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Abstract—Relay stations can be deployed in a wireless
network to extend its coverage and improve its capacity.
In this paper, we study a scheduling problem in OFDMA-
based wireless relay networks with consideration for multi-
user diversity, channel diversity and spatial reuse. First,
we present a Mixed Integer Linear Programming (MILP)
formulation to provide optimum solutions. It has been
shown by previous research that performance of a wireless
scheduling algorithm is usually related to the interference
degree δ, which is the maximum number of links that
interfere with a common link but do not interfere with
each other. Therefore, we then show that the interference
degree δ is at most 4 for any 2-hop relay network and 14
for any general h-hop (h ≥ 2) relay network. Furthermore,
we present a simple greedy algorithm for the scheduling
problem and show it has an approximation ratio of 1

1+δ
,

which leads to an approximation ratio of 1
5

for the 2-hop
case and 1

15
for the general case. In addition, we present

three heuristic algorithms, namely, the weighted degree
greedy algorithm, the Maximum Weighted Independent
Set (MWIS) algorithm and the Linear Programming (LP)
rounding algorithm, to solve the scheduling problem. Ex-
tensive simulation results have showed that the LP round-
ing algorithm performs best and always provides close-to-
optimum solutions. The performance of the simple greedy
algorithm is comparable to that of the other algorithms.

Keywords—Wireless relay networks, WiMAX, schedul-
ing, OFDMA.

I. INTRODUCTION

A wireless relay network is composed of a Base
Station (BS), a few Relay Stations (RSs) and a large
number of Mobile Stations (MSs). The BS serves as
a gateway connecting the network to external networks
such as the Internet. A spanning tree rooted at the BS is
formed for routing, in which all MSs are leaf nodes. If
an MS is out of the transmission range of the BS, it can
communicate with the BS via one or multiple RSs in a
multihop manner. This kind of network architecture has
been adopted by emerging wireless networking standards
such as IEEE 802.16j. The IEEE 802.16j task group [2]
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was formed to extend the scope of IEEE 802.16e to
support Mobile Multihop Relay (MMR). Compared to a
single-hop Point-to-MultiPoint (PMP) wireless network
where each MS directly communicates with the BS, a re-
lay network can significantly extend the coverage range,
reduce dead spots and improve network capacity [2].

The emerging standards, such as the WiMAX stan-
dard [1], adopt a TDMA-based MAC layer in which the
time domain is divided into timeslots and multiple times-
lots are grouped together to form a scheduling frame.
The WiMAX standard also provides a highly flexible
MAC layer that can be implemented over a wide range
of frequencies and different physical layer technolo-
gies such as Orthogonal Frequency Division Multiplex-
ing(OFDM), Multiple Input Multiple Output (MIMO)
and so on. Orthogonal Frequency Division Multiplexing
Access (OFDMA) is an emerging OFDM-based multiple
access technology. With OFDMA, the operating spec-
trum is divided into multiple sub-channels, each of which
consists of multiple narrow frequency bands (a.k.a. sub-
carriers). The multiple access is achieved by assigning
different sub-channels to different users in the network
for simultaneous transmissions. The available resources
in an OFDMA-based wireless network can be viewed
as transmission blocks (or simply blocks) in a two-
dimensional structure with timeslots in one dimension
and sub-channels in another [3], as illustrated in Fig. 1.
Hence, the scheduling problem in such a network is the
problem of assigning available transmission blocks to
each link to optimize a certain objective function.

Sub-channel

Timeslot

A transmission 

block

Fig. 1. Transmission blocks

Multipath fading and user mobility lead to indepen-
dent fading across users for a sub-channel. Therefore,
the gains of a channel for different users vary, which is
referred to as multi-user diversity [15]. Moreover, dif-
ferent channels may experience different channel gains



for an MS due to frequency selective fading, which is
referred to as channel diversity [15]. In addition, multiple
users that are far apart can share a set of common sub-
channels, which is referred to as spatial reuse. To design
an efficient scheduling algorithm, we need to exploit
the benefits of multi-user diversity, channel diversity and
spatial reuse.

In this paper, we study a scheduling problem in
OFDMA-based wireless relay networks with consider-
ation for multi-user and channel diversities, and spatial
reuse. Similar to a closely related work [3], the objective
is to keep the system stable, i.e., keep the length of every
queue finite. We summarize our contributions as follows:
1) We present a Mixed Integer Linear Programming

(MILP) formulation to provide optimum solutions,
which can serve as a benchmark for evaluation.
2) The interference degree [11], [13] of a multihop

wireless network is defined as the maximum number of
non-interfering links that interfere with a common link.
It has been shown by previous research [11], [13] that
the performance of a wireless scheduling algorithms is
usually related to the interference degree. However, to the
best of our knowledge, none of existing works provided
a tight bound for the interference degree. In this paper,
we show that the interference degree is at most 4 for any
2-hop relay network in which every MS can reach the BS
within 2 hops and this bound is tight. Furthermore, we
show that the interference degree is at most 14 for any
general h-hop (h ≥ 2) relay network. These results are
very important since they could be used to show that
some simple or previously known heuristic scheduling
algorithms are actually constant factor approximation
algorithms in wireless relay networks.
3) We present a simple greedy algorithm and show it

has an approximation ratio of 1
1+δ , i.e., it always find a

solution with an objective value at least 1
1+δ opt, where

opt is the corresponding optimum objective value. This
gives an approximation ratio of 1

5 for the 2-hop case
where δ ≤ 4 and 1

15 for the general h-hop (h ≥ 2) case
where δ ≤ 14.
4) We present three heuristic algorithms, namely,

the weighted degree greedy algorithm, the Maximum
Weighted Independent Set (MWIS) algorithm, and the
Linear Programming (LP) rounding algorithm, to solve
the problem, whose efficiency has been justified by
extensive simulation results.

