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4.2.1.1 Scores and Pointers Matrices

We first initialize the matrices and then calculate their entries for i, j > 0. We set S0,0,k = 0,

P0,0 = 0, P0,j = 2, and Pi,0 = 3. Also, we initialize the first row and column of S using the gap

M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 Inf

N - A G C A T T C G - - G C T C
0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 A 0 4 -1 -1 4 0 -1 -1 0 0 0 -1 -1 -1 0
2 G 0 -1 12 -2 -2 3 -1 -2 3 0 0 4 -2 -2 0
3 16 C 0 0 0 32 32 32 32 32 32 32 32 32 32 32 32
4 - 0 0 0 0 32 32 32 32 32 32 32 32 32 32 32
5 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
6 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
7 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
8 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
9 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32

10 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
11 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
12 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
13 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
14 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
15 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
16 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
17 - 0 0 0 0 0 32 32 32 32 32 32 32 32 32 32
18 T 0 -1 -1 -1 -1 32 36 31 32 32 32 31 31 36 32
19 C 0 -1 -2 3 -2 32 31 44 32 32 32 31 35 30 44
20 T 0 -1 -2 -3 2 32 36 30 43 32 32 31 30 43 44
21 Inf C 0 0 0 2 2 32 32 44 44 44 44 44 44 44 44

1st Max
2nd Max
3rd Max

M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 Inf

N - A G C A T T C G - - G C T C
0 - 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 A 3 1 1 1 1 31 1 1 31 1 1 1 1 1 31
2 G 3 1 1 1 1 13 1 1 13 1 1 1 1 1 31
3 16 C 3 21 21 12 21 231 21 21 231 21 21 21 21 21 213
4 - 3 1 1 1 1 13 1 1 13 1 1 1 1 1 13
5 - 3 1 1 1 1 13 1 1 13 1 1 1 1 1 13
6 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
7 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
8 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
9 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13

10 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
11 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
12 - 3 1 1 1 1 31 1 1 **13 1 1 1 1 1 13
13 - 3 1 1 1 1 31 1 1 *13 1 1 1 1 1 13
14 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
15 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
16 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
17 - 3 1 1 1 1 31 1 1 13 1 1 1 1 1 13
18 T 3 1 1 1 1 31 1 1 31 1 1 1 1 1 31
19 C 3 1 1 1 1 31 1 1 31 1 1 1 1 1 13
20 T 3 1 1 1 1 31 1 1 13 1 1 1 1 1 31
21 Inf C 3 21 21 12 21 321 21 12 231 21 21 21 21 21 *132

Scores (S)

Pointers (P)

For Stage2:   P(0,0)=Leaf Node   and   P(21,14)=Root Node

Fig. 4.1: S and P matrices, where P represents a DAG. Desired alignment (path) is shown. The main direction of
‘*’ marked cells, P21,14 and P13,8, have changed from diagonal to up during B&B. ‘**’ marked cell, P12,8, is the
maximum score satisfactory node found during B&B with its main direction changed from diagonal to up as well.
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scores in U:
S0,j,k= S0,j−1,k + U−,∗ M̃∗,j

Si,0,k= Si−1,0,k + UT
∗,− Ñ∗,i

(4.3)

where M̃ and Ñ are as defined in (4.5).

Next, we calculate the other entries of S and P. Si,j,∗ is a vector containing the diagonal (D),

left (L) and up (U) scores, in descending order, representing (mis)match, gap in N, and gap in M

respectively. Their values are:

D = Si−1,j−1,1+ÑT
∗,iUM̃∗,j+λBi,j

L = Si,j−1,1 +U−,∗ M̃∗,j+hN,i

U = Si−1,j,1 +UT
∗,− Ñ∗,i +hM,j

(4.4)

where

M̃∗,j =


(fA,j ,fC,j ,fG,j ,fT,j ,0)

T

‖fA,j ,fC,j ,fG,j ,fT,j ,0‖1
if f−,j < 1

M∗,j otherwise

hM,j =

 0 if j ∈ {GM
3,∗} ∪ {lM}

−∞ otherwise

λBi,j = Affine Match Bonus (defined in 4.2.1.3).

(4.5)

Ñ∗,i and hN,i are defined similarly. The purpose of using M̃ instead of M is to eliminate the effect

of partial gaps (f−,j < 1) to give an unbiased alignment for weakly conserved signals. SMAlign

also provides an option to ignore terminal gaps regardless of gap values in U.

P matrix entries store the associated directions from which the scores in S are calculated

preserving the descending order of their respective scores. For instance, P21,8 = 231 indicates

that the maximum score is associated with the left direction, thus the main direction, followed

by the score of the up direction and then the diagonal direction has the lowest score. Likewise,

P20,8 = 13 indicates that the maximum score in that cell propagated from the diagonal direction and

the least score is from the up direction; left direction is not allowed in cell P20,8. The path formed
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by following the main directions from one cell to another is identified as the main path.

4.2.1.2 Forward Gaps Matrix

The forward gaps associated with cell Pi,j are gaps opened in M and N while following the

main path from Pi,j to P0,0 and are stored in FGM = [FGM
i,j,kM

] and FGN = [FGN
i,j,kN

] matrices

respectively, where kM ∈ [1, bM − 1] and kN ∈ [1, bN − 1]. Entries of these three-dimensional

matrices are calculated during the DP stage. For instance, in Figure 4.1, FGM
10,7,∗ = 〈3, 0〉 and

FGN
10,7,∗ = 〈0〉 imply that following the main path from P10,7 to P0,0 opens only three gaps in the

first gap location of M, but no gaps in its second gap location or in N. Similarly, FGM
3,10,∗ = 〈0, 0〉

and FGN
3,10,∗ = 〈7〉 shows that following the main path from P3,10 to P0,0 opens no gaps in M, but

opens seven gaps in N. We define the matrix FG such that FGi,j,∗ = 〈FGM
i,j,∗, FG

N
i,j,∗〉, which we

will use in the next stage (section 4.2.2).

4.2.1.3 Affine Match Bonus

Analogous to the affine gap concept in NWGlobal, the purpose of the affine match bonus score,

λBi,j in (4.4), is to provide a mechanism to bias the alignment score towards contiguous substring

matches, within each box, rather than segmented subsequence matches. Depending on a user

specified value for λ ≥ 0, Bi,j is the score cumulative product of the previous contiguous matches

when 0 < λ ≤ 1 or Bi,j is the count cumulative sum of the previous contiguous matches when

λ > 1.

We determine a score to be a match based on a user specified value for µ ∈ [0, 1], the nucleotide

purity level, such that:

ÑT
∗,iUM̃∗,j ≥ µ(Umax − Umin) + Umin (4.6)

This allows us to count degenerate matches in the bonus score when µ < 1. For example, given the

pair of sequences TCAC[1,5]TCCT and TGAC[1,3]TCAY, Table 4.3 shows two possible alternative

alignments. Although the left alignment is optimal without bonus score (λ = 0), the right alignment

might be more desirable as it maximizes the number of contiguous aligned nucleotides. The affine
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match bonus score, controlled by λ and µ, biases the score towards the new optimal right alignment.

When λ = 0, we consider the score as a similarity measure. But when λ > 0, we consider the

score as an affinity measure that we found to be very useful for structured motif multiple alignment

discussed in Chapter 5.

4.2.2 Stage2: Branch and Bound Search

Branch and Bound (B&B) is a well known paradigm for solving combinatorial optimization

problems [31, 32]. It consists of a branching strategy, a search strategy, and bounding conditions to

prune non-promising search paths. Our branching strategy is already determined by P when used

as a directed acyclic graph (DAG). The problem then reduces to an optimal path finding problem, in

the DAG, from the root node PlN ,lM to the leaf node P0,0 that satisfies constraints 3 and 4. A path is

considered a feasible solution and further exploration is stopped when we find a satisfactory node

Pi,j (defined in 4.2.2.1) along this path. Therefore, the best scoring alignment is represented by

a maximum scoring satisfactory node among all encountered. Notice that any attempts to satisfy

constraints 3 and 4 during the previous stage may lead to a suboptimal solution.

We define the score for a full path passing through node Pi,j as:

PSi,j,k = ASi,j + Si,j,d(k) (4.7)

Table 4.3: Best scoring alignment reported by SMAlign (in bold) for different values of λ and µ

TCAC-TCCT -----TCAC-TCCT
λ µ |X|| ||X: |||:

TGAC-TCAY TGAC-TCAY-----
0 − x = 5×4 + 1.5− 2 =19.5 y = 3×4 + 1.5 =13.5

0.5 1.0 x+ λ(4 + 4) =23.5 y+ λ(4 + 16) =23.5
1.0 1.0 x+ λ(4 + 4) =27.5 y+ λ(4 + 16) =33.5
3.0 1.0 x+ λ(1 + 1) =25.5 y+ λ(1 + 2) =22.5
7.0 1.0 x+ λ(1 + 1) =33.5 y+ λ(1 + 2) =34.5
0.5 0.5 x+ λ(4 + 4) =23.5 y+ λ(4 + 16 + 64) =55.5
1.0 0.5 x+ λ(4 + 4) =27.5 y+ λ(4 + 16 + 64) =97.5
3.0 0.5 x+ λ(1 + 1) =25.5 y+ λ(1 + 2 + 3) =31.5
7.0 0.5 x+ λ(1 + 1) =33.3 y+ λ(1 + 2 + 3) =55.5
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where Si,j,d(k)
§ is the best possible score for the path segment from Pi,j to the leaf node for each

of its directions k ∈ {1, 2, 3} and d = 〈D,L,U〉. ASi,j is the actual score for the path segment

from the root node to Pi,j , reached through a possible path during B&B and calculated by setting

ASlN ,lM = 0, and in general:

ASi,j = −Si,j,1 +


ASi+1,j+1+Si+1,j+1,D if ParentDir=1

ASi,j+1 +Si,j+1,L if ParentDir=2

ASi+1,j +Si+1,j,U if ParentDir=3

(4.8)

for i < lN and j < lM . ParentDir is the direction followed from the parent node to reach Pi,j .

4.2.2.1 Satisfactory Node

To define a satisfactory node, we first need to define a node’s backward gaps. Analogous to forward

gaps, backward gaps are gaps opened in M and N while following a possible path, during B&B,

from the root node to Pi,j and are stored in the vectors BGM
i,j,kM

and BGN
i,j,kN

, respectively, for

each node. For instance, in the path shown in Figure 4.1, BGM
5,5,∗ = 〈3, 2〉 and BGN

5,5,∗ = 〈0〉

indicate that following the path from the root node to P5,5, three gaps were opened in the first gap

location and two gaps in the second gap location of M and none opened in N. We define the vector

BGi,j,∗ = 〈BGM
i,j,∗, BG

N
i,j,∗〉.

Therefore, a backward satisfactory node Pi,j satisfies the following two conditions:

1. Maximum allowed gaps (constraint 3):

BGi,j,∗ ≤ MaxG (4.9)

2. Maximum M and N lengths (constraint 4):

‖BGM
i,j,∗‖1 ≤ LM − lM

‖BGN
i,j,∗‖1 ≤ LN − lN

(4.10)

§For example, Si,j,d(3) = Si,j,U is the up direction score at Pi,j .
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where MaxG = 〈GM
2,∗, G

N
2,∗〉 − 〈GM

1,∗, G
N
1,∗〉 is the maximum allowed gap openings within a path for

each gap location per entry. On the other hand, if we replaceBGwith the total gaps TG = FG+BG

and the same two conditions are satisfied, then Pi,j is a satisfactory node as it is both backward and

forward satisfactory.

4.2.2.2 B&B Search Strategy

We first define the minimum score gain when gapping as:

α = min
>0

(S∗,∗,1 − S∗,∗,2) (4.11)

Also, the number of forward gaps, in the current path, that violate the MaxG limit is:

Xi,j =
∑
c

(TGi,j,c −min(TGi,j,c,MaxGc)) (4.12)

where c ∈ [1, (bM − 1) + (bN − 1)]. Then the adjusted main path score is defined as:

P̃Si,j,MainDir = PSi,j,MainDir − αXi,j (4.13)

Next, we use an A* search strategy to efficiently visit our DAG nodes by using a priority queue

sorted based on the following criteria:

1. Descending by P̃Si,j,MainDir

2. Ascending by Xi,j

P̃Si,j,MainDir is non-increasing along a path and will never underestimate the actual final path score.

This is based on the DP property and the fact that the path score will only decrease with added

gap constraints. Thus, it is a consistent heuristic for our search priority. However, the optimal path

also depends on the number of gaps opened such that it does not exceed a set limit. So, our second

criterion promotes nodes that have less chance of violating that limit and it never overestimates the

number of forward gaps that violate the limit, so it is an admissible heuristic.
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Since both of our criteria are admissible, but not consistent, our B&B algorithm (Figure 4.2) is

complete and always finds a maximum scoring satisfactory node. Yet, its efficiency has room for

improvement since using an inconsistent heuristic to search a DAG, as opposed to a tree, will result

in expansion of revisited nodes. Therefore, we improve the efficiency by using bounding conditions

and a dominance relation [32] as explained next.

1: function BNB(S,P,FG, 〈GM, LM, lM〉, 〈GN, LN, lN〉)
2: if PlN ,lM is satisfactory then
3: return PlN ,lM . Return root as optimal node

4: LB ← −∞ . Initialize LowerBound
5: Visits(lN+1)×(lM+1) ← 0 . Initialize nodes’ visits
6: Q← Φ . Initialize Priority Q
7: enQ(PlN ,lM ) . Enqueue root node
8: while Q 6= Φ do
9: Parent← deQ()

10: for all Childi,j ∈ ChildOf(Parent) do
11: Compute(P̃Si,j,MainDir) . see (4.13)
12: if P̃Si,j,MainDir ≤ LB then continue . 1-Prune child
13: Compute(BGi,j,∗) . see Sec. 4.2.2.1
14: Compute(IGi,j,∗) . see Sec. 4.2.2.4
15: if Childi,j is ¬backward satisfactory then
16: continue . 2-Prune child
17: if Childi,j is satisfactory ∧ P̃Si,j,MainDir > LB then
18: Visitsi,j ← 0 . Ignore previous visits

19: if Visitsi,j > 0 then
20: Discard← False
21: for all x ∈ [1,Visitsi,j ] do
22: Dominance(Childi,j,∗,Previ,j,∗(x)) . see Figure 4.3
23: if ChildOf(Childi,j) is Φ then Discard← True; break
24: if Discard then continue . 3-Prune Child
25: if Childi,j is satisfactory ∧ P̃Si,j,MainDir > LB then
26: LB ← P̃Si,j,MainDir . Update the lower bound
27: OptNode← Childi,j . Store optimal node
28: else
29: enQ(Childi,j) . Enqueue this node

30: Visitsi,j ← Visitsi,j + 1 . Increment visits counter
31: Previ,j(Visitsi,j)← Childi,j . Store visit

32: return OptNode . Return maximum scoring satisfactory node

Fig. 4.2: Branch and bound algorithm to compute optimal node.
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4.2.2.3 B&B Bounding Conditions

First, we discard any backward unsatisfactory node. Second, if Pi,j is a satisfactory node and

P̃Si,j,MainDir > LB (the lower bound, initially LB = −∞), then we store node Pi,j as the best node

so far, set LB = P̃Si,j,MainDir, and discard nodes having P̃Si,j,MainDir ≤ LB.

4.2.2.4 Dominance Relation

We first define IGi,j,k as Pi,j’s immediate gaps. That is the number of backward gaps in the same

row or the same column to that node in the current path, where k ∈ {1, 2, 3}. For example, in the

path shown in Figure 4.1, IG11,8,∗ = 〈0, 0, 2〉 means two gaps were opened immediately leading

to this node in the up direction (k = 3). Note that by definition, it is always true that IG11,8,1 = 0,

which is the number of immediate gaps for the diagonal direction (k = 1).

