ergodic model, so the plasmonic effect is respon-

sible for 2=3 of their reported enhancement. The remaining

1 mA=cm2 of enhancement they report is presumably due to

the additional grating-effects proposed by Sheng et al.6 and

Yu et al.7

Yu et al. and also Green have recently published pro-

posals to use evanescent modes at the interface between two

dielectrics to exceed the 4n2 limit.4,7 A high-index, transpar-

ent material is placed in contact with a low-index absorbing

material, and photons trapped in the high-index material cou-

ple to the absorber layer via the evanescent wave extending

into it. This proposal is related conceptually to the present

calculations, which involve an evanescent wave extending

into the c-Si from a metal interface, and it avoids the plas-

monic dissipation that we explore in the next section.

THERMODYNAMIC ABSORPTANCE INCORPORATING
LOSSY SURFACE PLASMON POLARITONS

The previous section assumed that the non-radiative elec-

tromagnetic modes of the semiconductor=metal structure lose

energy only by semiconductor absorption; of course the struc-

ture as a whole also leaks energy because of the coupling to

its radiative modes. In this section we introduce intrinsic loss

by an spp through the plasmon damping of the metal (the cp

term of the Drude-Lorentz model Eq. (10)). The same formal-

ism could be used to treat leaking of the waveguide modes

through the top interface of the semiconductor film, which is

present in principle due to semiconductor absorption and is

increased by texturing or corrugation of the top interface.25

Similarly, for a planar backreflector interface, the finite con-

ductivity of a metal at optical frequencies leads to attenuation

of the waveguide modes25; our estimate of this latter effect is

that it is about a hundred times slower than the loss of energy

to the radiative modes, which renders it negligible.

We write for the total fractional absorption of the sur-

face plasmon polaritons

f 0spp ¼
Csppcþ cspp

Csppcþ cspp þ
q0c

4hqtot

; (16)

where c¼ an=c (as before), and cspp and Cspp are the dissipa-

tion rate and the confinement factor for the spp’s. For con-

venience we define the leakage rate for the emission of

electromagnetic energy through the radiative modes

crad ¼
q0c

4hqtot

;

The total absorptance of the system is then

Atot ¼
qrad

qtot

frad þ
X

m

Rm

hqtot

fm þ
Rspp

hqtot

f 0spp; (17)

where frad and fm retain the previous definitions (Eq. (1c) and

Eq. (4)). In Eq. (16), only the term Csppc corresponds to

absorption in the semiconductor; we write the partial absorp-

tance by the semiconductor film as

A0spp ¼
qrad

qtot

frad þ
X

m

Rm

hqtot

fmþ
Rspp

hqtot

Csppc
Csppcþ cspp þ crad

;

(18)

which is the lossy version of Eq. (5) above. Assuming the

waveguide modes can be treated in the classical limit (Cm¼ 1,

etc.), we obtain the general “supraclassical” expression

including plasmonic losses that is analogous to Eq. (6) above

A0scl ¼ frad
qcl

qtot

þ Rspp

hqtot

Csppc
Csppcþ cspp þ crad

: (19)
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Drude-Lorentz model for the lossy surface plasmon
polariton

The density-of-states Rspp in Fig. 3 is not changed mark-

edly by the incorporation of a non-zero value for cp. Within

the Drude-Lorentz model, using Eq. (19) above for A0scl

requires that we establish the relationship between cspp and

the Drude-Lorentz parameter cp. The procedure we use is

related to the discussion in the Appendix, where we calculate

the dissipation rate for a waveguide mode from the product of

its spatial attenuation constant and the mode’s group velocity.

For spp’s, we first calculated the attenuation constant

aspp using the complex propagation wavevector b

aspp ¼ 2Im bð Þ: (20a)

Along the interface, the field amplitude decays exponentially

with attenuation coefficient Im(b); this is doubled to obtain

the power attenuation coefficient, which is proportional to

the field amplitude squared. The generalization of Eq. (3)

(c¼ ac=n) to propagating surface plasmon polaritons is

based on evaluating the group velocity vspp
g of an spp

cspp ¼ vspp
g aspp; (20b)

vspp
g � db

dx

� 	�1

:

If the spp density-of-states Rspp has been evaluated, one can

use the relation (cf. Eq. (12))

vspp
g ¼ 2b

d

dx
b2
� � ¼ b

2pRspp
: (20c)

We have previously evaluated Rspp from the Drude-Lorentz

form for e1 to obtain Eq. (14), and of course Eq. (10) still

obtains for b.