II. RELATED WORK

Transmission scheduling is a fundamental problem
in OFDMA-based wireless networks, which has been
studied by several recent works. In [3], Andrews and
Zhang considered several scheduling problems in single-
hop OFDMA-based WiMAX networks. They analyzed
the hardness of these problems and present several

simple constant factor approximation algorithms to solve
them. Furthermore, they considered the problem of
creating template-based schedules for such networks
in [4]. They presented a general framework to study the
delay performance of a multi-carrier template. They then
described several deterministic and randomized schedul-
ing algorithms for template creation and studied their
delay performance via analysis and simulation. In [15],
Sundaresan et al. showed that the scheduling problem
to exploit diversity gains alone in 2-hop WiMAX relay
networks is NP-hard, and provided polynomial-time ap-
proximation algorithms to solve it. They also proposed
a heuristic to exploit both spatial reuse and diversity
gains. In [8], the authors studied a similar scheduling
problem in OFDMA-based WiMAX relay networks.
They provided an easy-to-compute upper bound. They
also presented three fast heuristics and showed that
they provide close-to-optimum solutions and outperform
other existing algorithms by simulation results. In a very
recent paper [16], the authors presented the NP-hardness
proof and approximation algorithms for a problem of
scheduling users with backlogged and finite buffers in
OFDMA-based 2-hop wireless relay networks.

Transmission scheduling has also been studied for
single-carrier or OFDM-based WiMAX mesh networks.
Different centralized heuristics have been proposed for
scheduling and/or routing in [9], [12], [18] with the ob-
jective of maximizing spatial reuse. In [14], the authors
proposed routing and scheduling algorithms to provide
per-flow QoS guarantees.

We summarize the novelty of this work and its dif-
ferences from these related works as follows: 1) Unlike
the closely related works [15], [16] that only presented
scheduling algorithms, the major contribution of this
work is that it shows that the well-known interference
degree has constant bounds in both 2-hop and general
multihop wireless relay networks, which has never been
shown before. These results are expected to have a
broader impact because they may be leveraged to show
some simple or previously known heuristic algorithms
can provide certain worst-case performance guarantees
in wireless relay networks. We demonstrate that a simple
greedy scheduling algorithm is a constant factor approxi-
mation algorithm based on these results. Moreover, [15],
[16] only considered 2-hop wireless relay networks. In
this work, we address not only 2-hop relay networks
but also general h-hop relay networks with h > 2.
2) As pointed out by [3], [8], [15], the scheduling
problem considered in this work is different from the
scheduling problems in single-carrier or OFDM-based
wireless mesh networks [9], [12], [14], [18], in which
every link can only be assigned a single channel in a
timeslot. 3) Spatial reuse is one of the main concerns of
this work, which was not addressed by [3], [4], [8].



III. SYSTEM MODEL

We consider a TDMA-based MAC protocol [1], in
which the time domain is divided into minislots with
fixed durations, and multiple minislots are grouped to-
gether to form a scheduling frame. Each frame consists
of a control subframe and a data subframe. Control sub-
frames are used for exchanging control messages. Data
transmissions occur in data subframes, each of which
is further partitioned into a downlink subframe and an
uplink subframe with T and T ′ minislots respectively.
Note that T is not necessarily equal to T ′. Since uplink
and downlink transmission schedules can be computed
separately, we only focus on downlink scheduling in
the following. The proposed algorithms can be directly
used for uplink scheduling as well. In an OFDMA-based
wireless system, all the nodes are allowed to operate
on C OFDM sub-channels, each of which consists of
multiple sub-carriers. As mentioned before, MAC layer
resources can be viewed as a total of K = T×C blocks.
A link ei can be assigned one or multiple blocks in a
minislot for data transmissions. The scheduling problem
is to determine how to allocate these blocks to links in
the network [3], [8], [15], which will be formally defined
in the next section.

Similar to [8], [15], we consider an OFDMA-based
wireless relay network with n nodes including a BS,
RSs and MSs. These nodes form a spanning tree rooted
at the BS for routing. Since we only focus on downlink
scheduling here, we consider m = n−1 directional links,
each of which connects a node to one of its children. The
index of the receiving node of each link in the tree is
used as the index for that link, i.e., ei = (vpi , vi), where
pi is the index of the parent node of vi. Every non-
leaf node is assumed to maintain a queue for each of its
children. Therefore, we use qi to denote the length of
queue at node vpi for vi, or simply the queue length
of link ei. Each MS is equipped with a single radio
but each RS has two radios with one for its parent and
another for its children in the routing tree. An MS can
directly communicate with the BS if it is within the
transmission range. All nodes are assumed to transmit
at the same fixed power level. Therefore, each node has
a fixed transmission range of RT and a fixed interference
range of RI that is usually 2–3 times RT .

We adopt the Fixed Power Protocol Interference
Model (fPrIM) [17] to model interference. In this model,
two links ei = (vpi

, vi) and ej = (vpj
, vj) are said

to interfere with each other if ||vpi , vj || ≤ RI or
||vpj , vi|| ≤ RI , where || · || gives the distance between
two nodes. An m×m matrix I is used to represent link
interference relationships. Iji = 1 if link ei interferes
with link ej ; Iji = 0, otherwise. In an OFDMA-based
multi-channel relay network, two interfering links ei and
ej must be assigned different blocks.