We use the dominance relation in our B&B algorithm, Figure 4.2 line 22, to reduce the number

of expansions of revisited nodes to greatly improve the efficiency of our A* search. Since we are

traversing a DAG, some nodes are reachable from the root node by multiple paths. If this happens,

we compare the actual score ASi,j and the immediate gaps IGi,j,k of the current Childi,j node

with its previous encounters Previ,j(x) and determine the dominant node for each of its possible

directions, as shown in Figure 4.3. For example, in Figure 4.1, node P13,8 = 13 implies that it has

diagonal and up possible directions. This node can be reached by multiple paths from the root node.

Therefore, on the second visit, Child13,8 will be compared with Prev13,8(1). If Child13,8 dominates

in the up direction but not in the diagonal direction, then we prune Prev13,8(1)’s up direction to

C > P C = P C < P
C < P Childi,j,k Childi,j,k No Dominance

C = P Childi,j,k Previ,j,k Previ,j,k

C > P No Dominance Previ,j,k Previ,j,k

AS i,j

IG i,j,k

Fig. 4.3: Childi,j,k vs. Previ,j,k dominance relation for each node direction k ∈ {1, 2, 3}.
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prevent its examination. If we prune the main direction of a node, then the next direction, based on

the node’s direction priority, becomes the main direction. Then we recalculate FGi,j,∗ and check if

P̃Si,j,NewMainDir ≤ LB for possible pruning. Finally, Childi,j is discarded if completely dominated

(Figure 4.2 line 24), also, Previ,j(x) is discarded when completely dominated.

4.2.3 Stage3: Optimal Alignment Recovery

After finding the maximum scoring satisfactory node Pi,j using our B&B search, we trace through

the ancestors from Pi,j to the root node adjusting their main directions to point towards the path to

Pi,j . Then we backtrack along the whole path from the root node to the leaf node following the new

adjusted main path, i.e., the marked path in Figure 4.1. This path uncovers the optimal alignment

that satisfies all four constraints.

While following the optimal path, we gather some extra information about the path’s gaps

for later recovery of the new gap ranges and any constraint on the final length of the consensus

structured motif and the combined frequency matrix. For instance, given the pair of sequences

AGCAT[2,5]TC[0,7]G[2,5]GCC and AGC[17,20]CC, SMAlign aligns them and recovers the new

gap ranges as follows:

M: AGCAT-----TC-G-----GCC

||| ||

N: AGC-----------------CC

Cons: AGCAT-----TC-G-----GCC

The resulting consensus structured motif with its ranges is AGCAT[5,5]TC[1,4]G[5,5]GCC without

constraint on the maximum length. Alternatively, if we change N to AGC[25,28]CC, the alignment

becomes:

M: AGCAT-----TCG--GCC------------

|||

N: AGC-------------------------CC

Cons: AGCAT-----TCG--GCC----------CC

As a result, the new consensus structured motif becomes AGCAT[5,5]TC[0,3]G[2,5]GCC[10,13]CC

having constraint on the maximum length not to exceed 33bp.
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SMAlign outputs the alignment score and the 4-tuple R =
〈
R,GR, LR, CR

〉
where R is the

resulted frequency matrix, in compact form, given by default as:

R∗,i =
CMM∗,i + CNN∗,i

CM + CN
(4.14)

GR is the new gap constraints matrix, LR is the maximum length constraint on R (if none, LR =∞)

and CR = CM + CN for the default R. Two other variations are provided by SMAlign to ignore

partial gaps in R depending on application.

4.3 Experimental Results

The purpose of this section is to evaluate the time and space complexities of SMAlign, and compare

against NWGlobal and the Extended SWLocal. We focused on simulated data for controlled

test cases; real datasets are considered in Chapter 6 which discusses the use of SMAlign in a

multi-alignment context to solve the structured motif extraction problem in co-regulated genes.

We implemented SMAlign in MATLAB and executed the following experiments using simulated

DNA sequences on a Windows7 64-bit machine with Intel Core i5-430UM processor having 1.7GHz

max speed with 4GB of RAM by giving the following command:

SMAlign (M,N ,U, λ = 1, µ = 0.5) .

Table 4.4 summarizes the experimental parameters and total run time. SMAlign’s experimentally

observed time and space complexities are of order O(lM lN) and O(blM lN) where b = max(bM , bN).

The time and space scale quadratically in proportion to the length of the expanded sequences,

which depend on the minimum gap sizes, when varying the number of boxes and the box sizes

(Figure 4.4 and 4.5), but they are less affected by the size of the gap ranges (Figure 4.6). Actually,

the larger the gap range size, the less likely constraint 3 will be violated and SMAlign will more

likely find the optimal alignment sooner.

SMAlign’s optimality and efficiency results are presented in Table 4.5, tested using 200 pairwise
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Table 4.4: SMAlign’s experimental parameters and total run time.
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4.4 Boxes [1,10] 10 168 - [8,10] [0,5] [4,7] 61bp 1681 34min Aligns up to 10-box length sequences (max 145bp).
4.5 BoxSize [5,23] 10 157 4 - [0,5] [4,7] 67bp 1574 13min Aligns 4-box length sequences (max 107bp) for

which exhaustive search estimated to take 6.5+ days!
4.6 GapRangeSize [4,13] 10 104 4 [8,10] [0,2] [3,15] 39bp 1041 2min Aligns 4-box length sequences (max 46bp).
§Random sequences generated using weights w = 〈15, 10, 8, 12, 1, 1, 3, 1, 2, 1, 0, 0, 0, 0, 0〉 corresponding to nucleotides in ΣIUPAC.Varying the Number of Boxes

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

4 Time Complexity

Boxes

T
ot

al
 P

ro
ce

ss
ed

 N
od

es
(in

cl
ud

in
g 

re
vi

si
ts

)

 

 

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500
Space Complexity

Boxes

T
ot

al
 N

od
es

’ S
to

ra
ge

 (
K

B
)

 

 

UB=2l
M

l
N

SMAlign=O(l
M

l
N
)

LB=l
M

l
N

UB=(7+b
M

+b
N
)l

M
l
N
 × 8Bytes

SMAlign=O(bl
M

l
N
)

LB=(2+b
M

+b
N
)l

M
l
N
 × 2Bytes
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Table 4.5: SMAlign’s optimality and efficiency (200 pairwise alignments).

Constraint Optimal Extra Processed Nodes1

Algorithms Satisfaction Alignment (% of lM lN )
(% of 200) (% of 200) median mean std

A-Exhaustive Search 100 100 3.1x105 5.0x105 7.0x105

B-SMAlign: w/ Dominance
B1-A* (P̃ S,X) 100 100 4 6 4
B2-A* (P̃ S) 100 100 5 6 4
B3-A* (PS) 100 100 5 6 5
B4-Depth First Search2 100 100 6 9 9
B5-Greedy (S) 100 100 11 16 14
B6-Greedy (AS) 100 100 15 19 17
B7-Breadth First Search 100 100 15 21 19
C-SMAlign: w/o Dominance
C1-A* (P̃ S,X) 100 100 6 9 11
C2-A* (P̃ S) 100 100 6 9 11
C3-A* (PS) 100 100 7 10 12
C4-Depth First Search2 100 100 9 16 20
C5-Greedy (S) 100 100 17 40 57
C6-Greedy (AS) 100 100 21 35 46
C7-Breadth First Search 100 100 25 65 108
D-NWGlobal:
D1-GapPenalty: open=ext=∞ 100 2 0 0 0
D2-GapPenalty: open=8,ext=1 44 3 0 0 0
E-Extended SWLocal:
E1-GapPenalty: open=ext=∞ 100 2 0 0 0
E2-GapPenalty: open=8,ext=1 48 3 0 0 0

1Extra Processed Nodes (EPN) = Total Processed Nodes − lM lN . SMAlign’s statistics were calculated

using alignments having EPN > 0 (87% of the 200).
2Children expanded based on their direction priority in P (local best).

Table 4.6: Statistical significance (p-values) of using algorithm B1.

Algorithms B2 B3 C1 C2 C3
B1 9.4x10-4 1.3x10-16 2.1x10-22 2.4x10-24 1.7x10-24

alignments of 400 randomly generated structured motifs having parameters as used for Figure

4.5. We tested SMAlign using various A* heuristics and other search strategies (with and without

dominance). We also tested NWGlobal and Extended SWLocal, to which inputs were given in

expanded form. Since all tested algorithms share the same DP stage (lM lN processed nodes), we

are only interested in counting the Extra Processed Nodes (EPN) after that stage. Out of the 200

alignments, 173 (87%) have EPN > 0. The results show that our presented algorithm (B1) is

the best performing. Its optimality for this data was supported by executing an exhaustive search

algorithm, whose results were obtained by performing computations for approximately 19.5 hours

versus B1’s 37 seconds!

We also examined the statistical significance of B1’s results, compared to the others, using
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the non-parametric paired signed-rank hypothesis test since EPN, as a random variable, followed

a gamma distribution. The p-values in Table 4.6 (all < 0.01) suggest a statistically significant

improvement when using B1.

4.4 Extending SMAlign: Discrete Gap Constraints

In the previous sections, we demonstrated SMAlign’s ability to solve the structured motif pairwise

alignment when the gap constraints are represented by continuous integer ranges of possible gap

sizes. In this section, we extend SMAlign to solve the discrete gap constraints case, i.e., a gap

constraint is a set of discontinuous gap sizes. To handle this case, we first need to extend our

structured motif definition, given in Section 1.2, for the discrete case, then use the new definition to

extend SMAlign. Recall that we defined the structured motif M as:

M = m1G1m2G2m3 · · ·mbM−1GbM−1mbM ,

where bM is the number of boxes, mi ∈ (ΣIUPAC)|mi|, and Gi is the gap constraint between mi

and mi+1 for i = 1 . . . bM − 1. We extend the definition by allowing the gap constraint Gi to

be either a continuous integer sequence, i.e., a range of possible gap sizes Gi = [gmin
i , gmax

i ],

where 0 ≤ gmin
i ≤ gmax

i ; or a discontinuous integer sequence, i.e., a set of possible gap sizes

Gi = {xy : where xy are prespecified non-negative integers}.

Example: Suppose we want to align the following two structured motifs:

M = GGCWGAT[1,2]GGYC{2,5,6}ARTG

N = GAGTBCA[5,7]TCTRC[0,2]CACT

Notice that the second gap location in M is a discontinuous sequence of possible gap sizes (hence-

forth, we call it a discrete gap constraint) while the rest of the gap locations are continuous gap

ranges. This is an interesting problem as we are interested in the optimal alignment that maximizes

the alignment score while satisfying all gap constraints, which does not allow for gap sizes of 3bp



56

and 4bp in the discrete gap location of this example. Solving this case by exhaustive search yields

the following optimal alignment:

*

M: ---GGCWGAT-GGYC-----ARTG

X:|| || |X|

N: GAGTSCA------TCTRC-CACT-

Cons: GAGKGCAGAT-GGTCTRC-CAMTG

The score for this alignment is 17.67 based on the scoring matrix U (Table 4.1). Suppose that we

substitute the discrete gap by the continuous range [2, 6], and execute SMAlign(M,N,U, λ = 0)

(we are not using the affine bonus for now, λ = 0). Then the optimal alignment would be:

M: ---GGCWGAT-GGYC----ARTG

X:|| || |X|

N: GAGTSCA------TCTRCCACT-

Cons: GAGKGCAGAT-GGTCTRCCAMTG

SMAlign reported the same score, in this case, yet the reported optimal alignment has the size of

the second gap inM as 4bp. Therefore, when we present discrete gap constraints to SMAlign, it

should reject any alignment that does not satisfy those constraints, and continue its search until a

satisfactory alignment, having maximum score, is found.

4.4.1 Satisfactory Node Adjustment

Recall that an optimal alignment reported by SMAlign is the equivalent of finding the maximum

scoring satisfactory node in the directed acyclic graph represented by the pointers matrix P (Section

4.2.2.1). Inequality (4.9) is the one responsible for checking that the current node is a satisfactory

node, by making sure that opened gaps do not exceed the maximum gap sizes. Therefore, we need

to adjust this inequality for discrete gaps such that the number of opened gaps are in the given

domain.

Suppose GDomaini is the domain for the ith gap location, where i ∈ [1, kM + kN − 2] spanning

all gap locations in M and N respectively. For instance, in our example above, GDomain1 = [1, 2],

GDomain2 = {2, 5, 6}, GDomain3 = [5, 7] and GDomain4 = [0, 2]. Also, suppose that BG∗i,j,k is

the backward gaps at node Pi,j , as defined in Section 4.2.2.1, but substituting the backward gaps in
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the same row or column to Pi,j with zero to avoid unfinished gaps (hence the asterisk ‘*’). Then the

adjusted inequality (4.9) becomes:

BG∗i,j,k ∈ {x− y : ∀x ∈ GDomaink and y = min(GDomaink)} (4.15)

that should hold true for all k ∈ [1, bM + bN − 2] to consider node Pi,j as backward satisfactory.

Also, if (4.15) holds true when substituting BG∗ with the total gaps TG = FG+BG, then node

Pi,j is a satisfactory node in the discrete case. Note that we subtracted the minimum gap size (y

in (4.15)) because by definition the backward gaps are the number of gaps opened on top of the

minimum gap.

4.4.2 Dominance Relation Adjustment

Recall in Section 4.2.2.4 we proposed a dominance relation (Figure 4.3) to minimize node revisits

(i.e., improve SMAlign’s efficiency) as we traverse the directed acyclic graph to find the optimal

path. In the continuous gap constraints case, it was sufficient to check if the path leading to node

Childi,j has lower number of immediate gaps (IGi,j,k for all directions k ∈ {1, 2, 3}) opened than

the path leading to the same node’s previous visit (node Previ,j). However, for the discrete case, this

does not necessarily hold true as we need to check that the number of opened gaps are conforming

to the prespecified discrete domain of possible gap sizes in that location.

We propose a new dominance relation for the discrete case as in Figure 4.7. Suppose FIGi,j,k is

the full immediate gaps at node Pi,j; that is the number of forward and backward gaps in the same

row or column to that node (extending our definition of immediate gaps in Section 4.2.2.4). We

define f(X) as a boolean function that evaluates to one when the number of full immediate gaps

(FIG) of node X is in the discrete domain of possible gap sizes GDomain as follows:

f(Xi,j,k) =

 1 if FIGi,j,k ∈ GDomain

0 otherwise
(4.16)
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C > P C = P C < P
f(C) & ~ f(P) Childi,j,k Childi,j,k No Dominance

f(C) xnor f(P) No Dominance No Dominance No Dominance

~ f(C) & f(P) No Dominance Previ,j,k Previ,j,k

AS i,j

FIG i,j,k

Fig. 4.7: Discrete gap constraints case dominance relation for Childi,j,k vs. Previ,j,k for each node direction
k ∈ {1, 2, 3}. f(X) is a boolean function that evaluates to 1 when the full immediate gaps of node X is in the discrete
domain of possible gap sizes GDomain, where X ∈ {Child,Prev}.

Notice that in the discrete case dominance relation, when nodes Child and Prev are both satisfactory

at the same time, but having different values, we cannot decide on which node dominates the other

regardless of their actual path scores (AS, Equation (4.8)). That is because one satisfactory value

may be better suited for the rest of the alignment than another value, which cannot be decided at

that moment.

Using the adjusted satisfactory node definition, Equation (4.15), and the new dominance relation,

SMAlign would be able to solve the above stated example problem for the discrete case alignment.

However, we need to handle one last issue in the next subsection to complete our solution.

4.4.3 Simultaneous Gap Opening Problem

In order to complete our solution to the discrete gap constraints case, we need to handle what we call

the simultaneous gap opening problem. Suppose we want to align the following pair of structured

motifs:

M = GGCWGAT[1,2]GGYC{2,8}ARTG

N = GAGTBCA[5,7]TCT{0,2}R{0,2}C{0,2}CACT

The optimal alignment would be:

** **

M: ---GGCWGAT-GGYC--------ARTG

X:|| || |X|

N: GAGTSCA------TCTR--C--CACT-

Cons: GAGKGCAGAT-GGTCTR--C--CAMTG

The ‘*’ marked columns in the optimal alignment are simultaneous gaps that need to be opened

in both input structured motifs to satisfy the discrete gap constraints and maximize the alignment
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score. This type of gaps are not possible to open in the backtracking stage (Section 4.2.3) because

recall that we are only allowed to move left (gap in N ), move up (gap in M ), or move diagonal

(match together the corresponding positions in M and N ). Thus, there is no possible move in the

backtracking stage to add such simultaneous gaps.