This procedure has a difficulty; Eq. (20b) assumes that

the dissipation rate of the spp in the semiconductor layer (c)

is negligible, which is not true in the limit of small cp. We

therefore evaluated cspp for “lossless” silicon (c¼ 0); the pro-

cedure assumes that dissipation does not significantly alter

the spp’s properties (cf. b(x)), which we found to be reason-

ably correct for cp up to 3� 1013 s�1 (close to measurements

for silver). In Fig. 5 we have illustrated the calculations for

cspp as a function of optical frequency x, along with the

measurements of c for c-Si. cspp rises essentially as x2,

reaching cp at x¼xsp. c falls much faster, since it has a

threshold near the bandgap for c-Si.

Using Eqs. (15) for the supraclassical absorptance A0scl and

Eq. (20) for cspp, we did a numerical evaluation of the effects of

dissipation on the non-resonant enhancement factor Ynr. We

chose conditions of technical interest for c-Si solar cells:

ksp¼ 530 nm, k¼ 1000 nm; the other details are the same as

for the absorptance spectra in Fig. 4. The enhancement factor

was estimated from the ratio A0scl

�
ah at k¼ 1000 nm.

We present these calculations as Fig. 6 for two film thick-

nesses. For the 500 nm film the enhancement due to surface

plasmons is essentially canceled when cp¼ 3� 1013 s�1,

which is close to experimental estimates of this parameter in

silver.20,21 For the 250 nm film the enhancement is more ro-

bust, which could be of technological interest. For a sample

this thin classical expression (4n2) needs some adjustment for

waveguide mode cutoff effects.3,7

In Fig. 7 we present our calculations for the full absorp-

tance spectra A0scl for a series of values of cp; we chose the

plasma frequency to obtain a surface plasmon resonance at

ksp¼ 853 nm, corresponding to the enhancement maximum

in Fig. 4. For plasmon damping rates greater than

cp¼ 1� 1012 s�1, plasmonic losses are greater than the gain.

The non-resonant enhancements graphed in Fig. 5 remained

positive through about cp¼ 3� 1013 s�1, which suggests that

the non-resonant effect is much less influenced by plasmon

dissipation than is the resonant effect.

These results are not unexpected. For the non-resonant

case, most of an spp’s energy lies in the semiconductor and

is not subject to plasmon dissipation. However, resonant

enhancements occur when the surface plasmon polariton has

FIG. 5. Dissipation rates for electromagnetic modes as a function of optical

frequency. The solid lines show surface plasmon polariton dissipation rates

cspp based on the Drude Lorentz model (xp¼ 1.3� 1016 s�1) for the metal

and the measured dielectric function of c-Si; the corresponding surface plas-

mon frequency xsp¼ 3.0� 1015 s�1 is marked. Results are shown for three

plasmon dissipation rate parameters cp. The dashed line corresponds to inter-

band absorption in c-Si and is based on absorption coefficient measurements.

FIG. 6. (Color online) Effect of the plasmon dissipation rate cp on the non-

resonant light-trapping enhancement factor Ynr for silicon films of two thick-

nesses and evaluated at a wavelength of 1000 nm; the underlying surface

plasmon resonance wavelength, which does affect the dissipation, is also

shown. The classical enhancement Y¼ 4n2 is also shown.
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about half its energy within the metal (cf. Fig. 3), and it is

this fraction of the energy that is subject to plasmonic loss.

In order to realize significant enhancements in the resonant

regime, this dissipation must be slower than the fundamental

semiconductor absorption (cp� c). In c-Si, the interband

absorption rate at a wavelength of 900 nm can be evaluated

from the absorption coefficient to obtain c¼ 3� 1012 s�1; it

is thus unsurprising that plasmonic loss rates comparable to

this will suppress the resonant enhancement effect of

increased semiconductor absorption.
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APPENDIX A: DIELECTRIC ABSORPTION FOR WAVE-
GUIDE MODES AND SPP’S

A central issue in applying optical waveguide calcula-

tions to solar cells is evaluating the power absorbed by the

semiconductor from a density of electromagnetic energy um

(per unit area of film) that is stored in a given mode m. Ordi-

nary optical spectroscopy measures the absorption coeffi-

cient a(x), which is the attenuation coefficient for a radiative

mode traveling at group velocity v0
g ¼ c=n. The volume rate

of absorption of electromagnetic energy for radiative modes

is then Pabs ¼ av0
gurad ¼ ac=nð Þurad, where urad is the energy

stored in the radiative modes of the film.

