

Semantics versus Syntax versus Computations 5

Theorem 8 (Seth [Set92]). The class of basic polynomial-time clocked functionals correspond
on (w -+ w) to the class of basic polynomial-time functionals.

Therefore, the classes of type-2 basic feasible functionals, basic polynomial-time function
als, and basic polynomial-time clocked functionals all correspond on w -+ w, which is fairly
good evidence that this class of functionals is robust.

4. Polynomial-Time Effective Operations

4.1. Definitions

We now consider how to define a sensible polynomial-time analog of an effective operation. To
start, let us reconsider apply: w2 __.. w from page 1. For most straightforward implementations
we would have that the cost of computing apply(p, x) is at least <l>p(x) and is bounded above by
(cJ> P (x)) O(l). It seems reasonable, then, that an account of the cost of computing an effective
operation would include some dependence on the costs of running the program argument on
various values during the course of the computation. Proposition 18 of the appendix shows that
this dependence is, in fact, necessary to obtain a nontrivial notion.

We thus introduce the following definition, which is along the lines of Definition 5. Recall
that, for all p, x, and n, �<�J�>�~�(�x�)� 2: max(lpl, lxl, irpp(x)i) and �~�(�n�)� =max{ �c�J�>�~�(�x�)�:� lxl :S n }.

Definition 9. r: R x w -+ w is a polynomial-time effective operation if and only if there exist
a partial recursive a: w2 __.. w and a second-order polynomial q such that a determines r (as
an effective operation on R) and, for all p with IPp total and all a E w, a(p, a) is computable
within time �q�(�~�.� lal).7 ()

Clearly, each basic polynomial-time functional corresponds on R to some polynomial-time
effective operation. However, Definition 9 isn't terribly satisfactory. It has the same problems
noted of Definition 5--only worse, as it will tum out. To address these problems we introduce a
clocked version of polynomial-time effective operation analogous to Seth's notion of Definition
7. But there is a difficulty in the way of this. In the computation of an effective operation, there
are neither oracle calls nor reliable ways of telling when, for particular po and xo, I'{Jp0 (xo) is
evaluated. Hence, it is a puzzle how a clocking mechanism is to gather appropriate information
to approximate �q�(�~�.� Ia I). Our solution is an appeal to bureaucracy-we make clocked Turing
machines computing effective operations fill out standardized forms to justify their expenses.
That is, we equip the machines computing effective operations with UN IV, a standard subrou
tine that computes).p, x .rpp(x), and when UNIV is called on arguments (p, xo), we use the
number of steps UN IV simulates of rp-program p on input x0 as data for our lower approxima
tion of �q�(�~�.� Ia 1). Thus, one of these clocked machines has, at each point of each computation,
an observable, verifiable justification for the amount of time it has consumed. These machines
for computing effective operations are perfectly free to use means other than UN IV to evaluate
<fJp(xo) for various xo, but UN IV is the only means for justifying big run times to the clocking
mechanism. Here are the details.

7Note that this notion (and the notions of Definitions l(a) and 10) is implicitly parameterized by our choices of tp

and ct>. Also note that by rights these functionals should be called the 'basic polynomial-time effective operations'
to indicate a bit of reservation about this class being the "correct" polynomial-time analogs of effective operations.
While this reservation is quite reasonable, the terminology is already too long-winded. Thus, I've avoided using
"basic" in this and the other terminology of sections 4 and 5.

November 30, 1994

6 Semantics versus Syntax versus Computations

Definition 10.
(a) Let UN IV denote a fixed TM subroutine that takes two arguments p0 and x0 and step

by-step simulates rp-program Po on input x0 until, if ever, the simulation runs to its conclusion,
at which time UN IV writes fPp0 (xo) and <Pp0 (xo) on two separate tapes and erases all of its other
tapes. We assume UNIV on arguments (p0 , x0) runs in (<Pp0 (x0)) 0 (I) time.

(b) A special Turing machine (STM) M is a Turing machine defined as follows. M takes
two inputs (p, x). M includes UN IV as a subroutine. M's instructions outside of UN IV do not
write on any ofUNIV's tapes except UNIV's inputtape. When M is running UN IV on arguments
(p0 , x0) and p0 = p, we say that M is making a normal query.8 By convention, whenever an
STM exits from a call to UN IV, the next instruction executed cannot be another call to UN IV.