We focus on centralized scheduling as specified by
the WiMAX MAC protocol [1]. The BS gathers traffic
information from all the MSs and RSs periodically, and
controls transmission scheduling.

IV. PROBLEM FORMULATION

First, we summarize the major notations in Table I.

TABLE I
MAJOR NOTATIONS

I The interference matrix
Iji An entry in matrix I, Iji = 1 if link ei interferes with

link ej ; Iji = 0, otherwise. Let Iii = 0.
K The number of blocks
L The set of m×K link-block pairs

n/m The number of nodes/links in the network, m = n− 1
pi The index of the parent node of node vi
qi The queue length of link ei at the beginning of a frame
Q The queue length vector, Q = [q1, . . . , qi, . . . , qm]
R The data rate matrix
rki An entry in matrix R, the data rate of link ei that

can be supported by block k
RT /RI The transmission/interference range

X The block assignment matrix
xk
i An entry in X, xk

i = 1 if link ei is assigned block k;
xk
i = 0, otherwise.

δ The interference degree of the network

Definition 1: Given m links, K blocks, the queue
length vector Q, the interference matrix I, and the
data rate matrix R, the scheduling problem seeks an
interference-free block assignment that assigns a subset
Bi of blocks to each link ei such that the utility function∑m

i=1 qi min{qi,
∑

k∈Bi
rki } is maximized.

We choose the above objective function because it is
known that if a scheduling algorithm can achieve the
above objective in each frame or timeslot, then it can
keep the system stable, i.e., keep the length of each
queue finite [3]. As mentioned before, such a stable
scheduling algorithm is also considered to achieve 100%
throughput [6].

Next, we present an MILP formulation for the
scheduling problem. The decision variables are described
as follows.

1) xk
i = 1 if block k is assigned to link ei, xk

i = 0
otherwise. (mK such variables)

2) yi, the effective utility value obtained on link ei
according to the assignment. (m such variables)

MILP:

max
m∑
i=1

qiyi (1)



subject to:

yi ≤ qi, i ∈ {1, . . . ,m}; (2)

yi ≤
K∑

k=1

rki x
k
i , i ∈ {1, . . . ,m}; (3)

xk
i + xk

j ≤ 1, i, j ∈ {1, . . . ,m} and Iji = 1,

k ∈ {1, . . . ,K}; (4)
xk
i ∈ {0, 1}, i ∈ {1, . . . ,m}, k ∈ {1, . . . ,K}. (5)

In this formulation, constraints (2) and (3) make sure
that yi = min{qi,

∑
k∈Bi

rki }. Constraint (4) is the
interference constraint, which ensures that if two links
interfere with each other, they are not assigned the same
block. The objective is to maximize the aforementioned
utility function.

As mentioned before, a similar scheduling problem in
single-hop PMP OFDMA-based wireless networks has
been shown to be NP-hard [3]. It is a special case of
our scheduling problem since in a single-hop wireless
network, all links interfere with each other and no spatial
reuse is possible. Therefore, our scheduling problem is
more general and harder.

V. INTERFERENCE DEGREE

It has been shown by previous research [11], [13]
that the performance of a wireless scheduling algorithm
is usually highly related to the interference degree. So
we first show the bounds of interference degree in
wireless relay networks, which will be used to analyze
the performance of the proposed algorithms later.

The interference degree δ(e) of link e is the maximum
number of links that interfere with e but do not interfere
with each other. It characterizes the potential loss of
system capacity if link e is scheduled. The interference
degree δ of the whole network is the maximum inter-
ference degree among all links. First of all, we focus
on the interference degree in a 2-hop relay network.
Without loss of generality, let the transmission range
RT = 1 and the interference range RI = 2. All the
following claims still hold if RI > 2. We denote the BS
as O, the transmitting and receiving nodes of each link
ei on layer 2 as Ti and Ri, respectively. Then we have
∥OTi∥ ≤ 1, ∥TiRi∥ ≤ 1, 1 < ∥ORi∥ ≤ 2.

Lemma 1: For any pair of non-interfering links
(Ti, Ri) and (Tj , Rj) on layer 2, ̸ TiOTj >

π
3 .

Proof: Since ∥TiRj∥ > 2 and ∥TjRj∥ ≤ 1,
in △TiTjRj , ∥TiTj∥ > ∥TiRj∥ − ∥TjRj∥ > 1. In
△OTiTj , ∥OTi∥ ≤ 1, ∥OTj∥ ≤ 1, and ∥TiTj∥ > 1,
therefore ̸ TiOTj >

π
3 .

Lemma 2: For any link (Ti, Ri) on layer 2,
̸ TiORi <

π
3 .

Proof: In △OTiRi, ∥OTi∥ ≤ 1, ∥ORi∥ > 1, and
∥TiRi∥ ≤ 1, therefore ̸ TiORi <

π
3 .

Lemma 3: For any pair of non-interfering links
(Ti, Ri) and (Tj , Rj) on layer 2, ̸ TiORj >

5π
12 .

Proof: In △OTiRj , ∥OTi∥ ≤ 1,
∥ORj∥ ≤ 2, ∥TiRj∥ > 2, hence
cos ̸ TiORj <

∥OTi∥2+∥ORj∥2−∥TiRj∥2

2∥OTi∥∥ORj∥ < 1
4 . So

̸ TiORj > arccos 1
4 > 5π

12 .

O
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Fig. 2. Impossible to have a 2-hop relay network with δ = 5

Theorem 1: The interference degree of any 2-hop
relay network is at most 4.