We write the power density rm that is absorbed by the

semiconductor film from the energy density um in a wave-

guide mode as

rm ¼ Cmav0
gum; (A1)

where a is the bulk absorption coefficient of the semiconduc-

tor, and Cm is the energy confinement factor for the mode.

This equation is a statement that the rate of energy absorp-

tion by the semiconductor is proportional to the electromag-

netic energy density, and that the proportionality constant is

the same for guided modes and radiative modes.

A version of Eq. (A1) was used in the recent paper by

Yu, Raman, and Fan.7 However, Stuart and Hall wrote

rm ¼ Cmavm
g um (their Equation (15)); vm

g is the group velocity

of mode m, not the group velocity for a radiative mode.3 As

a consequence, their expression (18b) for fm (the fractional

absorption) contains vm
g =v0

g, which is the ratio of the group

velocity of the waveguide mode to the ordinary speed of

light in a material of index n. With our interpretation, the ra-

tio is v0
g=v0

g, which of course simplifies their expression to

the one we’ve used (Eq. (4) above).

Textbook summaries of loss calculations in dielectric

waveguides are not clear on this point.25,26 Group velocities

change rapidly near waveguide cutoff frequencies, but for

dielectric waveguides there is also a rapid loss of confine-

ment in this frequency region that complicates the interpreta-

tion of attenuation.

We thus present an elementary waveguide calculation

for a plane parallel, ideal metal wall waveguide. This avoids

the issue of confinement factors and seems to us sufficient to

confirm that Eq. (A1) is correct. This calculation is an exten-

sion of a textbook example25 and is also the basis for our

method for evaluating the spp dissipation rate cspp.

The transverse electric (or magnetic) modes of the

waveguide have the dispersion relation

b2
N ¼ k2 nþ iKð Þ2� N þ 1ð Þp=hð Þ2

ffi k2n2 � N þ 1ð Þp=hð Þ2þ2ik2nK; (A2)

where the mode index N is a positive integer, the complex

index of refraction of the dielectric is nþiK, the mirror sepa-

ration is h, and k¼x=c. We have assumed that K is small

and keep only terms to first order in K.

The real part of bN is the propagation constant for the

waveguide mode, and the imaginary part is the exponential

decay constant for the field in the guided mode. We obtain

Re bNð Þ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2 � N þ 1ð Þp=hð Þ2

q
; (A3)

Im bNð Þ ffi k2nK
�
Re bNð Þ: (A4)

The intensity attenuation constant aN in this mode is

aN ¼ 2Im bNð Þ ¼ 2k2nK
�
Re bNð Þ: (A5)

Using the result a¼ 2Kk connecting the ordinary optical

absorption coefficient a and K for the dielectric,25 we obtain

aN ¼ ank=Re bNð Þ: (A6)

FIG. 7. (Color online) Calculated partial absorptance spectra of a 500 nm

silicon film on a backreflector with surface plasmon resonance at 853 nm.

Results are shown for four values of the Drude-Lorentz plasmon dissipation

rate cp. The classical absorptance spectrum without surface plasmons is also

illustrated.
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The difference between a and aN is most substantial when a

mode is near cutoff (i.e. kn 	 N þ 1ð Þp=h).

The rate constant cN for the dissipation of the areal

energy density stored in a waveguide mode is obtained from

the product of the attenuation constant and the group velocity

cN ¼ aNvN
g : (A7)

The group velocity of the guided mode is

vN
g �

db
dx

� 	�1

ffi Re bNð Þc
n2k

: (A8)

We obtain by substitution of (A6) and (A8) into (A7)

cN ¼ aNvN
g ¼ a c=nð Þ; (A9)

which is consistent with Eq. (A1).

It is interesting that the rate constant for energy decay in

a guided mode is the same as its rate in radiative modes, in-

dependent of the group velocity of the mode. We think the

relationship is sensible in terms of an underlying mechanism

such as interband absorption, which is proportional to the

local electromagnetic field energy density. For a given mode

energy, the intensity of energy flow is of course proportional

to the group velocity, which slows down compared to c=n
when a mode is near its cutoff. This derivation indicates that

the attenuation constant increases correspondingly, leaving

the dissipation rate of the stored energy unchanged.
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