(c) Suppose M is an STM, q is a polynomial over two variables, and m E w. Let Mq,m be
the STM that, on input (p, a), operates as follows. Mq,m maintains a counter clock and two
arrays x[O .. m] and y[O .. m - 1]. Mq,m maintains the invariants: x[O] = q(O, Ia!); X(i + 1] =
q(y[i], lal), i < m; and

. ({ lxol ::::: x[i] and the normal query }) .
y[z] = max I<Pp(xo)l : () ? h b d , z < m. rp P xo =. as een rna e

On start up, Mq,m initializes clock, X, andy exactly as Mq,m does. Then, Mq,m simulates M,

step by step, on input (p, a). For each step of M simulated:

• If the step of M just simulated was part of a nonnal query, but the next step of M to be simulated is not (i.e.,
we are returning from a call to UN IV on (p, x0) for some x0), then, if necessary, Mq,m recomputes the x[i]'s
and y[i]'s to re-establish the invariants.

• If, in the step of M just simulated, M halts with output y, then Mq.m outputs y and halts.

• If M did not halt in the step just simulated, then the value of clock is increased by I and, if clock < x[m] or
if the step of M just simulated was part of a normal query, then the simulation continues; otherwise, Mq,m
outputs 0 and halts.

(d) r: (w __, w) x w __, w is a polynomial-time clocked effective operation if and only if
there exists an Mq,m such that, for all p and x, r(rpp, x) = Mq,m(p, x). 0

Note that a polynomial-time clocked effective operation has domain PR x w, whereas a
polynomial-time effective operation has just R x was its domain, but a polynomial-time clocked
effective operation when restricted to R x w corresponds to some polynomial-time effective
operation. 9

4.2. Comparisons

Section 3 concluded by stating the correspondence on w ~ w of the classes type-2 basic feasible
functionals, basic polynomial-time functionals, and basic polynomial-time clocked functionals.
Here, complexity theoretic conundrums preclude having such a neat or conclusive story.

We first show that if P = NP, then the type-2 basic feasible functionals and the polynom
ial-time clocked effective operations fail to correspond on R. We make use of the following

8Thus, a nonnal query to UN IV is like a query to an oracle for the rp-universal function to find the value of rpp(x0 },

except we are bereft of divine inspiration and have to work out the answer to the query.
9 Also note that this clocking scheme is based on sequential queries to UN IV. This causes a problem for nontotal

function arguments. For example, the functional OR 11 from (I) is intuitively feasibly computable, but it is easy to
show that OR11 is not a polynomial-time clocked effective operation.

November 30, 1994

Semantics versus Syntax versus Computations

functional. For each a: w __.,_ w and x e w, define

{
t. if(i): forsomey e {0, 1}1xl, a(y)t;

fo(a, x) = 1, if (ii): not (i) and (3y e { 0, 1 Jlxl)[a(y) is odd];

0, if (iii): not (i) and 0fy e { 0, 1 Jlxl)[a(y) is even].

Proposition 11.
(a) The restriction of r 0 to (w ~ w) x w is not basic feasible.1 0

(b) If P = NP, then r 0 is a polynomial-time clocked effective operation.

7

Thus, if the analog of the Kreisel-Lacombe-Shoenfield Theorem holds for the classes of
functionals here under consideration, then P =f: NP. Remark 19 in the appendix notes that one
can weaken the P = NP hypothesis of Proposition 11 (b). Proving the failure of this polynomial
time analog of the KLS Theorem seems problematic because of the following proposition.

Proposition 12. There is an oracle relative11 to which evezy polynomial-time effective opera
tion corresponds on 1?, to some basic polynomial-time functional.

Similar difficulties arise in comparing the polynomial-time clocked and unclocked effective
operations.

Proposition 13.
(a) If P = NP, then the polynomial-time effective operations correspond on 1?, to the poly

nomial-time clocked effective operations.
(b) There is an oracle relative to which there is a polynomial-time effective operation that

fails to correspond on 1?, to any polynomial-time clocked effective operation.

The question with which we started was whether, in a polynomial-time setting, effective
operations have an efficiency advantage over black-box style functionals. The above results
demonstrate that there is little hope of resolving this question with present-day complexity the
ory. Since we've hit an apparent dead end with the original question, let us change the question
a bit and ask instead to what extent can one open up the black boxes and still obtain a provable
equivalence with the black-box models. The next section investigates one approach to this.