Proof: We prove this by showing that it is impossi-
ble to have 5 non-interfering links. First, we notice that
for any two links on layer 1, they interfere with each
other. Second, for a link (O, T1) on layer 1 and another
link (T2, R2) on layer 2, they interfere with each other
since ∥OR2∥ ≤ 2. Therefore, any two non-interfering
links must be both on layer 2. Assume there exist 5
non-interfering links (T1, R1), . . . , (T5, R5) on layer 2.
We denote θ(x) as the angle of the point x in the polar
coordinate system originated at the BS O. Without loss
of generality, let θ(T1) ≤ · · · ≤ θ(T5), as shown in
Fig. 2. We have θ(R2) ≥ θ(T1)+ ̸ T1OT2− ̸ T2OR2 >
θ(T1) +

π
3 −

π
3 = θ(T1), θ(T3) = θ(T2) + ̸ T2OT3 >

θ(R2)− ̸ T2OR2+ ̸ T2OT3 > θ(R2)− π
3 +

π
3 = θ(R2),

etc. Therefore, we have θ(T1) < θ(R2) < θ(T3) <
θ(R4) < θ(T5). According to Lemmas 1 and 3, we have
̸ T1OR2+ ̸ R2OT3+ ̸ T3OR4+ ̸ R4OT5+ ̸ T5OT1 >
5π
12 +

5π
12 +

5π
12 +

5π
12 +

π
3 = 2π, which is impossible. This

completes the proof.
We show the interference degree bound 4 is tight

by constructing an example in Fig. 3. The coordinates
of the BS O are (0, 0), T0 are (0,−ϵ′), and R0 are
(0,−1 − ϵ′) (out of the transmission range of the BS).
Therefore, (T0, R0) is a link on layer 2. The coordinates
of T1, T2, T3, T4 are (0,−1 + ϵ), (−1 + ϵ, 0), (0, 1− ϵ)
and (1− ϵ, 0) respectively. The coordinates of R1 to R4

are (0,−2 + ϵ), (−2 + ϵ, 0), (0, 2 − ϵ) and (2 − ϵ, 0)
respectively. Here ϵ and ϵ′ are two arbitrarily small
positive numbers and ϵ′ < ϵ. It is easy to verify that
links (T1, R1), . . . , (T4, R4) are all on layer 2. They do
not interfere with each other but they all interfere with
the link (T0, R0). Therefore, δ(T0, R0) = 4 and δ = 4



for this network.

T0

R0

T1

R1

T3
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T2R2 T4 R4O

Fig. 3. An example with δ = 4

Next we consider the interference degree in general
h-hop relay networks.

i

i

i

j

j

j

i

j

i i i i i

j j j j j

i j

Fig. 4. Proof of Lemma 4

Lemma 4: For any pair of non-interfering links
(Ti, Ri) and (Tj , Rj), let their center points be Oi and
Oj respectively. Then ∥OiOj∥ >

√
3.

Proof: See Fig. 4. Let the center point of Oi and Oj

be the origin point and let the coordinates of Oi and Oj

be (0, d) and (0,−d), respectively. Let li = 1
2∥TiRi∥,

lj = 1
2∥TjRj∥, θi = π

2 − ̸ TiOiOj , and θj = π
2 −

̸ TjOjOi. Then Ti = (−li cos θi, d − li sin θi), Ri =
(li cos θi, d+ li sin θi), Tj = (−lj cos θj ,−d+ lj sin θj)
and Rj = (lj cos θj ,−d−lj sin θj). We have ∥TiRj∥2 =
l2i +l2j+2lilj cos(θi+θj)+4d2+4d(lj sin θj−li sin θi) >
22 = 4. Since li ≤ 1

2 , lj ≤ 1
2 , and cos(θi + θj) ≤

1, we can deduce that 4d2 + 4d(lj sin θj − li sin θi) >
3. Similarly, we can deduce that 4d2 + 4d(li sin θi −
lj sin θj) > 3 from ∥TjRi∥ > 2. Therefore, 8d2 > 6,
and ∥OiOj∥ = 2d >

√
3.

Lemma 5: For any pair of interfering links (Ti, Ri)
and (Tj , Rj), let their center points be Oi and Oj

respectively. Then ∥OiOj∥ ≤ 3.
Proof: Without loss of generality, we assume that

the interference is caused by ∥TiRj∥ ≤ 2. Then we have

∥OiOj∥ ≤ ∥OiTi∥+∥TiRj∥+∥RjOj∥ ≤ 1
2+2+ 1

2 = 3.

Theorem 2: The interference degree of any general h-
hop (h ≥ 2) relay network is at most 14.

Proof: Consider a link with a center point of O.
Suppose there are N non-interfering links which inter-
fere with this link. Denote the center points of these N
links as O1, . . . , ON . Then we have:

∥OiOj∥ >
√
3, i, j ∈ {1, . . . , N} by Lemma 4(1)

∥OOi∥ ≤ 3, i ∈ {1, . . . , N} by Lemma 5(2)

If we place circles with a diameter of
√
3 centered at

each Oi, we can see from (1) that these circles do not
overlap. Next, we place a big circle with a diameter of
6 +
√
3 centered at O, we can see from (2) that all the

small circles are contained in this big circle. Kravitz has
shown in [20] that in order to pack 15 circles with a
radius of r in a larger circle with a radius of R, R

r >

4.52. However, 6+
√
3√

3
< 4.52. Therefore, it is impossible

to pack 15 such small circles in the big circle, which
means it is impossible to have 15 non-interfering links
that all interfere with a common link. This completes the
proof.