In order to solve this issue, let’s examine SMAlign’s solution to this alignment when we

substitute the discrete gap constraints with their corresponding continuous gap constraints, i.e.,

solve the following easier problem:

M = GGCWGAT[1,2]GGYC[2,8]ARTG

N = GAGTBCA[5,7]TCT[0,2]R[0,2]C[0,2]CACT

SMAlign’s solution would be:

M: ---GGCWGAT-GGYC----ARTG

X:|| || |X|

N: GAGTSCA------TCTRCCACT-

Cons: GAGKGCAGAT-GGTCTRCCAMTG

Notice that this solution resembles the desired one for the discrete case and it is only missing the

simultaneous gaps. Therefore, we can transform this solution to the desired one in two steps. First,

notice that the second gap location in M (4-gaps) is overlapping with the 2nd (0-gaps), 3rd (0-gaps),

and 4th (0-gaps) gap locations of N . Second, we need to add 4 more gaps to the second gap location

of M to satisfy its discrete gap constraint {2,8}, but at the same time, we need to add corresponding

4 gaps in the overlapped gap locations in N to maintain the same alignment score. Thus, the

question is how to distribute the 4 gaps we need to add among the three gap locations of N? This

question can be transformed into a constraint satisfaction problem called the Upper-Restricted Weak

k-Compositions of Integer n, where k is the number of overlapping gap locations in N , and n is the

total number of gaps that we need to add. This problem is briefly introduced in the next subsection.



60

4.4.4 The Restricted Weak k-Compositions of Integer n

The basic problem of the k-compositions of an integer n is stated as follows. Given an integer n,

we would like to find the set of all k-tuples, 〈x1, x2, . . . , xk〉, such that:

n =
k∑
i=1

xi, (4.17)

where 1 ≤ xi ≤ n and xi is an integer [33]. For example, when n = 5 and k = 3, the following set

of 3-tuples is the set of all possible solutions to the problem:

〈1, 1, 3〉
〈1, 2, 2〉
〈1, 3, 1〉
〈2, 1, 2〉
〈2, 2, 1〉
〈3, 1, 1〉

The weak variant of the stated problem allows the values of xi to be zero, i.e., 0 ≤ xi ≤ n.

Thus, the weak variant solution to the above example problem (n = 5 and k = 3) is the following

set of 3-tuples:

〈0, 0, 5〉
〈0, 1, 4〉
〈0, 2, 3〉
〈0, 3, 2〉
〈0, 4, 1〉
〈0, 5, 0〉
〈1, 0, 4〉
〈1, 1, 3〉
〈1, 2, 2〉
〈1, 3, 1〉
〈1, 4, 0〉
〈2, 0, 3〉
〈2, 1, 2〉
〈2, 2, 1〉
〈2, 3, 0〉
〈3, 0, 2〉
〈3, 1, 1〉
〈3, 2, 0〉
〈4, 0, 1〉
〈4, 1, 0〉
〈5, 0, 0〉
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This weak variant of the problem has been solved efficiently, without redundant enumeration, in

1968 by Fenichel [34]. Another variant is the restricted bounds variant, where 1 ≤ l ≤ xi ≤ u ≤ n,

i.e., xi can be lower and/or upper bounded by l and u respectively. This restricted bounds variant

has been efficiently solved recently in 2010 by Opdyke [35].

We are interested in the combination of the weak variant and the restricted bounds variant to

solve our original problem of simultaneous gaps. In other words, we would like to solve the problem

such that 0 ≤ l ≤ xi ≤ u ≤ n. Therefore, we have adopted Opdyke solution with a simple, yet

non-trivial, modification to obtain our desired solution. Suppose δ(n, k, l, u) is Opdyke’s function

that finds the set of all k-tuples to solve the restricted bounds k-compositions of integer n. Then we

define the weak variant of such restricted bounds solution as follows:

δweak(n, k, l, u) = δ(n+ k, k, l + 1, u+ 1)− 1. (4.18)

For example, δweak(n = 5, k = 3, l = 0, u = 3) = δ(n = 5 + 3, k = 3, l = 0 + 1, u = 3 + 1)− 1.

The solution set for Opdyke’s function δ(n = 5 + 3, k = 3, l = 0 + 1, u = 3 + 1) is:

〈1, 3, 4〉
〈1, 4, 3〉
〈2, 2, 4〉
〈2, 3, 3〉
〈2, 4, 2〉
〈3, 1, 4〉
〈3, 2, 3〉
〈3, 3, 2〉
〈3, 4, 1〉
〈4, 1, 3〉
〈4, 2, 2〉
〈4, 3, 1〉

Subtracting one from all entries yield the final solution of the weak variant upper bounded k = 3

compositions of integer n = 5, upper bounded by u = 3, and lower bounded by l = 0 hence solving

the weak variant). Therefore, the final solution set that we obtain is:
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〈0, 2, 3〉
〈0, 3, 2〉
〈1, 1, 3〉
〈1, 2, 2〉
〈1, 3, 1〉
〈2, 0, 3〉
〈2, 1, 2〉
〈2, 2, 1〉
〈2, 3, 0〉
〈3, 0, 2〉
〈3, 1, 1〉
〈3, 2, 0〉

Now we can use Equation (4.18) to find the solution to our original question of how to distribute

the total number of gaps needed among the overlapping gap locations. This is discussed in the next

subsection.

4.4.5 The Extended SMAlign

We now revisit our stated example problem to concretely put together the full solution to the

discrete gap constraints alignment problem. Recall that we would like to align the following pair of

structured motifs:

M = GGCWGAT[1,2]GGYC{2,8}ARTG

N = GAGTBCA[5,7]TCT{0,2}R{0,2}C{0,2}CACT

SMAlign would normally build its Scores and Pointers matrices in the first stage. Then, in the

second stage, while searching for the maximum scoring satisfactory node, Pi,j,k, SMAlign checks

the following for each of the node’s directions (k ∈ {1, 2, 3}):

1. If the current node being examined is part of a continuous gap constraint location, then:

(a) Check if it is a satisfactory node as per Section 4.2.2.1. If it is backward unsatisfactory,

then prune that node.

(b) Check its dominance against previous visits to the same node as per Section 4.2.2.4.

2. If the current node being examined is part of a discrete gap constraint location, then:
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(a) Check if it is a satisfactory node as per Section 4.4.1. If it is backward unsatisfactory,

then:

i. Check if the offending backward gap location has overlapping gap locations in the

other sequence.

ii. If there is no overlapping gap locations, then prune that node.

iii. If there is k overlapping gap locations, then solve a simultaneous gap opening

problem, as per Section 4.4.4, using Equation (4.18). Then pick the k-tuple, from

the resulted set, that satisfies the k gap locations domains.

(b) Check its dominance against previous visits to the same node as per Section 4.4.2.

The above steps complete our extension of SMAlign to handle the discrete gap constraints

case. For the above stated example problem, recall that we needed to open 4 gaps in the second

gap location of M to satisfy the discrete gap constraints, and we had three overlapping gap

locations in N . Therefore, we set k = 3 and n = 4 and set our upper limit u = max(0, 2),

i.e., the maximum possible gap size in all overlapping gap locations. Then, using Equation

(4.18), δweak(n = 4, k = 3, l = 0, u = 3), we efficiently obtain the following set of possible gap

distributions among the overlapping gap locations:

〈0, 1, 3〉
〈0, 2, 2〉
〈0, 3, 1〉
〈1, 0, 3〉
〈1, 1, 2〉
〈1, 2, 1〉
〈1, 3, 0〉
〈2, 0, 2〉
〈2, 1, 1〉
〈2, 2, 0〉
〈3, 0, 1〉
〈3, 1, 0〉

Then, we pick the 3-tuple that satisfies the three gap locations’ discrete domains, i.e., 〈0, 2, 2〉, to

obtain SMAlign’s final solution:
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** **

M: ---GGCWGAT-GGYC--------ARTG

X:|| || |X|

N: GAGTSCA------TCTR--C--CACT-

Cons: GAGKGCAGAT-GGTCTR--C--CAMTG

Figure 4.8 shows a visualization of SMAlign’s stages solving the discrete gap constraints

example stated above. Notice in the alignment recovery stage (Stage 3), the marked lines in the

matrix represent added simultaneous gaps to satisfy the discrete gap constraint.
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Fig. 4.8: Example alignment problem solved by SMAlign correctly handling the discrete gap constraints. Stage
1) SMAlign builds its Scores and Pointers matrices. Stage 2) Branch and bound search for the maximum scoring
satisfactory node (marked as big green circle). Stage 3) Recovery of the optimal alignment showing the added
simultaneous gaps (orange lines) to satisfy the discrete gap constraint.

4.5 Discussion

In this chapter, we presented SMAlign as an efficient algorithm that optimally aligns a pair of

DNA sequences with gap constraints (structured motifs), using dynamic programming and a branch

and bound search algorithm. It has the ability to bias the alignment towards matching localized
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substrings rather than segmented subsequence matches using an optional affine match bonus (λ ≥ 0).

When λ = 0, we consider the score as a similarity measure, but when λ > 0, we consider the

score as an affinity measure that we found to be very useful for structured motif multi-alignment,

discussed in the next chapter. Also, SMAlign correctly aligns even weakly conserved signals by

eliminating the effect of partial gaps on the alignment algorithm. SMAlign is flexible in defining its

similarity scoring matrix U (Table 4.1) to suite different applications.

Finally, we extended SMAlign to also handle the discrete gaps sizes case. This helps in

eliminating unlikely alignments by eliminating gap sizes that are known to be impossible, which

leads to a better quality alignment. A MATLAB implementation and an online version of SMAlign

can be accessed from http://bioproject.syr.edu/smtools.
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CHAPTER 5

MULTIPLE ALIGNMENT OF STRUCTURED

MOTIFS

5.1 Overview

Exact multiple sequence alignment is known to be an NP-complete problem [36]. Traditionally, this

has been addressed by progressive-multiple-alignments based on hierarchical pairwise alignment,

also known as hierarchical clustering. Some well known multiple sequence alignment algorithms

are ClustalW [37], T-COFFEE [38], M-COFFEE [39], and STAMP [30].

SMCluster is a new progressive multiple alignment algorithm that is unique in its use of SMAlign

(Chapter 4) as its underlying pairwise alignment algorithm. In this chapter we introduce SMCluster

and its unique features, and compare it to the aforementioned algorithms. SMCluster is an essential

part of our structured motif extraction algorithm SMExtract, introduced later in Chapter 6.

5.1.1 Structured Motif Multiple Alignment

Suppose V (Table 5.1) is a table of scores for matches, penalties for mismatches, and cost for

insertion and deletion, dynamic programming can be used to optimally align two sequences.

However, when we need to align a set of sequences of size greater than three (i.e., the multiple
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sequence alignment problem), the dynamic programming approach becomes computationally

prohibitive. In [36], it has been shown that the multiple sequence alignment problem is NP-

complete. Consequently, reasonable heuristic is the only alternative for this task. RNA, DNA,

and protein sequences are assumed to have an evolutionary relationship. Therefore, an appealing

heuristic is to apply a sequence of pairwise alignments, i.e., first align the most closely related pair

of sequences and progressively add more and more sequences of the given set, in order of their

decreasing closeness. This method, known as the progressive multiple alignment, has become the

standard technique for multiple alignment.

SupposeM = {Mi}ni=1 is a set of n structured motifs each of the form as defined in Section

4.4 (i.e., the extended definition that handles discrete gap constraints). For instance, in Figure 5.1a,

structured motif no.1 has a continuous gap constraint, and structured motif no.4 has a discrete gap

constraint. The goal is to find a multiple alignment ofM that maximizes the overall alignment

score, based on a scoring matrix such as V (Table 5.1), while satisfying all gap constraints (gap

locations and sizes).§

Table 5.1: Default similarity scoring matrix for SMCluster

V A C G T −
A 4 -1 -1 -1 -0.1
C -1 4 -1 -1 -0.1
G -1 -1 4 -1 -0.1
T -1 -1 -1 4 -0.1
− -0.1 -0.1 -0.1 -0.1 -0.1

Figure 5.1a shows an example set of heterogeneous structured motifs. It contains motifs that

differ in terms of number of boxes, and types of gap constraints. Figure 5.1b contains the ideal

multiple alignment that maximizes the sum of pairwise scores, based on V, while satisfying all gap

constraints. In the next section we discuss current multiple alignment algorithms and show that they

are not suitable for aligning sequences with known gap constraints such as structured motifs.

§Notice the difference in the gap symbol ‘−’ penalties in V compared to SMAlign’s default U matrix (Table 4.1),
which has zeros. These penalties were added to bias a tie breaker towards minimal gapping.
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1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs. Notice the
discrete as well as continuous gap constraints in 3 and 4.

1) ACGACG----------CTCCTAG---------------------

2) --GACGGC------TGCTCCTAGT--------AGAGAGCC----

3) -CGACGGCC-------CTCCT----------AAGAGAGCCG---

4) ---------------GCTCCTAGTG-----AAAGAGAG------

5) -CGACGGCC------GCTCCTAG---------------------

6) --GACGGCC---------------------AAAGAGAG------

7) ACGACGG---------------------------AGAGCCGGT-

8) -CGACGG---------CTCCTA--------AAAGAGAGC-----

9) ---ACGGCCT------CTCCTAGTG-------AGAGAGCC----

10) -------------------CTAGTGG----AAAGAGAGCCGGTA

(b) Ideal multiple alignment that maximizes the score (no column contains
a mismatch, ignoring the gap symbol) while satisfying all gap constraints.

Fig. 5.1: Ideal multiple alignment of a set of structured motifs.

5.1.2 Existing Algorithms

In this section, we briefly discuss existing multiple alignment algorithms and argue that they are not

suitable to solve the structured motif multiple alignment problem.

ClustalW [37] is a well known progressive multiple sequence alignment algorithm. It carries out

the multiple alignment in three steps. First, ClustalW calculates a pairwise local alignment score

between each pair of sequences and builds a pairwise distance matrix. Second, using the distance

matrix, a guide tree is built by progressively pairing together close sequences using the neighbor

joining method. Third, the branches of the guide tree are followed from the leaf nodes to the root

node to build the multiple alignment, where at each step, a pair of sequences (or a pair of profile

matrices for previously aligned clusters) are aligned using local alignment.

The novel approach of ClustalW is dynamically adapting the gap open penalty and the gap

extension penalties (required for the alignments in the first and last steps) from their user defined

initial values to more suitable values based on specific criteria. For instance, ClustalW lowers

the gap penalties at positions where there already exist some gaps from previous alignment steps.

Also, the gap open penalty is increased at positions close to existing gaps (8bp away by default

or a user specified distance). The authors argue that these adaptive gap penalty values improve

the overall multiple alignment result of ClustalW. However, ClustalW does not offer the option

of specifying gap constraints. Therefore, it is not suitable to solve the structured motif multiple

alignment problem. Figure 5.2b shows ClustalW’s multiple alignment result for the example

problem given in the previous section (restated in Figure 5.2a). Since ClustalW does not take gap



69

constraints as parameters, the structured motifs are reduced to sequences with as many gap symbols

‘−’ as the lower bound of the gap range. For example, the 5th structured motif in Figure 5.2a

(CGACGGCC[4,20]GCTCCTAG) became the sequence CGACGGCC----GCTCCTAG. It can be seen that

the resulting alignments violate the gap constraints and columns mismatches occur, concluding that

ClustalW is not suited for this task.

1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs given as in-
put to ClustalW. Each gap constraint is substituted with the
minimum gap symbols before given to ClustalW (e.g., no.5
becomes CGACGGCC----GCTCCTAG).

***** * ******** **

1) ----ACGACG---------------------------CTCCTAG--------------- *

2) ------GACGGC-----------------------TGCTCCTAGT------AGAGAGCC *

3) -----CGACGGCCCTCCT---------------AAGAGAGCCG----------------

4) GCTCCTAGTG--------------------------AAAGAGAG--------------- *

5) -----CGACGGCC-----------------------GCTCCTAG--------------- *

6) ------GACGGCC-----------------------AAAGAGAG---------------

7) ----ACGACGG-------------------------AGAGCCGGT--------------

8) -----CGACGG-------------CTCCTA------AAAGAGAGC--------------

9) -------ACGGCCT-----------------------CTCCTAGTG-----AGAGAGCC *

10) ----CTAGTGG-------------------------AAAGAGAGCCGGTA--------- *

(b) The resulted multiple alignment from ClustalW. Many gap constraints are violated (*
marked rows) with mismatches in many columns (* marked columns).

Fig. 5.2: ClustalW multiple alignment of a set of structured motifs.

T-COFFEE [38] is another progressive multiple sequence alignment algorithm. Similar to

ClustalW, T-COFFEE uses the three step process to generate its multiple alignment. Unlike

ClustalW, T-COFFEE starts by performing both pairwise global alignments and local alignments

for all pairs in the given input. Then a position-specific weight is calculated for each matched

pair of nucleotides that is proportional to their respective full sequences’ pairwise alignment score.

For example, suppose A1 is the first nucleotide of sequence A and B1 is the first nucleotide of

sequence B and they are matched in a global or a local alignment, then a weight proportional

to the overall alignment score of A and B is stored in a library of weights as w(A1, B1). This

library of weights is then extended for triplets of sequences. For instance, if A1 matches B1, B1

matches C2, and A1 matches C2 then we add the minimum of the three weights to all of them,

i.e., w(A1, B1) = w(A1, B1)+min(w(A1, B1), w(B1, C2), w(A1, C2)) and similarly for w(B1, C2)

and w(A1, C2). These weights are used to influence the progressive alignment in the final step. This

gives the effect of using the information of all pairwise alignments in each step of the progressive

multiple alignment.
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Figure 5.3b shows T-COFFEE’s multiple alignment result for the example problem given in

Figure 5.3a. Exactly as with ClustalW, the structured motifs are represented by sequences with gaps

to T-COFFEE. It is easy to observe from the results that the multiple alignment violates almost all

gap constraints with mismatches in many columns. Also, notice that T-COFFEE did not maintain

the minimum given gaps in structured motifs 6 and 7. This clearly shows that T-COFFEE is not the

right tool to solve the structured motif multiple alignment problem.

1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs given as in-
put to T-COFFEE. Each gap constraint is substituted with
the minimum gap symbols before given to T-COFFEE.

******** ********* *** *********

1) ACGACG--------CTCCTA------G-------- *

2) GACGGCTG----CTCCTAGT------A-GAGAGCC *

3) CGACGGCCCTCCT--------AAGAGA-GCCG--- *

4) GCTCCTA-----GTGAAAGA------GAG------ *

5) CGACGGCC----GCTCCTAG---------------

6) -------------GACGGCC------A-AAGAGAG *

7) ACGACGG----AGAGCCGGT--------------- *

8) CGACGG-------CTCCTAA------A-AGAGAGC *

9) ACGGCCTC----TCCTAGTG------AGAGAGCC- *

10) CTAGTGG----AAAGAGAGCCGGTA----------

(b) The resulted multiple alignment from T-COFFEE. Many gap
constraints are violated (* marked rows) with mismatches in many
columns (* marked columns).

Fig. 5.3: T-COFFEE multiple alignment of a set of structured motifs.

M-COFFEE [39] is a meta-mode extension for T-COFFEE such that instead of using pairwise

global and local alignments to build its library of weights in the first step, M-COFFEE builds

the library of weights combining many multiple alignment results from different algorithms. M-

COFFEE provides a total of 11 pairwise alignments and 8 multiple alignment algorithms, and the

user can choose any number of combinations, the results of which are combined to build the library

of weights, which in turn influences the progressive multiple alignment. The default M-COFFEE

algorithm uses all 8 multiple alignment algorithms to produce its results. Figure 5.4b shows M-

COFFEE’s multiple alignment result for the example problem given in Figure 5.4a. As before, we

presented the input structured motifs to M-COFFEE by substituting the gap constraints with the

minimum gaps. Figure 5.4b shows the resulting multiple alignment, violating all gap constraints

with mismatches in many columns. Like T-COFFEE, M-COFFEE does not maintain the minimum

given gaps in almost all of the structured motifs, only motifs 8 (the second gap) and 10 maintained

the minimum gaps. Also, many scattered gaps were opened in previously ungapped locations. This

clearly shows that M-COFFEE is also not the right tool to solve this problem.
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1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs given as in-
put to M-COFFEE. Each gap constraint is substituted with
the minimum gap symbols before given to M-COFFEE.

* ** ******* ** * *

1) ACG-A-----C-GCTCCTA--------------G *

2) --G-A--CGGCTGCTCCTAGT-AGAGAGC----C *

3) -CG-A--CGGCCCTCCTA----AGAGAGCC---G *

4) ------------GCTCCTAGTGAAAGAGA----G *

5) -CG-A--CGGCCGCTCCTA--------------G *

6) --G-A--CGGCC----------AAAGAGA----G *

7) ------ACG-------AC----GGAGAGCCGG-T *

8) -CG-A--CGGCTCCTA------AAAGAGA-G--C *

9) ----A--CGGCCTCTCCTAGTGAGAGAGC----C *

10) --CTAGTGG-------AA----AGAGAGCCGGTA *

(b) The resulted multiple alignment from M-COFFEE. All gap con-
straints are violated (* marked rows) with mismatches in many
columns (* marked columns).

Fig. 5.4: M-COFFEE multiple alignment of a set of structured motifs.

STAMP [30] is a multiple sequence alignment algorithm that also utilizes the three steps

approach of using pairwise alignment to build a distance matrix, build a guide tree and then build

the multiple alignment using the tree. At each step STAMP provides the user with alternative

algorithms. For instance, in the first step, a user can choose global alignment, local alignment, or a

modified local alignment they call ungapped local alignment. The pairwise scoring is also based on

user choice of alternative methods, like, Pearson correlation coefficient, sum of squared distances

(between two profile matrix columns), Kullback-Leibler divergence, and others. In the second

step, the user is provided with the choice of using UPGMA (unweighted pair group method with

arithmetic mean) or SOTA (self-organizing tree algorithm, based on neural networks) to build the

guide tree. In the third step, the tree is followed progressively or iteratively (using the leave-one-out

method) based on user choice.

Given all the possible combination of choices, their study concludes by recommending a choice

of algorithm for each step. For the first step, they recommend the ungapped local alignment with

Pearson correlation coefficient scoring. For the second step, they recommend the UPGMA approach

to build the guide tree. For the final step, they recommend the iterative alignment method. Figure

5.5 shows STAMP’s multiple alignment result for the example problem given in Section 5.1.1

using the recommended algorithms. Although the result shows that STAMP satisfied the gap

constraints, but the multiple alignment score is not maximized, evident from the number of columns

with mismatches. In general, using the recommended pairwise ungapped local alignment method,

STAMP will always satisfy the gap constraints as we would have already provided the minimum
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allowed gaps and this method does not allow any opening of more gaps. However, maximizing the

overall score of the multiple alignment is not always guaranteed.

1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs given as in-
put to STAMP. Each gap constraint is substituted with the
minimum gap symbols before given to STAMP.

**** ** * ***

1) ACGACG--------CTCCTAG---------------------

2) --GACGGC----TGCTCCTAGT------AGAGAGCC------

3) ------CGACGGCCCTCCT--------AAGAGAGCCG-----

4) -------------GCTCCTAGTG-----AAAGAGAG------

5) -CGACGGCC----GCTCCTAG---------------------

6) --GACGGCC-------------------AAAGAGAG------

7) ACGACGG-------------------------AGAGCCGGT-

8) -CGACGG-------CTCCTA------AAAGAGAGC-------

9) ---ACGGCCT----CTCCTAGTG-----AGAGAGCC------

10) -----------------CTAGTGG----AAAGAGAGCCGGTA

(b) The resulted multiple alignment from STAMP. The gap con-
straints are not violated, however, some columns have mismatches
(* marked).

Fig. 5.5: STAMP multiple alignment of a set of structured motifs.

None of the multiple alignment algorithms discussed above was able to solve the structured motif

multiple alignment problem, evident from the given example (Figure 5.1a). This is understandable

as they were not designed to solve this problem to multiply align DNA sequences with specific gap

constraints (i.e., structured motifs). STAMP was the only algorithm that came close to solve this

example. However, we show in this chapter that this observation is not consistent as other example

problems show ClustalW gives a better result than STAMP.

The lack of algorithms that solve the structured motif multiple alignment problem motivated

the development of SMCluster, discussed next. We also show that SMCluster produces a better

alignment result than any of the above discussed algorithms.

5.2 SMCluster

In this section we present SMCluster, a progressive algorithm to solve the structured motif multiple

alignment problem. SMCluster uses a three step process to generate its multiple alignment, similar

to the one discussed above. However, instead of using global or local alignment used by the previous

algorithms, SMCluster uses SMAlign (Chapter 4) as its underlying pairwise alignment algorithm.

In the next subsections, we first revisit SMAlign to briefly highlight its main features that gives

SMCluster its desired behavior. We then use SMAlign’s score to calculate a pairwise distance
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measure between a pair of structured motifs. Then we introduce the details of SMCluster.

5.2.1 SMAlign Revisited

Multiple sequence alignment algorithms, discussed in the previous section, use either local alignment

or global alignment to calculate distance measures between pairs of sequences in the input set.

SMCluster, instead, uses SMAlign for its pairwise alignment. The following unique features of

SMAlign give SMCluster its ability to successfully solve the structured motif multiple alignment

problem:

1. SMAlign directly handles gap constraints, both continuous (Section 4.2) and discrete (Section

4.4), to efficiently find the optimal alignment of a pair of structured motifs without violating

the constraints.

2. It has two alignment modes, a similarity mode and an affinity mode (Section 4.2.1.3). The

affinity mode is a novel alignment mode that is essential for SMCluster and also for SMExtract

discussed in Chapter 6.

3. For a pair of structured motifs M and N , it aligns N against both M and its reverse com-

plement, and choose the better alignment. This feature is important for discovering patterns

implanted on both DNA strands, discussed in detail in Chapter 6.

4. It does not penalize terminal gaps, regardless of the gap penalties in V (Table 5.1).

5.2.2 Distance Measure

SMCluster combines a pair of structured motifs M and N into a cluster by calling:

[R, affinity] = SMAlign(M,N,V, λ = 1, µ = 0.5), (5.1)

which returns both a new structured motifR, as the result of their alignment, and their affinity(M,N )

score (since λ > 0, Section 4.2.1.3). SMCluster then converts the affinity score into a dissimilarity
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measure:

dissimilarity(M,N) =
1

affinity(M,N)
, (5.2)

and the new cluster, containing M and N , is represented by the profile matrix R. Our dissimilarity

measure preserves the order of clustering based on the absolute pairwise affinity score, eliminating

any biases related to the lengths of the aligned structured motifs. We have tested other alternative

formulations for the dissimilarity measure based on mutual information (e.g, Jaccard’s distance),

however the results (not shown) were not as good for the purpose of solving the structured motif

multiple alignment problem.

5.2.3 Progressive Multiple Alignment

Progressive multiple sequence alignment is performed using the classical hierarchical clustering

algorithms, which follows two basic approaches. Both approaches require calculating a dissim-

ilarity matrix of size n2 for a given set of n sequences. However, they differ in their guide tree

construction, which determines the order of sequence clustering. The first approach is fast but

produces approximate results where the initial dissimilarity matrix is used to pre-build the entire

guide tree. The dissimilarity between a pair of clusters is determined by the dissimilarity of their

respective members using methods such as complete-link, single-link, or UPGMA, among others

[40]. The second hierarchical clustering approach is slower but more accurate where the guide tree

is built progressively at each clustering level. Thus the dissimilarity between a pair of clusters is

the dissimilarity between their respective profile matrices. SMCluster provides the user with two

variants that we call SMCluster1 (fast-approximate) and SMCluster2 (slow-accurate). Figure 5.6

shows the SMCluster algorithm (for both variants).

SMCluster produces a normalized and monotonic dendrogram whose heights are interpreted

as follows. Suppose clusters Z and W are the result of combining clusters (X, Y ) and (U, V ),
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1: Given a set of n structured motifsM = {Mi}ni=1 each of minimum length |Mi|min = m.
2: Initialize n clusters C = {Ci}ni=1 each assigned one member (Ci = Mi).
3: Compute the n × n dissimilarity matrix D and the corresponding Rij for each pair (Ci, Cj) using

equations (5.1) and (5.2).
4: while (number of clusters > 1) do
5: Find the closest pair of clusters (Ci, Cj), among remaining, using D.
6: Combine (Ci, Cj) into a new cluster Ck = Rij (k > n).
7: if SMCluster1 then . Fast-Approximate variant
8: Update D with a new row/column for Ck using the complete-link method.
9: Compute Rik only for (Ci, Ck) where Dik = min(D∗k).

10: else if SMCluster2 then . Slow-Accurate variant
11: Update D with a new row/column for Ck using equations (5.1) and (5.2),

i.e., compute Rik for all (Ci, Ck).
12: endif
13: endwhile

Fig. 5.6: SMCluster progressive multiple alignment algorithm for both variants (SMCluster1 and SMCluster2)

respectively, then the dendrogram height at which clusters Z and W are combined is:

height(Z,W ) = δ ·max


dissimilarity(Z,W )

dissimilarity(X, Y )

dissimilarity(U, V )

(5.3)

where δ is a normalizing factor such that height ∈ [0, 100]. Also, for each cluster, SMCluster

provides two measures to quantify the quality of the alignment within a cluster. This can serve as to

guide the user to choose a suitable cut off threshold in the dendrogram to stop further clustering if

these measures fall below user threshold. To define these measures, suppose R is the profile matrix

representing the alignment within a cluster. The first measure is the conservation of R’s columns:

conservationj = max
i∈ΣDNA

(Rij), (5.4)

where ΣDNA = {A,C,G, T} and Rij is the frequency of symbol i in column j (Figure 5.7c). The
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second measure is alignment quality of R’s columns:

qualityj =
conservationj∑
i∈ΣDNA

Rij

. (5.5)

This is similar to the conservation measure above except that we ignore the partial gaps within

each column in R (i.e., renormalize the conservation ignoring the gap row). Note that when

conservationj = 0, then qualityj = 0. To calculate the overall conservation or quality of a cluster,

we take the average measure across the columns of R, ignoring columns that are purely gaps. For

example, Figure 5.7 shows the ideal alignment for the example problem presented in the previous

section along with the alignment’s profile matrix R. The conservation of R is 53% and the quality

of R is 100%. Notice that columns {11,12,13,14} and {27,28,29,30} are purely gaps, thus ignored

in the calculations.

To give some intuition for the two measures, generating the cluster logo using the conservation

measure uncovers the parts of the result that are most conserved (frequent) in the aligned structured

motifs (Figure 5.7d). On the other hand, generating the cluster logo using the quality measure

uncovers the parts of the result that have the least mismatches in the multiple alignment (Figure 5.7e).

5.3 Time Complexity of SMCluster

We examine the time complexity of SMCluster’s two variants (Figure 5.6) clustering n structured

motifs each of minimum length m. First, Figure 5.6 line 3 requires n(n+ 1)/2 SMAlign operations

each of order O(m2) (Section 4.3) and thus O(n2m2). Second, line 5 requires a total of O(n3)

search operations in worst case. Then, for each variant, the time complexity is as follows.