VI. PROPOSED SCHEDULING ALGORITHMS

In this section, we present a simple greedy approxima-
tion algorithm for the problem defined above and analyze
its performance. We also present three heuristic algo-
rithms, namely, the weighted degree greedy algorithm,
the MWIS algorithm and the LP rounding algorithm.

A. The Simple Greedy Algorithm

The basic idea of this algorithm is to check all the
link-block combinations and select the one which can
lead to the maximum utility gain in each step.

Algorithm 1 The Simple Greedy Algorithm
Step 1 X← 0; Q′ ← Q;
Step 2 (ibest, kbest)← argmax(i,k) qi min{q′i, rki };

if qibest min{q′ibest
, rkbest

ibest
} = 0 return X;

Step 3 xkbest
ibest
← 1;

q′ibest
← max{0, q′ibest

− rkibest
};

L← L \ {(ibest, kbest)};
forall j : Ijibest

= 1 do L← L \ {(j, kbest)};
if L = ∅ return X;

Step 4 goto Step 2;

In Algorithm 1, q′i is the remaining queue length of
link ei after some blocks are allocated to link ei. After
initialization in Step 1, the greedy algorithm always
selects a link-block pair (ibest, kbest), i.e., assign block
kbest to link eibest , such that it achieves the maximum



utility gain in Step 2. Step 3 updates the remaining
queue length q′ibest

and the block assignment matrix X.
The selected link-block pair (ibest, kbest) is then removed
from the list L. In addition, the algorithm ensures that
those links interfering with link eibest will not be assigned
block kbest by removing the corresponding link-block
pairs from L. The algorithm terminates when no more
utility gain can be obtained or L becomes empty, which
indicates either all blocks have been assigned or all
queues are empty.

The algorithm takes O(mK) time to compare all link-
block pairs and select one in Step 2. The running time
of Step 2 dominates the running time of the loop from
Step 2 to Step 4. The loop will be executed for at most
|L| times. Therefore, the time complexity of the simple
greedy algorithm is O(mK|L|) = O(m2K2).

Next, we analyze the performance of the simple
greedy algorithm.

Theorem 3: For a network with an interference degree
of δ ≥ 1, the simple greedy algorithm has an approxi-
mation ratio of 1

1+δ .
Proof: Each available link-block (l-b) pair (i, k) in

L is evaluated in Step 2 of the greedy algorithm and is
ranked by its current utility gain, defined as follows: Let
S be the set of l-b pairs already allocated to vi. Then

gain((i, k′), S) = qi min(qi,
∑

(i,k)∈S∪{(i,k′)}

rki )

−qi min(qi,
∑

(i,k)∈S

rki ).

The l-b pair (i, k) ∈ L with the highest utility gain
is selected and removed, block k is allocated to link
i, and interfering l-b pairs (j, k) are removed from L;
we say that (j, k) was blocked by (i, k). For simplicity
we will assume that all l-b pairs are either allocated
or blocked (in practice the algorithm stops allocating
l-b pairs when none have positive gain). Let X be
the list of l-b pairs selected by the greedy algorithm
(in the order that they were selected) and let X∗ be
an optimal list of l-b pairs (in some fixed order). We
also define the sublists Xi = {(i, k) ∈ X} and
X∗

i = {(i, k) ∈ X∗} (with the same orderings as
their parent lists). For any l-b pair (i, k) ∈ Xi, let
Xi,<(i,k) be the l-b pairs from Xi that precede (i, k) in
the list X . Define X∗

i,<(i,k) similarly. For each l-b pair
(i, k) ∈ X , let gki = gain((i, k), Xi,<(i,k)). Likewise,
for each (i, k) ∈ X∗, let g∗ki = gain((i, k), X∗

i,<(i,k)).
The value of the objective function (1) achieved by
the greedy algorithm is V =

∑
(i,k)∈X gki and the

optimal value is V ∗ =
∑

(i,k)∈X∗ g∗ki . Any l-b pair
(i, k) ∈ X∗ \ X was blocked by some other l-b pair
(i′, k) during the execution of the greedy algorithm. If
g∗ki > gki′ , we say that (i, k) was blocked to a loss

and if g∗ki ≤ gki′ , we say that (i, k) was blocked to a
gain. Any l-b pair (i, k) ∈ X∗ ∩ X was allocated by
the greedy algorithm; if g∗ki > gki we say (i, k) was
allocated to a loss and if g∗ki ≤ gki , we say (i, k) was
allocated to a gain. Let X∗al

i = {(i, k) ∈ X∗
i : (i, k)

was allocated to a loss}, X∗ag
i = {(i, k) ∈ X∗

i : (i, k)
was allocated to a gain}, X∗bl

i = {(i, k) ∈ X∗
i : (i, k)

was blocked to a loss}, and X∗bg
i = {(i, k) ∈ X∗

i : (i, k)
was blocked to a gain}. Let A = {i : X∗al

i ̸= ∅}. Note
that if i ∈ A, there is an l-b pair (i, k) that provided
strictly less gain to vi than it did in the optimal solution;
this implies that

∑
(i,k)∈Xi

gki = q2i . Let B = {i :

X∗al
i = ∅ ∧ X∗bl

i ̸= ∅}. If i ∈ B, let (i, k) be some
element of X∗bl

i and suppose (i, k) was blocked by some
(i′, k) ∈ X , thus gain((i, k), Xi,<(i′,k)) ≤ gki′ < g∗ki .
So (i, k) provided strictly less gain to vi at the time
it was blocked than it did in the optimal solution; this
implies that