SMCluster1 (fast-approximate variant): Line 8 requires total O(n3) operations in worst case.

Line 9 requires O(n2m2) in worst case, assuming each combined structured motif increased its

length by m (i.e., m, 2m, 3m, . . . , (n−1)m). Therefore, the total time complexity of SMCluster1 is
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1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs.

1) ACGACG----------CTCCTAG---------------------

2) --GACGGC------TGCTCCTAGT--------AGAGAGCC----

3) -CGACGGCC-------CTCCT----------AAGAGAGCCG---

4) ---------------GCTCCTAGTG-----AAAGAGAG------

5) -CGACGGCC------GCTCCTAG---------------------

6) --GACGGCC---------------------AAAGAGAG------

7) ACGACGG---------------------------AGAGCCGGT-

8) -CGACGG---------CTCCTA--------AAAGAGAGC-----

9) ---ACGGCCT------CTCCTAGTG-------AGAGAGCC----

10) -------------------CTAGTGG----AAAGAGAGCCGGTA

(b) The ideal multiple alignment.

A 0.2 0 0 0.8 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0.7 0 0 0 0 0000 0.4 0.5 0.7 0 0.8 0 0.8 0 0 0 0 0 0 0.1

C 0 0.5 0 0 0.8 0 0 0.5 0.4 0 0000 0 0 0.7 0 0.7 0.8 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0.6 0.5 0 0 0 0
G 0 0 0.7 0 0 0.8 0.7 0 0 0 0000 0 0.3 0 0 0 0 0 0 0.6 0 0.3 0.1 0000 0 0 0 0.7 0 0.8 0 0.8 0 0 0.3 0.2 0 0
T 0 0 0 0 0 0 0 0 0 0.1 0000 0.1 0 0 0.7 0 0 0.8 0 0 0.4 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0
− 0.8 0.5 0.3 0.2 0.2 0.2 0.3 0.5 0.6 0.9 1111 0.9 0.7 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.6 0.7 0.9 1111 0.6 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.4 0.5 0.7 0.8 0.8 0.9

(c) The profile matrix R (frequency matrix) of the multiple alignment.

(d) The aligned sequence logo generated using the conservation measure.

(e) The aligned sequence logo generated using the quality measure. Notice that the ideal multiple alignment has no columns with mismatches.

Fig. 5.7: Example alignment showing profile matrix, and two logos representing alignment’s conservation and quality.

O(n2m2) +n3 +n3 +n2m2) = O(n3 +n2m2). If m2 ≥ n, then the complexity becomes O(n2m2),

otherwise O(n3).

SMCluster2 (slow-accurate variant): Line 11 requires total O(n3m2) operations in worst case,

assuming each combined structured motif increased its length bym (i.e., m, 2m, 3m, . . . , (n−1)m).

Therefore, the total time complexity of SMCluster2 is O(n2m2 + n3 + n3m2) = O(n3m2).

5.4 Experimental Results

We implemented SMCluster in MATLAB as a command line function with a graphical user interface

(Figure 5.8). We executed the following experiments on a Windows7 64-bit machine with Intel
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Fig. 5.8: SMCluster GUI screenshot. The top part shows user input of the file name that contains the set of structured
motifs and the number of top motifs to multi-align. Top right shows the algorithm used for the underlying pairwise
alignment and the variant of SMCluster to use (accurate vs approximate). The dendrogram of the multiple alignment
result is shown in the middle. Also shown the cutoff threshold in the dendrogram (dashed vertical line) where the user
can control its position using the bottom slider. On the right we see a list of clusters’ consensus structured motifs (two
clusters reported based on the chosen cutoff threshold; the second one is highlighted).

Core i5-430UM processor having 1.7GHz max speed with 4GB of RAM.

We first examine the empirical time complexity of SMCluster’s two variants, in proportion to the

number of aligned structured motifs n (Figure 5.9a) and the length of the aligned structured motifs

m (Figure 5.9b). Notice the empirical time complexity of SMCluster2 (slow-accurate variant) is

practically asymptotic to O(n2m2) rather than its theoretical worst case of O(n3m2).

Next we examine the alignment result of SMCluster against the discussed current multiple

alignment algorithms. Figure 5.10 shows SMCluster multiple alignment result for the example

problem presented in Section 5.1.1. SMCluster’s result is better than the other algorithms’ results

satisfying all gap constraints while only having three columns with one mismatch each.

Table 5.2 shows five generated datasets each having 20 structured motifs. These datasets were

generated to resemble the kind of datasets that we will encounter in the next chapter when we

deal with solving the structured motif extraction problem. Table 5.3 shows a comparison between

SMCluster and current algorithms tested on the generated datasets.
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(a) The time complexity of SMCluster varying the number of aligned
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(b) The time complexity of SMCluster varying the size of the aligned
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Fig. 5.9: The empirical time complexity of SMCluster’s two variants, SMCluster1 (fast-approximate) and SMCluster2
(slow-accurate). Also showing upper, middle and lower bounds for comparison.

1) ACGACG[8,24]CTCCTAG

2) GACGGC[4,20]TGCTCCTAGT[6,22]AGAGAGCC

3) CGACGGCC{0,7,21}CTCCT[8,24]AAGAGAGCCG

4) GCTCCTAGTG{5,10,19}AAAGAGAG

5) CGACGGCC[4,20]GCTCCTAG

6) GACGGCC[19,49]AAAGAGAG

7) ACGACGG[25,55]AGAGCCGGT

8) CGACGG[7,23]CTCCTA[6,22]AAAGAGAGC

9) ACGGCCT[4,20]CTCCTAGTG[5,21]AGAGAGCC

10) CTAGTGG[4,18]AAAGAGAGCCGGTA

(a) A set of 2-box and 3-box structured motifs given as in-
put to SMCluster.

** *

1) ACGACG----------CTCCTAG---------------------

2) --GACGGC------TGCTCCTAGT--------AGAGAGCC----

3) -CGACGGCC-------CTCCT----------AAGAGAGCCG---

4) ---------------GCTCCTAGTG-----AAAGAGAG------

5) -CGACGGCC------GCTCCTAG---------------------

6) --GACGGCC---------------------AAAGAGAG------

7) ACGACGG---------------------------AGAGCCGGT-

8) -CGACGG---------CTCCTA--------AAAGAGAGC-----

9) ---ACGGCCT------CTCCTAGTG-------AGAGAGCC----

10) ----------------CTAGTGG-------AAAGAGAGCCGGTA

(b) The resulted multiple alignment from SMCluster. All gap con-
straints are satisfied and only three columns have one mismatch
each (* marked). The alignment quality is 99.1% (Equation (5.5))
and the gap constraints are satisfied in 100% of the rows.

Fig. 5.10: SMCluster multiple alignment of a set of structured motifs.

The results in Table 5.3 show the dominance of SMCluster (both variants) over the other

algorithms. The overall winner is SMCluster2 (slow-accurate variant), but SMCluster1 was slightly

better in dataset2 and came in second overall. ClustalW came in third in terms of alignment quality,

however, it does not guarantee gap constraints satisfaction. T-COFFEE and M-COFFEE violated

all gap constraints in different ways. T-COFFEE ignored the given minimum gaps and did not

introduce any gaps in the multiple alignment. Also, M-COFFEE ignored given minimum gaps, but

added gaps as it saw necessary in different places than allowed by the gap constraints. STAMP

seems to be guaranteeing gap constraints satisfaction, but this guarantee is only due to using an

ungapping pairwise alignment (ungapped local alignment). Therefore, it maintains the minimum
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Table 5.2: The datasets used to compare SMCluster against current algorithms.

No. Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

1 AATC[1,22]TCTTA TATG[2,10]TCTT TCCA[1,11]AGCC CAAA[1,10]TGAA TATT[3,15]GGAT

2 AATCT[1,22]TCTT GTTA[2,10]TTCT TAGC[1,11]GTCC AAGC[1,10]GAAC GGAG[3,15]CCGG

3 ATCT[1,22]AATCT GTGA[2,10]GTTA TCCA[1,11]CACA TGAA[1,10]TAGC GGAG[3,15]CCGG

4 ATCTA[1,22]CTTA TTAT[2,10]TCTT TCCA[1,11]AGCC AAAG[1,10]TGAA CCGG[3,15]GAGG

5 CTAA[1,22]TCTTA TTAT[2,10]TTCT GATA[1,11]GTCC CCGT[1,10]TTCC CGGT[3,15]ATGG

6 ATCT[1,22]AATCT AATG[2,10]TGTC TCCA[1,11]CACA ACCT[1,10]CGTC GTTA[3,15]TGGA

7 ATCT[1,22]CTTAC TGTC[2,10]GCGT GATA[1,11]TCCA AACC[1,10]GCCG GTTA[3,15]TGGA

8 TCTA[1,22]ATCTT GTTA[2,10]GCGT GTCC[1,11]CCAC TTAG[1,10]TCTT AAAG[3,15]CCGG

9 ATCT[1,22]ATCTT TGAA[2,10]TTAT GTCC[1,11]CACA AAGA[1,10]GGCC AGGA[3,15]CCGG

10 ATCTA[1,22]TTAC AATG[2,10]ATGT GTCC[1,11]GCCA AGCA[1,10]AACC AGGA[3,15]CCGG

11 ATCT[1,22]TCTTA TGTT[2,10]TCTT CGAG[1,11]CCAC TAGC[1,10]TTCC GGAG[3,15]CGGT

12 AATC[1,22]AATCT AATG[2,10]ATGT CGAG[1,11]CCAC TAGC[1,10]GGCC AAGG[3,15]CCGG

13 AATC[1,22]TCTTA GAAT[2,10]CTTG GATA[1,11]GTCC CTTA[1,10]GTCT CCGG[3,15]GAGG

14 ATCTA[1,22]ATCT TGAA[2,10]ATGT GCGA[1,11]TCCA CACC[1,10]TGAA TTAT[3,15]TGGA

15 ATCTA[1,22]TCTT TGTC[2,10]GCGT GTCC[1,11]CCAC GCCG[1,10]CTTC AAAG[3,15]CCGG

16 ATCT[1,22]CTTAC GAAT[2,10]TGTC TAGC[1,11]GTCC GCAC[1,10]TAGC CGGT[3,15]ATGG

17 TCTAA[1,22]CTTA ATGT[2,10]TCTT TAGC[1,11]AGTC CTTA[1,10]GGCC TTAT[3,15]TGGA

18 AATC[1,22]AATCT TGAA[2,10]TTAT AGTC[1,11]GCCA ACCT[1,10]AGCG AAGG[3,15]CCGG

19 TCTAA[1,22]TCTT GTGA[2,10]TATG GATA[1,11]TCCA AAGC[1,10]AACC GGAG[3,15]CGGT

20 TCTAA[1,22]CTTA TGTC[2,10]GGCG AGTC[1,11]GCCA GAAC[1,10]AGCG TTAT[3,15]GAGG

Table 5.3: Comparing the result quality of SMCluster against current algorithms.

Algorithm Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Average
Quality Satisfaction Quality Satisfaction Quality Satisfaction Quality Satisfaction Quality Satisfaction Quality Satisfaction

ClustalW 100 100 72 100 90 90 60 66 74 100 79.2 91.2
T-COFFEE 59 0 48 0 48 0 45 0 52 0 50.4 0
M-COFFEE 88 0 60 0 65 0 61 0 67 0 68.2 0
STAMP 73 100 66 100 66 100 66 100 74 100 69.0 100

SMCluster1 100 100 98 100 100 100 88 100 93 100 95.8 100
SMCluster2 100 100 94 100 100 100 93 100 99 100 97.2 100

Quality %: The multiple alignment quality as measured using Equation (5.5).
Satisfaction %: The percentage of rows that satisfaied the gap constraints.

given gaps, but does not add any more gaps, and only slides the input structured motifs to produce

its multiple alignment, which had a low overall quality score.

5.5 Discussion

In this chapter we introduced SMCluster, a new progressive multiple alignment algorithm specifically

designed to solve the structured motif multiple alignment problem. Our empirical tests show that

SMCluster always satisfy all gap constraints while maximizing the alignment quality as defined in

(5.5). We presented two variants SMCluster1 (fast-approximate) and SMCluster2 (slow-accurate)

for user choice based on application. We also showed that current multiple alignment algorithms

are not suitable to solve the structured motif alignment problem.
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In the next chapter we use SMCluster as an essential part to solve the structured motif extraction

problem. A MATLAB implementation and an online version of SMCluster can be accessed from

http://bioproject.syr.edu/smtools.
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CHAPTER 6

EXTRACTION OF STRUCTURED MOTIFS

6.1 Overview

In this chapter we introduce a new algorithm SMExtract to solve the structured motif extraction

problem. Existing algorithms require almost perfect information about the structured motif’s size

and gaps. Minor perturbations increase the time complexity and decrease the quality of results. The

main contribution of SMExtract is to relax the user provided information without sacrificing the

quality of the extracted motif.

6.2 SMExtract

In Chapter 2, we found that existing structured motif extraction algorithms suffer from three major

drawbacks:

1. They are only capable of extracting patterns strictly conforming to user specified parameters

that require an unreasonable level of prior knowledge.

2. Some algorithms are only capable of finding limited patterns, such as dyads.

3. The computational effort required by exact algorithms increases exponentially with the

number of allowed mismatches in the pattern and the number of boxes in the given template.
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In other words, existing algorithms require considerable knowledge about the unknown pattern

to be extracted, are limited in the type of patterns that can be extracted, and are computationally

expensive for longer patterns if mismatches are to be allowed.

In this section we describe SMExtract that addresses all three concerns mentioned above. That is,

SMExtract requires less parameters about the pattern to be extracted, is versatile in finding different

types of patterns from simple motifs to multi-box structured motifs without requiring specification

of the pattern type by the user, and is more efficient in extracting longer patterns with mismatches.

To extract an unknown overrepresented pattern M from a set of DNA sequences S (as defined

in Section 1.2), SMExtract performs three steps (Figure 6.1):

1. Formulates a two-box template T based on user specified parameters.

2. Extracts and ranks overrepresented two-box structured motifs (fragments) using Exmotif [9],

i.e., execute F = Exmotif(S, T ), where F = {Fi} is the set of extracted fragments.

3. Multi-aligns (clusters) together the top x fragments using SMCluster, i.e., executes M̃ =

SMCluster(Fi=1...x), where M̃ is the recovered structured motif.

Cluster Fragments 
(SMCluster using SMAlign) 

Set of Promoter 
Sequences of Co-
Regulated Genes 

User Input 
Parameters 

Param1 
Param2 

P3 

Formulate Two-Box 
Template 

b1     gap    b2 

Extract Fragments 
(Exmotif) 

Structured 
Motif 

Adjust Parameters Based on Initial Results 
(Template Refinement) 

1 

2 

3 

SMExtract 

Fig. 6.1: SMExtract algorithm overview. 1) Formulate two-box template based on user parameters. 2) Extract two-box
fragments. 3) Multi-align (cluster) fragments to recover the unknown pattern in the input sequences (e.g., structured
motif).
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The novel approach of SMExtract is that it extracts an overrepresented pattern M from S by

first extracting M ’s fragments, then assembles these fragments to uncover the desired full pattern.

This indirect approach makes SMExtract efficient and versatile, requiring less user knowledge about

the pattern. This is achieved by the unique features of SMAlign used in SMCluster, as discussed in

the previous two chapters (Chapter 4 and 5).

To extract a ranked set of fragments, F , we chose Exmotif§ because it is an exact algorithm that

extracts and ranks patterns conforming to a user specified template.

6.2.1 Two-Box Template Formulation

In general, a two-box template T is as given below. Note that we need to specify up to nine

parameters, which are four parameters for the size ranges of the two boxes [bmin
i , bmax

i ], i = 1, 2, two

parameters for the gap in-between [gmin, gmax], and three parameters for the template quorum qT

and the mismatches for the two boxes dTi measured in base pairs (bp).