∑
(i,k′)∈Xi

gk
′

i + gki′ ≥ q2i . For each i ∈ B,
we add the l-b pair (i′, k) to a multiset MB . Let
C = {i : X∗al

i = ∅ ∧ X∗bl
i = ∅}. For each i ∈ C and

(i, k) ∈ X∗bg, (i, k) was blocked by some (i′, k) ∈ X
with g∗ki ≤ gki′ ; we add these l-b pairs (i′, k) to a
multiset MC . Let M =MB ∪MC . Observe that the
multiplicity of any l-b pair (i, k) ∈M is at most δ; and
A ∪B ∪ C = {1, . . . ,m}. Then

V ∗ =
∑
i∈A,

(i,k)∈X∗
i

g∗ki +
∑
i∈B,

(i,k)∈X∗
i

g∗ki +
∑
i∈C,

(i,k)∈X∗
i

g∗ki

≤
∑
i∈A

q2i +
∑
i∈B

q2i +
∑
i∈C,

(i,k)∈X∗ag
i

g∗ki +
∑
i∈C,

(i,k)∈X
∗bg
i

g∗ki

≤
∑
i∈A,

(i,k)∈Xi

gki + (
∑
i∈B,

(i,k)∈Xi

gki +
∑

(i,k)∈MB

gki )

+
∑
i∈C,

(i,k)∈Xi

gki +
∑

(i,k)∈MC

gki

=
∑

i∈{1,...,m}

∑
(i,k)∈Xi

gki +
∑

(i,k)∈M

gki

≤V + δV = (1 + δ)V

Thus V ≥ 1
1+δV

∗ as claimed.
Note that our result is consistent with but more general

than that in [3] which considers the same scheduling
problem in a single-hop OFDMA-based network where
all MSs interfere with each other (no spatial reuse), i.e.,
the interference degree is 1. In [3], the authors showed
a simple greedy algorithm has an approximation ratio of
1
2 . By applying our theorem, we can also obtain the same
approximation ratio for the simple greedy algorithm.
However, our result is more general since it can be used
for the case where any pair of links may or may not
interfere with each other.



Combining Theorem 3 with Theorems 1&2, we have:
Corollary 1: The simple greedy algorithm has an

approximation ratio of 1
5 for any 2-hop relay network

where δ ≤ 4 and 1
15 for any general h-hop relay network

where δ ≤ 14.

B. The Weighted Degree Greedy Algorithm

The simple greedy algorithm always selects the link-
block pair with the maximum utility gain even if this
may make the block unavailable to serve a set of non-
interfering links, which could contribute more utility
gain. To improve it, we present another greedy algorithm
that makes the greedy choice based on the ratio of the
possible loss to the gain (similar to the price-quality
ratio). Simulation results showed that such greedy selec-
tion does make some improvements on average cases.

We first define the contention graph GC = (VC , EC),
where each vertex in VC corresponds to a link and
there exists an undirected edge connecting two vertices
if the corresponding links interfere with each other.
The weight of each vertex (link) for block k is set to
wk

i ← qi min{q′i, rki }, which is the utility gain achieved
by assigning block k to link ei. We then define the
weighted interference degree of link ei in GC for block

k as dkw(i, GC) =
maxEi

∑
ej∈Ei

wk
j

wk
i

, where Ei is a set of
non-interfering links that interfere with link ei. Usually,
there are multiple such non-interfering link sets for a
link ei. We select the set with the maximum total utility
gain to calculate the weighted interference degree. Note
that GC is block dependent and it changes during the
execution of the algorithm.

Algorithm 2 The Weighted Degree Greedy Algorithm
Step 1 X← 0; Q′ ← Q;
Step 2 (ibest, kbest)← argmin(i,k) d

k
w(i, GC);

if wkbest
ibest

= 0 return X;
Step 3 xkbest

ibest
← 1;

q′ibest
← max{0, q′ibest

− rkibest
};

L← L \ {(ibest, kbest)};
forall j : Ijibest

= 1 do L← L \ {(j, kbest)};
if L = ∅ return X;

Step 4 goto Step 2;

In Step 2, the weighted degree of each link can
be computed in polynomial time since according to
Theorems 1 and 2, the size of any set of non-interfering
links is bounded by a constant (4 for the 2-hop case
and 14 for the h-hop case). Hence, all such sets can be
enumerated in polynomial time. The other parts of the
algorithm are the same as the simple greedy algorithm.
Therefore, this greedy algorithm is a polynomial time
algorithm.

C. The Maximum Weighted Independent Set (MWIS)
Algorithm

The basic idea of the MWIS algorithm is to assign a
block to a maximal set of non-interfering links in each
step and keep doing it until all blocks are assigned.

Algorithm 3 The MWIS Algorithm
Step 1 X← 0; Q′ ← Q; k ← 1;
Step 2 Construct a weighted contention graph GC ;
Step 3 Use an MWIS algorithm to find an independent

set EIS in GC ;
forall ei ∈ EIS do
xk
i ← 1; q′i ← max{0, q′i − rki };

endforall
Step 4 if k = K return X;

k ← k + 1;
goto Step 2;

Algorithm 3 assigns K blocks one by one. Essentially,
a block can be allocated to a maximal set of non-
interfering links (an independent set in GC) to maximize
spatial utilization. Steps 2 and 3 determine which subset
of non-interfering links the current block k should be
assigned to. The objective is to maximize the utility
gain. We also use a contention graph GC = (VC , EC)
described above to assist the computation. Similarly, the
weight of each vertex (link) in GC for block k is set to
wk

i ← qi min{q′i, rki }, which is the utility gain achieved
by assigning block k to link ei. Note this weight changes
during the execution of the algorithm. Therefore, we
construct a GC for every block k. In each step, the
maximum utility gain can be achieved by finding an
MWIS on GC . However, the MWIS problem is a well-
known NP-hard problem [21]. Any MWIS algorithm in
the literature [21] can be applied here. Note that the
MWIS subproblem can be solved exactly in polynomial
time for any 2-hop relay network because the proof of
Theorem 1 implies that the size of any independent set
in this case is at most 4. So we can enumerate all of
them in polynomial time.