T = [bmin
1 , bmax

1 ] : dT1 − [gmin, gmax]− [bmin
2 , bmax

2 ] : dT2 , qT (6.1)

For example, T = [3, 5] : 0 − [5, 10] − [3, 5] : 0, qT = 70% is a two-box template where both

boxes have size in the range [3, 5] with zero mismatches and gap range [5, 10], with 70% quorum.

User’s knowledge of the template is expected to result in better motif extraction, but in practice, the

user does not know the exact specification. Instead, we expect the user to be more comfortable in

specifying the following six parameters:

〈
[Lmin

M , Lmax
M ], [Cmin

M , Cmax
M ], dT , qT

〉
, (6.2)

where

1. [Lmin
M , Lmax

M ] : The range within which we expect the length of M to lie; ideally, Lmax
M ≥

§Exmotif can be replaced by any other suitable algorithm that can extract two-box structured motifs.
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|M |max ≥ |M |min ≥ Lmin
M ≥ 2bp (default, [10, 30]).

2. [Cmin
M , Cmax

M ] : The range of conserved segments in M ; conserved within ≤ dT mismatches

(default, [4, 6]).

3. dT ≥ 0 : The maximum number of mismatches between any two fragments (dT = dT1 + dT2 ;

default, dT = 0).

4. qT > 0% : The template quorum. This instructs Exmotif to report the two-box fragments that

exists, at least once, in at least qT% of the sequences in S (default, qT = 70%).

The user is expected to provide an educated guess for these parameters to extract an unknown

pattern M . These six parameters are less demanding than requiring the user to formulate a fully

fledged template having 5k − 1 parameters (recall that, if the desired structured motif has k boxes,

then a total of 5k − 1 parameters are required (see Section 2.2.1)). This leads to a reduction in

the number of parameters required by SMExtract and an increase in the relevance to the problem

formulation, while at the same time, maintaining the flexibility and versatility of the algorithm.

Using the first four parameters of (6.2), we propose the following set of equations to formulate

our two-box template T :

bmin = bmin
1 = bmin

2 = max(2,min(Cmin
M ,

⌊
Lmin
M /2

⌋
− 1))

bmax = bmax
1 = bmax

2 = max(bmin, Cmax
M )

gmin = max(1,
⌊
Lmin
M /2

⌋
− 2bmin)

gmax= max(gmin, Lmax
M − 2bmin).

(6.3)

This template formulation ensures maximum coverage in extracting an unknown pattern of length ∈

[Lmin
M , Lmax

M ]. For example, suppose we formulate a template T from our knowledge of a given

structured motif M = GCTAAGCTAA[3,15]TTTGAAGCC[5,10]TTGCAAC, i.e., [Lmin
M = 34, Lmax

M =

51], and we choose [Cmin
M = 4, Cmax

M = 6] to be less than or equal to M ’s minimum and maximum

box sizes respectively. Then, Figure 6.2 shows the template’s coverage of M by showing a partial

set of extracted fragments that conform to the formulated template, T = [4, 6] − [9, 43] − [4, 6],
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using (6.3). Structured motifs with minimum or maximum lengths outside of the specified range

([Lmin
M , Lmax

M ]) would, at least, be partially extracted by SMExtract.

M: GCTAAGCTAA[3,15]TTTGAAGCC[5,10]TTGCAAC −→ T : [4,6]-[ 9,43]-[4,6]

F1: GCTA------[3,15]TTTG −→ 4 -[ 9,24]- 4

F2: GCTAA-----[3,15]-TTGA −→ 5 -[ 9,24]- 4

F3: TAAG----[3,15]--TGAAG −→ 4 -[ 9,24]- 5

F4: AAGC---[3,15]---GAAG −→ 4 -[ 9,24]- 4

F5: AAGC---[3,15]----AAGCC −→ 4 -[10,25]- 5

F6: AAGC---[3,15]---------[5,10]TTGC −→ 4 -[20,37]- 4

F7: AGCTA-[3,15]---------[5,10]-TGCAA −→ 5 -[19,36]- 5

F8: GCTAA[3,15]---------[5,10]-TGCAAC −→ 5 -[18,35]- 6

F9: TTTGA----[5,10]TTGCAA −→ 5 -[ 9,14]- 6

F10: TTGAA---[5,10]-TGCAA −→ 5 -[ 9,14]- 5

F11: TGAA---[5,10]--GCAA −→ 4 -[10,15]- 4

F12: GAAG--[5,10]--GCAAC −→ 4 -[ 9,14]- 5

F13: GAAGC-[5,10]---CAAC −→ 5 -[ 9,14]- 4

Fig. 6.2: Showing T ’s fragments (Fi) coverage of a given structured motif M , where T = [4, 6]− [9, 43]− [4, 6] is
formulated from M ’s parameters (i.e., [Lmin

M = 34, Lmax
M = 51], [Cmin

M = 4, Cmax
M = 6]) using Equations (6.3).

It is important to choose the template’s parameters carefully to avoid extracting spurious

fragments that appear by chance in the given sequences. To achieve that, we examine the statistical

properties of our template T , specifically, we are interested in calculating the expected number of

fragments conforming to T to be less than one for a set of t random sequences each of length n.

The key concern is as follows: if the expected number of fragments, conforming to T , in a set of t

random sequences is high, then the discovered motif is more likely to be spurious. Alternatively, if

the expected number is low, then an extracted motif has a much better chance of being a real motif.

The following analysis is an extension to the one given in [41] to conform to our two-box template.

Suppose F is a two-box fragment conforming to template T (i.e., F has box sizes b1, b2 ∈

[bmin, bmax] and its gap range is within the range [gmin, gmax]). For example, F = ACCG−[3, 9]−TGCCC

is a fragment conforming to the template T = [3, 5] : 0− [5, 10]− [3, 5] : 0 because F has b1 = 4

and b2 = 5 are within the gap range [3, 5], and F ’s gap range ([3, 9]) is within T ’s gap range of

[5, 10]. Then the probability of fragment F occurring in a given position in a random sequence with

at most dT mismatches is:

P1(F ) =

min(b1+b2,dT )∑
i=0

(
b1 + b2

i

)(
3

4

)i(
1

4

)b1+b2−i

. (6.4)
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Then the maximum probability of fragment F appearing at least once in a random sequence of

length n is:

P2(F ) = 1− (1− P1(F ))(n−(b1+b2+gmin)+1)·(gmax−gmin+1) . (6.5)

This is an overestimate of the actual probability. Then the expected number of fragment F appearing

at least once in at least qT percent of t random sequences each of length n is:

E(F ) = 4b1+b2 ·
t∑

i=max(1,bt·qT c)

(
t

i

)
P2(F )i(1− P2(F ))(t−i). (6.6)

If the user chooses values for the template T such that E(F ) ≥ 1 for any F , then SMExtract alerts

the user about the possibility of extracting spurious fragments, which lowers the confidence in

the final result. Ideally, T must be chosen such that E(F ) < 1 for all F ; this ensures that each

fragments F conforming to template T is not a spurious fragment. Suppose Fmin is the minimum

fragment conforming to T , i.e., Fmin has b1 = b2 = bmin. It can be shown that if E(Fmin) < 1 then

E(F ) < 1 for all F conforming to T . Therefore, we only need to check if E(Fmin) < 1 to make

sure that our template T has a better chance of avoiding spurious fragments.

6.2.2 Extracting Structured Motifs

We now examine the behavior of SMExtract in the context of the sample problem posed at the end

of Section 1.2. Recall that the set S contains t = 100 randomly generated sequences each of length

n = 1000bp. In this set of sequences, we implanted 136 instances of the structured motif:

M = ACGACGGCCT[4,18]TGCTCCTAGTGG[4,18]AAAGAGAGCCGGTA,

such that each sequence has one instance of M and the remaining 36 instances are distributed

randomly among the sequences. Also, 62 of the 136 instances are on the complementary strand,

and M has one arbitrarily positioned mismatch per box (dMi = 1,∀i ∈ [1, 3]). The goal is to extract

M from the given set using limited or no a priori information about the structure of M , i.e., we do
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not assume exact knowledge of the number of boxes or gap sizes, except a vague idea about the

required parameters specified in (6.2).

First, to detect patterns on both DNA strands, we append each sequence in S with its reverse

complement as a preprocessing step. Then, we define our template parameters using the default

values: [Lmin
M , Lmax

M ] = [10, 30], [Cmin
M , Cmax

M ] = [4, 6], dT = 0bp, and qT = 70%. We are assuming

no knowledge of the implanted pattern M , thus the chosen parameters need not strictly conform

to M . We then formulate our two-box template T = [4, 6] : 0 − [1, 22] − [4, 6] : 0, qT =

70% as per (6.3). Note that for this template, E(Fmin) = 4.7 × 10−13 < 1. Next, we execute

F=Exmotif(S, T ) to generate a ranked list of overrepresented two-box fragments. Finally, we

execute SMCluster2(F = {F}40
i=1) to cluster together the top 40 fragments out of 330 total fragments

reported by Exmotif (henceforward, SMExtract by default uses SMCluster2, the slow-accurate

variant descriped in Section 5.2.3). We usually start by taking the top x fragments, where x ≤ 3
√

2nt

(e.g., (x = 40) ≤ ( 3
√

2× 1000× 100 = 58)), to balance result quality and time complexity, as

discussed later in Section 6.3.

Figure 6.3a shows the result of Exmotif (top 40 reported fragments), and Figure 6.3b shows

the implanted pattern M with the resulting consensus structured motif, and the multiple alignment

produced by SMCluster. Notice the unique behavior of SMCluster when multi-aligning the two-box

fragments. One of the two boxes acts as an anchor while the other box explores the surrounding

area to uncover the hidden pattern. This is analogous to constructing a panoramic image by

stitching together multiple smaller images having overlapping regions. Current popular multiple

alignment algorithms do not possess such behavior, which is very useful for SMExtract to reconstruct

successfully the unknown overrepresented pattern.

Table 6.1 shows the result of multi-aligning the top 40 fragments using SMCluster versus other

popular methods. These methods do not take gap constraints as parameters (as discussed in Section

5.1.2), so we present them with the fragments having the minimum gap between the two boxes

(e.g., fragment number 38 in Figure 6.3 is presented as AGAG-CGGTA instead of AGAG[1,22]CGGTA).

Also, since none of these methods automatically check for the reverse complement of the input
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38) AGAG[1,22]CGGTA
8) AGAG[1,22]GCCGG
14) CCGGC[1,22]CTCT
2) CCGGC[1,22]CTTT
16) AAAG[1,22]GCCGG
26) GCTCC[1,22]AAGA
21) TAGGA[1,22]GGCC
10) CGGC[1,22]TCTTT
37) AAAGA[1,22]GCCG
27) CGGCT[1,22]CTTT
17) GGCTC[1,22]CTTT
23) AAAG[1,22]GAGCC
28) GTGG[1,22]AGAGC
6) AAGAG[1,22]GCCG
35) CTCT[1,22]CACTA
31) TAGTG[1,22]AAAG
20) CTCTT[1,22]CTAG
36) CTCT[1,22]ACTAG
39) TCTTT[1,22]CTAG
5) CTCCT[1,22]AAGA
4) TCCT[1,22]AAAGA
18) TCTTT[1,22]GGAG
34) TCTTT[1,22]AGGA
1) CTTT[1,22]CTAGGA
19) TCCTAG[1,22]AAAG
25) CTTT[1,22]TAGGA
30) CTTT[1,22]CTAGG
3) GTGG[1,22]GAGAG
7) CTCTC[1,22]CCAC
22) AGTG[1,22]GAGAG
12) AGTG[1,22]AAAGA
29) TCTTT[1,22]CCAC
32) AGTGG[1,22]AAAG
40) AGTGG[1,22]AAGA
11) TCTCT[1,22]CCAC
13) AGTG[1,22]AGAGA
15) TCTCT[1,22]CACT
24) GTGG[1,22]AGAGA
9) CTCT[1,22]CCACT
33) AGTGG[1,22]AGAG

(a) The top 40 fragments reported by Exmotif show-
ing the rank for each fragment. The list is sorted as
in the multiple alignment result in (b).

Implanted: ACGACGGCCT----TGCTCCTAGTGG----AAAGAGAGCCGGTA

|||| ||||||||||| ||||||||||||||

Output: -----GGCC------GCTCCTAGTGG----AAAGAGAGCCGGTA

38) ----------------------------------AGAG-CGGTA
8) ------------------------------AgAG---GCCGG--

r 14) ------------------------------AgAG---GCCGG--
r 2) ------------------------------AAAG---GCCGG--

16) ------------------------------AAAG---GCCGG--
26) ---------------GCTCC-----------AAGA---------

r 21) -----GGCC--------TCCTA----------------------
r 10) ------------------------------AAAGA--GCCG---

37) ------------------------------AAAGA--GCCG---
r 27) ------------------------------AAAG--AGCCG---
r 17) ------------------------------AAAG-GAGCC----

23) ------------------------------AAAG-GAGCC----
28) ----------------------GTGG--------AGAGC-----
6) -------------------------------AAGAG-GCCG---

r 35) --------------------TAGTG-----AgAG----------
31) --------------------TAGTG-----AAAG----------

r 20) -------------------CTAG--------AAGAG--------
r 36) -------------------CTAGT--------AGAG--------
r 39) -------------------CTAG-------AAAGA---------

5) ----------------CTCCT----------AAGA---------
4) -----------------TCCT---------AAAGA---------

r 18) ----------------CTCC----------AAAGA---------
r 34) -----------------TCCT---------AAAGA---------
r 1) -----------------TCCTAG-------AAAG----------

19) -----------------TCCTAG-------AAAG----------
r 25) -----------------TCCTA--------AAAG----------
r 30) ------------------CCTAG-------AAAG----------

3) ----------------------GTGG-------GAGAG------
r 7) ----------------------GTGG-------GAGAG------

22) ---------------------AGTG--------GAGAG------
12) ---------------------AGTG-----AAAGA---------

r 29) ----------------------GTGG----AAAGA---------
32) ---------------------AGTGG----AAAG----------
40) ---------------------AGTGG-----AAGA---------

r 11) ----------------------GTGG------AGAGA-------
13) ---------------------AGTG-------AGAGA-------

r 15) ---------------------AGTG-------AGAGA-------
24) ----------------------GTGG------AGAGA-------

r 9) ---------------------AGTGG------AGAG--------
33) ---------------------AGTGG------AGAG--------

(b) The Result of SMCluster multi-aligning the top 40 fragments. ‘r’ in-
dicates that SMCluster used the reverse complement of the reported frag-
ment in the multiple alignment.

Fig. 6.3: The Result of SMExtract(S, T ), where S is a set of t = 100 input sequences each of length n = 1000bp, and
T = [4, 6] : 0− [1, 22]− [4, 6] : 0, qT = 70% is the formulated two-box template using default user parameters. First,
Exmotif reports the top fragments based on T , then SMCluster multi-align these fragments to uncover the unknown
pattern.

fragments, we present the list of fragments in the correct orientation (based on the result in Figure

6.3b) to give them the best chance. The result in Table 6.1 shows that none of the methods produced

a better alignment compared to SMCluster. We quantified the quality of their resulted alignment

Table 6.1: SMCluster vs. Other Methods∗

Implanted: ACGACGGCCT-TGCTCCTAGTGG-AAAGAGAGCCGGTA nPC

SMCluster: GGCC-GCTCCTAGTGG-AAAGAGAGCCGGTA 81%
ClustalW[37]: GGCCCTAGTGG-GAAAGAGAGCCGGTA 59%

T-COFFEE[38]: AGAGAAAGGG 18%
M-COFFEE[39]: GCTGCCTCCTAGTGGGAGAGG 30%

STAMP[30]: TCGTGGGAAAGAGCCGGC 26%
∗The consensus structured motif for each method resulted from multi-aligning the top 40 fragments.
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against the implanted pattern using the nucleotide performance coefficient (nPC) measure [8]:

nPC =
nTP

nTP + nFP + nFN
, (6.7)

where nTP, nFP and nFN are the nucleotide true positive, false positive and false negative respec-

tively. The results in Table 6.1 indicate that other popular methods are not suitable for the task at

hand, motivating the use of SMCluster, confirming our conclusion in Chapter 5. ClustalW produced

the next best result after SMCluster.

6.2.3 Template Refinement
Another unique feature of SMCluster is that it propagates the gap constraints throughout the hierar-

chical clustering. Thus, the full consensus structured motif for the above example problem, including

the gap constraints, is reported as GGCC[0,20]GCTCCTAGTGG[1,15]AAAGAGAGCCGGTA. Therefore, as

an optional feedback step, we now have the ability to adjust the template’s parameters based on this

initial result. If the result of the second run is consistent with the initial result, then this increases

our confidence in the extracted pattern. On the other hand, if the new results deviates drastically

from the first one, then further analysis of the initial dendrogram and further tweaking of the initial

template is necessary to obtain better results.

For instance, the maximum length of the initial resulting consensus structured motif (GGCC[0,20]

GCTCCTAGTGG[1,15]AAAGAGAGCCGGTA) is 64bp. Updating the user parameter Lmax
M from the default

value of 30 to 64 and using equations (6.3), we obtain the new template T = [4, 6]− [1, 56]− [4, 6].

Using this new template in SMExtract, we obtained the result in Table 6.2. The new resulting

structured motif matches closely with the initial result in Figure 6.3b (i.e., both results show 3-box

structured motifs, and their nPC = 71%), which increases our confidence in the extracted structured

motif. Also, we can multi-align together the results of multiple runs of SMExtract to obtain even

better results, as seen in this example (Table 6.2).

So far, we have always picked the alignment in the root cluster of the dendrogram to represent

the extracted structured motif. However, the user can closely inspect the produced dendrogram, as
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Table 6.2: The result of updating T based on the initial result.

Implanted: ACGACGGCCT-TGCTCCTAGTGG-AAAGAGAGCCGGTA nPC1

Initial: -----GGCC---GCTCCTAGTGG-AAAGAGAGCCGGTA 81%
Updated: ACGACGGC---TGCTCCTAGTGG-AAAGAGAGCCG--- 86%

Initial+Updated2: ACGACGGCC--TGCTCCTAGTGG-AAAGAGAGCCGGTA 97%
1nPC measured between resulted structured motif and implanted.
2Aligning the initial result with the updated result yielded an even better result.

in Figure 6.4, and exercise judgment, using the conservation (5.4) and the quality (5.5) measures,

of the best cutoff threshold to use, and then pick the best cluster to represent the extracted motif.

Finally, if the initial template T did not extract any fragments, or few ones, then the user can do

any or all of the following to adjust the template’s parameters defined in (6.2):

1. Decrease the quorum qT .

2. Increase the range of the conserved segments [Cmin
M , Cmax

M ].

3. Increase the range of the motif length [Lmin
M , Lmax

M ].

4. Increase the number of mismatches dT .

The refined template should then be checked against extracting spurious fragments, using Equation

(6.6), such that E(Fmin) < 1.
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Fig. 6.4: The user can set the cutoff threshold (dashed vertical line) in SMCluster’s dendrogram to determine the
number of clusters to report as output. a) the root cluster is chosen to represent the extracted motif, b) four clusters are
chosen to represent four extracted motifs.
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6.2.4 Discrete Gap Constraints

In the previous section we showed how SMExtract extracts an unknown pattern in the input

sequences by clustering the most highly ranked (overrepresented) two-box fragments obtained from

Exmotif. So far we have assumed that each two-box fragment has a gap constraint as given in T

(Figure 6.3a). In this section, we introduce a heuristic to recover the actual gap sizes of all fragments

from the input sequences. This restricts the gap constraints which, in turn, helps in eliminating false

alignments as explained next.

To recover the actual gap sizes for each fragment, we modified Exmotif to output occurrence

data, without affecting Exmotif’s time complexity. That is, for each fragment found, Exmotif

outputs the fragment’s number of occurrences in each sequence and the gap size of each of these

occurrences. Figure 6.5 shows example occurrence data for ten fragments in six sequences. The

format of the data is (SequenceNo.:No.ofOccurrences {ActualGapSizes}). For example,

fragment no.3 is not present in sequences {1,2,4}, but has 1 occurrence in sequence {6} (actual

gap size={22}) and 2 occurrences in each of sequences {3,5} (actual gap sizes={12,17,20}). We

calculate the occurrence agreement for each sequence, which indicates the percentage of fragments

that have the same number of occurrences in that sequence.

10 Fragments Occurrence frequency and gap sizes in 6 sequences.

1) ATTAGC-TGGCAG -- 1:0 2:0 3:2 {20,12} 4:0 5:3 {17,5,8} 6:1 {22}

2) GCCTGG-TTTCT -- 1:1 {18} 2:1 {16} 3:3 {12,4,16} 4:1 {16} 5:1 {9} 6:1 {14}

3) TGATAT-TTTCTG -- 1:0 2:0 3:2 {20,12} 4:0 5:2 {17,17} 6:1 {22}

4) TATTAG-TTCTGG -- 1:0 2:1 {22} 3:3 {18,10,22} 4:1 {22} 5:1 {15} 6:2 {20,5}

5) TAGCCT-TTTCTG -- 1:1 {20} 2:1 {18} 3:3 {14,6,18} 4:1 {18} 5:1 {11} 6:1 {16}

6) GCCTGG-TTTCTG -- 1:1 {18} 2:0 3:3 {12,4,16} 4:2 {16,7} 5:2 {9,12} 6:1 {14}

7) ACACGA-CAGAAA -- 1:1 {18} 2:0 3:3 {19,13,16} 4:1 {21} 5:1 {10} 6:3 {14,12,7}

8) AGCCTG-TTTCT -- 1:1 {19} 2:1 {17} 3:3 {13,5,17} 4:0 5:1 {10} 6:2 {15,8}

9) CAGAAA-TAATAT -- 1:0 2:1 {22} 3:3 {22,10,18} 4:1 {22} 5:1 {15} 6:1 {20}

10) AGCCTG-TTTCTG -- 1:1 {19} 2:1 {17} 3:3 {13,5,17} 4:1 {17} 5:1 {10} 6:0

Occurrence 60% 60% 80% 60% 70% 60%

Agreement(%)

Fig. 6.5: Two-box fragments occurrence data output, from modified Exmotif, for the top 10 fragments in the first 6
sequences. The occurrence agreement for each sequences indicates the percentage of fragments that have the same
number of occurrences in that sequence.
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Our heuristic is to use the occurrence data to infer the actual gap constraints for each fragment.

The idea is to find the input sequence that contains the most agreement in the number of occurrences

for all fragments. For example, sequence 1 in Figure 6.5 has 60% agreement (i.e., 6 out of the 10

fragments occure the same number of times in sequence 1). This results in choosing sequence 3 as

the sequence with the most agreements (80%). Therefore, the gap sizes listed in sequence 3 are the

ones used to represent the actual gap sizes for each fragment (e.g., fragment no.4 has actual gap

sizes of {10,18,22}). The rationale behind our heuristic is that if a set of fragments repeat in the

same sequence the same number of times, then most likely they belong to the same structured motif

that was repeated in that sequence.

Now we can use these new discrete gap constraints to find the best multiple alignment to uncover

the unknown pattern. SMExtract can handle discrete gap constraints because they are handled

internally by SMAlign (Section 4.4). Using the actual gap sizes enhances the resulting multiple

alignment as we have eliminated gap sizes that have not actually occurred together. Figure 6.6

shows the difference between two runs of SMExtract using the same input sequences and the same

template, but once using the occurrence data (Figure 6.5) and once without. It is clear from the

result that using our heuristic improved the results in this case.

Finally, if the sequence with the highest occurrence agreement is missing some fragments

(occurrence of zero), then these fragments use their original continuous gaps as given in T . Also,

if SMExtract does not find a sequence with occurrence agreement above a user defined threshold

(default to 70%), then it falls back to all fragments having the same continous gap as given in T .
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7) ACACGA[1,22]CAGAAA
1) ATTAGC[1,22]TGGCAG
4) TATTAG[1,22]TTCTGG
9) CAGAAA[1,22]TAATAT
3) TGATAT[1,22]TTTCTG
5) TAGCCT[1,22]TTTCTG
10) AGCCTG[1,22]TTTCTG
8) AGCCTG[1,22]TTTCT
6) GCCTGG[1,22]TTTCTG
2) GCCTGG[1,22]TTTCT

(a) The top 10 fragments reported by Exmotif. Notice that we
did not use the occurrence data in this example. Each fragment
gap constraint is the same as given in the template T .

Implanted: TGATATTAGCCTGG----TTTCTGGCAGA----TCGTGTCCC

|||||||||||||| ||||||| ||||||

Output: TGATATTAGCCTGGcag-TTTCTGG--------TCGTGT---

r 7) ------------------TTTCTG---------TCGTGT---
1) ----ATTAGC-TGGcag-------------------------
4) ---TATTAG----------TTCTGG-----------------

r 9) --ATATTA----------TTTCTG------------------
3) TGATAT------------TTTCTG------------------
5) ------TAGCCT------TTTCTG------------------
10) -------AGCCTG-----TTTCTG------------------
8) -------AGCCTG-----TTTCT-------------------
6) --------GCCTGG----TTTCTG------------------
2) --------GCCTGG----TTTCT-------------------

(b) The Result of SMCluster multi-aligning the top 10 fragments. ‘r’ in-
dicates that SMCluster used the reverse complement of the reported frag-
ment in the multiple alignment.

7) ACACGA{13,16,19}CAGAAA
1) ATTAGC{12,20}TGGCAG
4) TATTAG{10,18,22}TTCTGG
9) CAGAAA{10,18,22}TAATAT
3) TGATAT{12,20}TTTCTG
5) TAGCCT{6,14,18}TTTCTG
8) AGCCTG{5,13,17}TTTCT
10) AGCCTG{5,13,17}TTTCTG
6) GCCTGG{4,12,16}TTTCTG
2) GCCTGG{4,12,16}TTTCT

(c) The top 10 fragments reported by Exmotif. We use the
occurrence data in this example. Each fragment actual gap
constraint is obtained from sequence 3 from the occurrence
data (Figure 6.5), as described in this section.

Implanted: TGATATTAGCCTGG----TTTCTGGCAGA--------TCGTGTCCC

|||||||||||||| |||||||||| ||||||

Output: TGATATTAGCCTGG----TTTCTGGCAG---------TCGTGT---

r 7) ------------------TTTCTG-------------TCGTGT---
1) ----ATTAGC------------TGGCAG------------------
4) ---TATTAG----------TTCTGG---------------------

r 9) --ATATTA----------TTTCTG----------------------
3) TGATAT------------TTTCTG----------------------
5) ------TAGCCT------TTTCTG----------------------
8) -------AGCCTG-----TTTCT-----------------------

10) -------AGCCTG-----TTTCTG----------------------
6) --------GCCTGG----TTTCTG----------------------
2) --------GCCTGG----TTTCT-----------------------

(d) The Result of SMCluster multi-aligning the top 10 fragments. ‘r’ in-
dicates that SMCluster used the reverse complement of the reported frag-
ment in the multiple alignment.

Fig. 6.6: The Result of SMExtract using the template T = [4, 6] : 0− [1, 22]− [4, 6] : 0, qT = 70%. Notice that in
alignment (d), fragment no.1 was correctly aligned due to the more restrictive actual gap sizes inferred from the data
without affecting the correctness of the other fragments’ alignment.

6.2.5 SMExtract vs. Exmotif

We now consider the alternative of solving the same example problem using solely Exmotif instead

of SMExtract. First, we have to guess a template T to use with Exmotif. Suppose we use the same

default two-box template (T = [4, 6] : 0− [1, 22]− [4, 6] : 0, qT = 70%) as we did with SMExtract,

then Exmotif’s result would be the one shown in Figure 6.3a which is not very useful as an end

result. Therefore, we rerun Exmotif with another blind guess for T by increasing the number of

boxes from two to three (T = [4, 6] : 0− [1, 22]− [4, 6] : 0− [1, 22]− [4, 6] : 0). Exmotif would

not return any results this time because our implanted motif has one arbitrary mismatch per box and

we only updated the number of boxes for our template and left the template mismatches at zero. We

then continue with a third blind run increasing the number of mismatches to 1 mismatch per box

(i.e., T = [4, 6] : 1− [1, 22]− [4, 6] : 1− [1, 22]− [4, 6] : 1). This time Exmotif would return part
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of the implanted structured motif, as the sizes of the boxes and gaps in this template do not conform

to the implanted structured motif. However, even for obtaining this partial result, the time required

is much longer than using the template with zero mismatches. This is clearly a frustrating process

for a user of Exmotif. Also, the algorithms discussed in Chapter 2 result in similar user experiences.

This is in contrast with using SMExtract where the default template gave meaningful results or

at least partial results based on which we can make informed updates to our initial template. A

qualitative comparison between SMExtract and solely using Exmotif is presented below in Section

6.4.

6.3 Time Complexity of SMExtract

The time complexity of SMExtract is the sum of Exmotif’s time complexity (for a two-box template)

and SMCluster’s time complexity. Recall from Section 2.2.1 that Exmotif’s time complexity is

O(kN |ΣDNA|kb), where |ΣDNA| = 4 is the size of the DNA alphabet, k = 2 is the number of boxes

(SMExtract uses two-box templates regardless of the implanted structured motif), N = nt is the

total length of the input sequences, and b = bmax is the size of the larger box between the two

boxes in the template. Also, recall from Section 5.3 that SMCluster2’s worst time complexity is

O(n3m2), where n is the number of top fragments to be clustered that are reported by Exmotif and

m = 2b+ gmin is the length of these fragments. Therefore, SMExtract’s worst time complexity is

O(2N |ΣDNA|2b + n3(2b+ gmin)2).

If we reasonably assume (n ≤ 3
√

2N) and (gmin ≤ |ΣDNA|b − 2b), then SMExtract’s time

complexity becomes O(2N |ΣDNA|2b). These assumptions are valid in many cases. For instance, in

the example in Section 6.2.2 we had ((n = 40) ≤ ( 3
√

2N = 58)) and ((gmin = 1) ≤ (|ΣDNA|b−2b =

46 − 2 × 6 = 4084)). This clearly shows the efficiency of SMExtract over solely using Exmotif

for k > 2. Also, for 1 ≤ k ≤ 2 Exmotif requires more user knowledge than SMExtract about the

unknown pattern to formulate an effective template that produces meaningful results (as we have

seen in Section 6.2.2).
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6.4 Results and Analysis

We implemented both SMAlign and SMCluster using MATLAB and executed the following experi-

ments on a 64-bit Windows 7 machine with Intel Core i5-430UM processor having 1.7GHz max

speed with 4GB of RAM. Exmotif was also run on the same machine as a 32-bit process using Cyg-

win v1.7. We will compare the result of our proposed algorithm SMExtract (Exmotif+SMCluster2)

against solely using Exmotif [9] in terms of efficiency, results’ quality, and practicality.

6.4.1 Synthetic Datasets

We used SMGenerate to generate biologically relevant synthetic datasets as described in Chapter 3.

Table 6.3 shows the characteristics of the generated problems, and comparison of the results provided

by SMExtract and Exmotif. Each generated problem consists of t = 100 sequences each of size

n = 1000bp. However, to detect patterns on the complementary strand, we append each sequence

with its reverse complement. So, the effective size of each sequence is n = 2000bp. Also, we

evaluate the quality of the extracted pattern against the implanted pattern using the nucleotide

performance coefficient (nPC) defined in Equation (6.7). For each generated test case in the table,

we used the default template (T = [4, 6] : 0− [1, 22]− [4, 6] : 0, qT = 70%) to show the versatility

of SMExtract using one template under various conditions.
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The results clearly show the versatility and efficiency of SMExtract especially when we introduce

mismatches in the implanted pattern. Using only the default template T , SMExtract found all

structured motifs in the 16 test cases with average quality of 92% and average time of 242s. This is

comparable to soley using Exmotif with an ideal template T ∗, i.e., using best possible template for

each test case, which found 14 of the 16 motifs with average quality of 94% and average time of

237s. Running Exmotif with an ideal template T ∗, formulated using our complete knowledge of

M , takes longer, in most cases, to extract patterns with mismatches. Furthermore, it is practically

unreasonable to assume ideal template formulation for various problems with unknown M . Also,

our setup of Exmotif failed to produce results when we used large templates with mismatches (box

size > 12 with mismatches > 0), e.g., test cases 8 and 16 in Table 6.3. We suspect that this happens

due to the high space complexity of Exmotif to enumerate neighboring patterns when mismatches

are specified [9].