In the simulation, we used the greedy approximation
algorithm described in [21] to compute a maximal in-
dependent set EIS in GC . This algorithm repeatedly
selects a vertex (link) with the minimum weighted
degree, puts it into the result set, and removes this
vertex and all its neighbors from GC , until GC becomes
empty. The weighted degree of a vertex v in GC is
defined as dw(v) =

∑
v′∈Nv

wv′

wv
, where Nv denotes

the set of neighbors of v in GC . This algorithm has
been shown to have an approximation ratio of 1

1+η ,
where η = maxv∈VC

dw(v) [21]. The running time for
computing an MWIS in GC is O(m2∆2), where ∆ is
the maximum vertex degree in GC . In Algorithm 3, the



loop from Step 2 to Step 4 will be executed K times and
Step 3 dominates its running time. Therefore, the time
complexity of the MWIS algorithm is O(m2∆2K).

D. The LP Rounding Algorithm
LP rounding is a common approach for solving

ILP problems. The critical part of LP rounding is the
rounding scheme, where the rounding algorithm decides
which variable(s) should be rounded to 1. Basically, our
algorithm determines the values of a subset of variables
by solving the relaxed LP and then updates the LP in
each step. It keeps doing this until the values of all
variables are determined.

For our scheduling problem, we found out that a trivial
rounding scheme usually results in poor performance,
since after rounding, it is very likely that the rate sum-
mation of all the blocks allocated to a link outnumbers
its queue length. In this case, part of channel capacity
is wasted and the values of variables xk

i are not tightly
fixed in the LP solution. In other words, it is possible to
increase the value of some xk

i and decrease the value of
another xk′

i while keeping the LP solution’s feasibility
and utility value. However, such a randomness in the LP
solution may result in different MILP solutions and often
causes a low quality MILP solution. In Algorithm 4, we
propose a novel rounding scheme. Our idea is to figure
out the maximum possible value of each variable in the
LP solution to eliminate the aforementioned randomness.
Unlike other rounding methods, we consider two factors
for making a rounding decision: the value of each
variable in the LP solution and the maximum possible
utility gain that can be provided by this variable (its
potential).

Our LP rounding algorithm starts by sorting link-block
pairs according to their maximum achievable utility
gains. Next, we relax the original MILP problem P to
an LP problem P ′ that can be solved by any existing
LP solving algorithm [5]. In Step 3, we select those
link-block pairs that not only are selected by the LP
solution but also appear on the top of the link-block pair
list L. So we round the corresponding variables xk

i to
1 and all variables xk

j : Iji = 1 to 0 (variables corre-
sponding to interfering link-block pairs), remove all the
corresponding link-block pairs from L, and update P ′.
The rounding subroutine, Round(·), performs the above
steps, which guarantee that the interference constraints
in the original MILP are not violated. Step 3 terminates
when we find that a channel-block pair with the largest
utility gain among those not selected by the LP solution.
Notice that the failure to select this link-block pair in the
LP solution may be due to the randomness. We eliminate
the randomness in Step 4 by finding the maximum
possible xk

i value for each link-block pair that has not
been selected so far under the constraint that the utility

Algorithm 4 The LP Rounding Algorithm
Step 1 Sort all the link-block pairs in L in the descend-

ing order of qirki ;
Step 2 Solve the LP relaxation P ′ of the MILP problem

P defined in Section IV;
Step 3 forall (i, k) ∈ L do

if xk
i = 1 in the solution of P ′ then

Round(xk
i );

else break;
endforall

Step 4 forall (i, k) ∈ L do
Solve a new LP problem P ′′ which is the same

as P ′ except that its objective is to maximize xk
i

and it has one more constraint fixing the value
of the utility function (1) to that given by the
solution of P ′;

if xk
i = 1 in the solution of P ′′ then

Round(xk
i );

endforall
Step 5 if (L ̸= ∅)

then Select (i, k) ∈ L with the maximum value
of xk

i in the solution of P ′′ from Step 4 and
Round(xk

i );
Step 6 if L = ∅ return X;

goto Step 2;

function value is conserved, i.e., finding their potentials.
This can be done by solving a series of LPs. In effect,
Step 4 looks for more variables and confirms their value
assignments. So far our algorithm has not rounded any
variable from a fractional value to 1 yet. Consequently,
the utility value remains equal to that given by the LP P ′.
After Step 4, none of the remaining undecided variables
can be rounded to 1 without reducing the utility value.
Hence, we select a link-block pair with the largest value
of xk

i and round the corresponding variable to 1 in
Step 5. It is possible to select multiple non-conflicting
variables in Step 5 and round all of them to 1 at once.
This will speed up the algorithm at the likely cost of
reducing the solution quality. It terminates when the
values of all the variables are decided.

The LP rounding algorithm is obviously a polynomial
time algorithm since all the LP problems can be solved
in polynomial time. In the worst case, we may need to
solve many LPs. However, the algorithm is time efficient
in practice because it can often round many variables in
each loop, and once a variable has been rounded to 1 (a
link-block pair is selected), all variables corresponding
to the interfering link-block pairs will be rounded to 0.