SMExtract sacrifices a little efficiency, in the basic non-mismatched cases, for increased ver-

satility and practicality. For the test cases in Table 6.3, SMExtract spent on average 81% of its

time executing Exmotif to extract and rank the two-box fragments, and 19% of the time executing

SMCluster. Figure 6.7 shows the time complexity and quality of result for SMExtract versus

sole Exmotif as we varied the number of mismatches-per-box in the implanted motif M . It is

clear to see that SMExtract’s processing time is not sensitive to the number of mismatches in the

implanted motif as we where successful in extracting M , having mismatches, without specifying

any mismatches in our two-box template T . On the other hand, Exmotif requires its ideal template

T ∗ to have the same number of mismatches as in the implanted motif for successful extraction,

which is exponentialy expensive. The same observation is evident in the quality measure nPC.

SMExtract’s nPC matches the ideal Exmotif’s quality when mismatches at d ≤ 1, but Exmotif’s

nPC degrades rapidly as the number of mismatches increase d > 1. This is because Exmotif did

not find two out of three motifs with mismatches-per-box d > 1. The ideal Exmotif run took more

than four hours without producing any results for the two cases (cases 8 and 16 in Table 6.3), while

SMExtract took 183s (nPC = 81%) and 194s (nPC = 77%) respectively. From this empirical
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Fig. 6.7: The empirical time complexity and quality of result (nPC) for SMExtract vs. sole Exmotif, varying the
number of mismatches-per-box in the implanted motif M . SMExtract uses one default template T for all test cases, on
the other hand, sole Exmotif uses different ideal template T ∗ for each test case.

results, we observed that Exmotif’s time and space complexities are practically more sensitive to

the number of mismatches in the target pattern than the pattern’s number of boxes k. On the other

hand, SMExtract novel approach of indirectly extracting the target pattern through its fragments

greatly reduces its sensitivity to the number of mismatches in the target pattern.

We have also examined our choice of the number of top fragments to cluster (x) and its effect on

the quality of the result (nPC). In Section 6.3, we argued that a good choice would be x ≤ 3
√

2nt,

where t is the number of input sequences and n is the length of each sequence, to maintain a good

balance of time and quality. Figure 6.8 shows the average quality (nPC) and time of six test cases

(per data point) when we varied the number of top clustered fragments. The figure shows that

when x > 3
√

2nt, the quality of the result does not improve much more to justify the corresponding

increase in processing time.

Finally, thanks to the reduced number of user specified parameters, it is easier to tweak SMEx-

tract’s parameters to further improve the results in some of the cases presented in Table 6.3 than

guessing the full parameters of an ideal template for Exmotif, as discussed in Section 6.2.3.
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6.4.2 Real Datasets

To predict the transcription factor protein binding sites, we examined the promoter regions for

each set of co-regulated genes affected by the same transcription factor in different organisms. We

chose data from Saccharomyces cerevisiae (SCPD [42]), Streptomyces coelicolor (DBSCR [6]), and

Bacillus subtilis (DBTBS [7]). Table 6.4 shows the transcription factors’ (TF) known binding sites,

the template parameters used for each case, and SMExtract’s predictions. We quantified the quality

of the predicted motif compared to the known motif using the nucleotide performance coefficient

(nPC, Equation (6.7)), the nucleotide positive predictive value (nPPV), and the nucleotide sensitivity

measure (nSn) [8]. The nPPV value measures the fraction of the predicted motif that matches the

actual known motif, and is defined as:

nPPV =
nTP

nTP + nFP
. (6.8)

The nSn value measures the fraction of the known motif that was correctly predicted, and is defined

as:

nSn =
nTP

nTP + nFN
. (6.9)
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where nTP, nFP and nFN are the nucleotide true positive, false positive and false negative respec-

tively. Intuitively, an algorithm with high nPPV value indicates its ability to predict at least part of

the known motif with few or no false positive positions. On the other hand, an algorithm with high

nSn value indicates its ability to predict large parts of the known motif but may have other false

positive positions. The nPC measure encapsulates both ideas in one value, but for real datasets, it is

more informative to look at all three measures to assess the performance of our algorithm.

The results show promising prediction capabilities even when the template parameters differ

significantly from those of the actual known binding site. In some cases, SMExtract picks up some

patterns surrounding the actual binding site, but only if these patterns are also overrepresented in

the set of promoter sequences. The high nSn value indicates that SMExtract is sensitive in picking

up large parts of the known motif, but also some other patterns are picked up as well. At the same

time, SMExtract’s nPPV value is not too low indicating that the false positive parts are on average

not prominent over the true positive parts.

From both results, synthetic and real, we conclude that SMExtract is more prominent in

extracting longer patterns in large sets of sequences, which other algorithms take exponentially

longer time to extract.



102

Ta
bl

e
6.

4:
Pr

ed
ic

tin
g

tr
an

sc
ri

pt
io

n
fa

ct
or

pr
ot

ei
n

bi
nd

in
g

si
te

s
in

di
ff

er
en

to
rg

an
is

m
s.

Te
m

pl
at

e
T

Pa
ra

m
et

er
s1

nP
C
3

nP
P

V
4

nS
n5

O
rg

an
is

m
N

o.
T

F
N

am
e

K
no

w
n

B
in

di
ng

Si
te

[L
m

in
M
,L

m
ax

M
]
[C

m
in

M
,C

m
ax

M
]
q T

d
T

To
p2

SM
E

xt
ra

ct
Pr

ed
ic

tio
n

(%
)

(%
)

(%
)

Sa
cc

ha
ro

m
yc

es
1

G
A

L
4

C
G
G
[
1
1
,
1
1
]
C
C
G

[1
0,

20
]

[3
,5

]
10

0
0

20
C
C
G
G
[
1
1
,
1
1
]
C
C
G
A

75
75

10
0

ce
re

vi
si

ae
2

PD
R

3
T
C
C
G
Y
G
G
A

[5
,1

0]
[3

,5
]

70
0

20
T
A
T
T
T
C
T
[
1
,
1
]
T
C
T
T
T
T
T
C
C
G
C
G
G
A

38
38

10
0

3
U

A
SH

-U
R

S1
H
6

T
T
T
T
G
G
A
G
T
[
1
0
,
1
8
5
]
G
G
C
G
G
C
T
A
A

[1
0,

20
0]

[4
,6

]
70

0
20

A
T
A
T
T
T
T
G
A
C
[
1
,
1
8
6
]
G
C
G
G
C
T
[
1
,
1
9
0
]
C
T
A
T
T
T

38
50

61

St
re

pt
om

yc
es

4
H

rd
B

T
T
G
A
C
[
1
6
,
1
8
]
T
A
G
A
R
T

[2
0,

30
]

[2
,4

]
70

0
20

T
G
A
C
A
G
[
6
,
1
6
]
G
G
G
T
A
C
G
C
A

37
47

64
co

el
ic

ol
or

5
Si

gR
G
G
A
A
T
[
1
7
,
1
7
]
N
G
T
T
G

[2
0,

30
]

[3
,4

]
70

0
30

G
G
A
A
T
[
7
,
7
]
C
C
G
G
C
[
1
,
1
]
C
G
T
[
2
,
2
]
G
T
T
G
[
2
1
,
2
1
]
A
C
C

75
75

10
0

B
ac

ill
us

6
Si

gA
T
T
G
A
C
A
[
1
3
,
2
1
]
T
A
T
A
A
T

[2
0,

30
]

[2
,4

]
70

0
30

T
T
T
G
A
C
T
C
[
6
,
6
]
A
T
A
T
A

56
69

75
su

bt
ili

s
7

Si
gB

A
G
G
T
T
T
[
1
2
,
1
7
]
G
G
G
T
A
T

[2
0,

30
]

[2
,4

]
70

0
30

G
T
T
T
[
8
,
2
3
]
G
G
G
A
T
[
6
,
2
]
G
A
T
A
A
[
7
,
2
3
]
C
C
T
A

30
39

58
8

Si
gW

T
G
A
A
A
C
N
[
1
2
,
1
3
]
C
G
T
A

[2
0,

30
]

[3
,4

]
70

0
30

T
G
A
A
A
C
[
1
7
,
1
7
]
C
G
T
A
T
[
1
3
,
1
3
]
T
A
C
G

67
67

10
0

M
ea

n
52

57
.5

82
.3

1
Te

m
pl

at
e

pa
ra

m
et

er
s

in
te

nt
io

na
lly

ch
os

en
no

tt
o

st
ri

ct
ly

co
nf

or
m

to
th

e
kn

ow
n

bi
nd

in
g

si
te

to
si

m
ul

at
e

re
al

w
or

ld
te

st
ca

se
s.

2
T

he
nu

m
be

ro
fE

xm
ot

if
’s

to
p

re
po

rt
ed

fr
ag

m
en

ts
th

at
w

er
e

cl
us

te
re

d.
3

nP
C

:T
he

nu
cl

eo
tid

e
pe

rf
or

m
an

ce
co

ef
fic

ie
nt

,E
qu

at
io

n
(6

.7
).

4
nP

P
V

:T
he

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e,

E
qu

at
io

n
(6

.8
).

5
nS

n:
T

he
nu

cl
eo

tid
e

se
ns

iti
vi

ty
m

ea
su

re
,E

qu
at

io
n

(6
.9

).
6

C
om

po
si

te
si

te
:2

bi
nd

in
g

si
te

s
fo

rU
A

SH
an

d
U

R
S1

H
T

Fs
th

at
co

op
er

at
iv

el
y

re
gu

la
te

11
ye

as
tg

en
es

.



103

6.5 Discussion

In this chapter, we presented SMExtract, a novel, efficient and versatile structured motif extraction

algorithm. Given a set of promoter sequences of co-regulated genes, SMExtract uses an existing

algorithm (e.g., Exmotif) to extract overrepresented two-box fragments. Then, SMExtract uses a

new clustering method SMCluster (Chapter 5) to assemble together these fragments to construct the

target (unknown) pattern. The advantages over other methods, including solely using Exmotif, are

in the reduction of the user specified parameters and the flexibility of specifying mismatches while

improving the versatility of extracting a wide range of patterns from simple motifs to multi-box

structured motifs implicitly. The results clearly show that SMExtract outperforms Exmotif in

extracting longer patterns with mismatches in less time and with little to no prior knowledge from

the user about the pattern.

Furthermore, we introduced a heuristic to infer the actual gap sizes for the extracted two-box

fragments from the data instead of assuming the same gap range for all, as given in the template.

This further restricted the number of possible correct multiple alignments which in turn further

improved SMExtracts’s result quality.

A MATLAB implementation and an online version of SMExtract can be accessed from our

website at http://bioproject.syr.edu/smtools.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of Contributions

Motif extraction is a difficult problem. Even after decades of research on simple motif extraction,

there is no general agreement on one or two good algorithms. Extraction of structured motifs

is considerably more difficult due to the lack of knowledge about the motif’s number of boxes,

their sizes, and the intra-gap sizes. Furthermore, there is a lack of good datasets of annotated real

structured motifs, covering many biologically possible cases, to test the performance of a proposed

algorithm.

First, we presented an algorithm called SMGenerate that can generate a dataset mimicking

real promoter regions of co-regulated genes having common structured motifs. Flexibility in the

parameter choices allow a researcher to insert structured motifs with desired specifications to

generate specific and realistic test cases. We compared our algorithm with available data generation

tools, and we showed that SMGenerate is more flexible and easier to use.

The next major contribution is SMExtract, i.e., an algorithm to extract a structured motif from a

given set of promoter regions of co-regulated genes. We proposed an algorithm that achieves this

goal with very little knowledge required from the user about the structured motif. We achieved high

quality results, using less demanding user prior knowledge, that is comparable to the results of solely
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using Exmotif with an ideal template. Most significant contribution is that SMExtract requires

user to provide little information, to formulate a two-box template, to extract motifs regardless

of their type. In other words, SMExtract extracts simple motifs as well as multi-box structured

motifs indirectly by only using a two-box template to extract overrepresented fragments and then

reconstruct the full desired pattern. We have also shown that SMExtract on average is more efficient

than solely using Exmotif with an ideal template especially for extracting motifs with mismatches.

The success of SMExtract relies heavily on the unique features of SMAlign and SMCluster,

which provided the capability of correctly clustering together two-box fragments to uncover the

desired motif. The extension of SMAlign to handle discrete gap constraints, further enhanced the

capability of SMExtract to produce better quality results. Finally, thanks to SMExtract’s reduced

number of user specified parameters, it is easier to tweak the initial template’s parameters, to further

improve the results, than trying to guess the full parameters of an ideal template for Exmotif.

MATLAB implementations and online versions of the algorithms discussed in this dissertation

can be accessed from our website at http://bioproject.syr.edu/smtools.

7.2 Future Research

In the near future, we are planning to address the problem of correctly identifying multiple distinct

structured motifs that are present in the same set of sequences. When the multiple structured motifs

are consistently ordered in the input sequences, i.e., motif M always occur upstream from motif N ,

then SMExtract can correctly extract both motifs using a two-box template with larger gap range.

However if motifs M and N are inconsistently ordered in the input sequences, then a more elaborate

solution is required that may involve the interpretation and fusion of multiple runs of SMExtract,

using different templates, to correctly extract all motifs. Further research can address this problem

more concisely.

SMExtract parameters can be estimated using some type of Monte Carlo optimization techniques.

In addition, SMExtract can be extended to benefit from using the location information of extracted
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fragments in the input sequences to enhance the multiple alignment quality produced by SMCluster.

Also, we can extend the gap constraints to be represented as a distribution of weights over the full

possible gap range, as given in the template, such that higher weights are given to gap sizes that

have actually occurred in the given input sequences. Furthermore, SMExtract can also benefit from

using better methods to extract the two-box fragments replacing Exmotif. Therefore, it is of interest

to develop or test other methods that are better than Exmotif at extracting and ranking two-box

fragments in terms of efficiency and quality. In addition, further improvements of SMCluster’s

multiple alignment quality can be achieved using iterative methods [43, 44] to augment the current

progressive method. For instance, the initially constructed guide tree from the progressive alignment

can be improved using an iterative technique called leave-one-out approach [45].

The time and space complexities are important concerns in motif extraction algorithms and if we

need to iterate the process several times, then the time complexity becomes even more important. To

address the time complexity, parallel algorithm, multi-core, and distributed approaches are needed.

Parallel GPU techniques for dynamic programming [46, 47, 48] and branch and bound [49] can be

adopted and further developed. This will reduce the impact of the time complexity associated with

SMAlign and will reduce the overall time to accomplish the task of motif extraction. To address the

space complexity of SMAlign, it may be possible to exploit the same techniques used to reduce the

space requirement of Smith-Waterman local alignment and Needleman-Wunsch global alignment

algorithms [50, 51].

SMExtract techniques can be used to solve other problems in bioinformatics, such as finding

motifs in the untranslated region (UTR) of RNAs to which microRNA binds [52, 53, 54]. This is

an interesting problem as microRNA affects the protein translation process, thus genes expression

levels. Also, SMExtract can be utilized for the protein multiple alignment and finding of protein

domains problems. Finally, other areas can benefit as well from the techniques developed in this

dissertation. Namely, adopting the solution to the gap constraint alignment problem in SMAlign to

solve scheduling, logistics, and resource allocation problems having known constraints.
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