VII. NUMERICAL RESULTS

In this section, we present simulation results to show
the performance of the proposed algorithms. The ILOG



CPLEX 10.1 [7] was used to solve all the LP and
MILP problems. Optimal solutions obtained by the
CPLEX were used as the benchmark for performance
comparison. Note that we were not able to compare our
algorithms with the algorithms in closely related works
such as [15], [16] because we used a different objective
function (See the problem definition in Section IV) and
it is not trivial to modify their algorithms to achieve the
objective considered here.

We set the transmission range to 1km and the inter-
ference range to 2km. For scenarios regarding h-hop
networks, we uniformly placed all nodes in a 5km×5km
square region. For scenarios regarding 2-hop networks,
we uniformly placed all nodes in a circle with a radius of
2km. The BS was always placed at the center of the re-
gion. We used the Breadth First Search (BFS) algorithm
to construct routing trees rooted at the BS. All non-leaf
nodes served as RSs in the simulation. We calculated
path losses for all links using the model described
in [19]. The effective propagation exponent calculated
from the model is 3.3. To reflect the heterogeneous
channel fading, we let the path loss fluctuate around the
calculated mean value according to the Rayleigh dis-
tribution. According to the WiMAX standard [1], there
are 7 adaptive modulation schemes: BPSK 1

2 , QPSK 1
2 ,

QPSK 3
4 , 16QAM 1

2 , 16QAM 3
4 , 64QAM 2

3 , and 64QAM 3
4

which can support 0.5, 1, 1.5, 2, 3, 4, and 4.5 bits
per symbol respectively. Since the symbol rate is fixed,
we normalized the link data rates to {1, 2, 3, 4, 6, 8, 9}.
Since we assume that all nodes transmit at the same
fixed power level, the data rate of a link is computed
by applying a stair function to the path loss, resulting
in one of the 7 possible data rates. Traffic demands
(queue lengths) were randomly generated according to
the binomial distribution. The mean value was fixed for
all nodes in one scenario but varied in different scenarios.
The results are shown in Figs. 5–6.

In the scenarios corresponding to Fig. 5, we fixed the
network size to 30 and varied the mean queue length.
We compared the performance of the four proposed
algorithms against the optimum solutions obtained by
solving the MILP problem. The quality of a solution
given by a proposed algorithm was measured by dividing
its utility value by the corresponding optimum value. We
make the following observations:
1) All the proposed algorithms offer decent perfor-

mance. Specifically, they all achieve at least 91% of
the optimum utility values. Their performance are also
stable with regards to different traffic loads. Note that the
longer the mean queue length is, the heavier the traffic
load becomes.
2) The LP rounding algorithm performs best. On aver-

age, it outperforms the simple greedy algorithm by 5.4%,
the weighted degree greedy algorithm (labeled as “WD-

Greedy”) by 2.3%, and the MWIS algorithm by 5.2%.
In most cases, the LP rounding algorithm can find a
solution with a utility difference of 1% to the optimum
value. It can often find the optimum solutions.

In summary, on average cases, the LP rounding al-
gorithm performs best. However, it has a high time
complexity and is hard to implement. In most cases, the
weighted degree greedy algorithm performs better than
the simple greedy algorithm as expected at the cost of
longer running time. In relatively sparse networks (i.e.,
the maximum vertex degree in the contention graph, ∆,
is a small constant), the MWIS algorithm has the lowest
time complexity. It offers quite similar performance as
the simple greedy algorithm. The simple greedy algo-
rithm is easy to implement and provides comparable
performance as the other three algorithms on average
cases. It has a constant approximation ratio and thus can
provide performance guarantees in the worst case.

In the scenarios related to Fig. 6, we fixed the mean
queue length and varied the network size. In each of
such scenarios, we do not show the results acquired by
solving the MILP problem because it took a long time
for the ILP solver to find optimum solutions in large
networks. We found for those small size networks, the
utility values given by the LP rounding are very close to
the corresponding optimum values. The performance of
the proposed algorithms was measured in terms of the
utility value. We make the following observations:
1) As in the previous scenarios, the LP rounding

algorithm performs the best and all other algorithms
have comparable performance. In these scenarios, on
average, it improves the utility values by 8.7% compared
to the simple greedy algorithm, by 2.8% compared to
the weighted degree greedy algorithm, and by 8.2%
compared to the MWIS algorithm.
2) The utility value increases with network size be-

cause a larger network includes more links and has
heavier traffic load.

VIII. CONCLUSIONS

We studied a scheduling problem in OFDMA-based
wireless relay networks with consideration for multi-
user diversity, channel diversity and spatial reuse. First,
we presented an MILP formulation to provide optimum
solutions. We also showed that the interference degree
is at most 4 for any 2-hop relay network and 14 for
any general h-hop (h ≥ 2) relay network. Furthermore,
we presented a greedy algorithms for the scheduling
problem and showed it has a constant approximation
ratio. In addition, we presented three other algorithms,
namely, the weighted degree greedy algorithm, the
MWIS algorithm and the LP rounding algorithm, to
solve the problem. Extensive simulation results showed
that the LP rounding algorithm performs best and always
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Fig. 5. Solution quality VS. queue length
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(a) 2-hop networks with 128 blocks
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(b) h-hop networks with 128 blocks
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(c) h-hop networks with 24 blocks

Fig. 6. Utility value VS. network size

provides close-to-optimum solutions. The performance
of the simple greedy algorithms is comparable to that of
the other algorithms.
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