5. Functionals Determined by Computations over Computations

5.1. Definitions

Machines computing black-box style functionals have access only to the i/o behavior of their
"procedural" parameters. Here we consider a style of functional where the machines computing
them have access only to the computational behavior of their "procedural" parameter. Ideally,
what we would like is a model where a machine computing a functional has the "text" of its pro
cedural parameter hidden, but in which the machine can run its procedural parameter step-by
step on various arguments and observe the results, i.e., observe traces of computations evolve.
In this paper we settle for a simplified/sanitized version of the above model which is still in the
same spirit. In the model we use, machines computing a functional are supplied with an oracle

10Moreover, there is an honest, exponential-time computable function g such that, for each q and m, there is an
n for which r 0 (g, 0") =f Mq,m(g, 0").

11 Note: All the oracle results of this paper involve full relativizations.

November 30, 1994

8 Semantics versus Syntax versus Computations

that corresponds to the functional's procedural parameter as follows. When queried on (x, Ok),
the oracle returns the result of running the procedural parameter on argument x, provided the
procedural parameter produces an answer within k steps; if this is not the case, then the ora
cle returns*· indicating "no answer yet." (Think of this model as providing black boxes with
cranks attached that you have to turn a requisite number of times to receive an answer.) Below
we formalize shreds (~ faint traces), a class of functions corresponding to such oracles, and
computation systems, the recursion/complexity theoretic inspiration of shreds.

Notation: Define w* = w U { *}, where* ¢ w. Let -r denote a copy of w where the elements
of-rare understood to be represented in unary over 0*. Also lett (with and without decorations)
range over elements of -r.

Definition 14.
(a) Suppose qi"is a acceptable programming system and¢ is a complexity measure associ

ated with q;. The computation system for q; and ¢ is the recursive function x: w2 x -r --+ w*
defined by

(2) X =).p, X, t. { qJp(X),

*·
if <i>p(X) ::: t;
otherwise.

We usually write Xp(X, t) for x(p, X, t). Let X be the computation system associated with cp
and <1>, our standard acceptable programming system and associated complexity measure.

(b) A functions: w x -r --+ w* is a shred if and only if for each x, either (i) for all t, s (x, t) =
*• or else (ii) there are y E w and to E -r such that, for all t < to, s (x, t) = * and, for all t ~ to,
s(x, t) = y. (Thus, each Xp is a shred.)

(c) Supposes is a shred. We define KS =).x. (JLt)[s(x, t) =I*] and ts =).x. [s(x, (Ks)(x)),
if (K s) (x) ..j..; undefined, otherwise]. We also define K s =).n . max { (K s) (x) : lx I ::: n } . (Thus,
for each p, tXp = ({Jp, KXp = <l>p. and KXp = <l>p.)

(d) sall denotes the collection of all shreds.
(e) For each S ~ San. tS denotes { ts : s E S} and tot(S) denotes { s E S : ts is total}.
(f) For each computation system f, Sx denotes { Xp : p E w }. <>

The right hand side of (2) is a familiar tool from numerous recursion and complexity the-
oretic arguments. In most of these arguments the right hand side of (2) embodies all the in
formation one needs about the computations of qJ-programs; hence, for such arguments, shreds
represent an adequate black box for computations.

Our next goal is to formalize an analog of the notion of effective operation where shreds
take over the role played by programs in Definition l(a).

Notation: Swill range over subsets of San· M will range over OTMs whose function oracles
range over sail·

Definition 15. Supposes is such that n ~ tS and suppose r: n X w ~ w.
(a) We say that an OTM M is extensional with respect to S if and only if for all sands' E S

and all a E w, if ts = ts' then M(s, a)= M(s', a).
(b) We say that r is an effective shred-operation with respect to S if and only if there is an

OTM M that is extensional with respect to S such that, for all s E Sand a E w, r(ts, a) =
M(s, a); we say that M determines r.

(c) r is a polynomial-time effective shred-operation with respect to S if and only if there is
an extensional (wrt S) OTM Manda second order polynomial q such that, for all s E Sand
a ew:

1. r(ts, a)= M(s, a).

2. Oninput(s,a),Mrunswithinq(Ks, lal)time. <>

November 30, 1994

Semantics versus Syntax versus Computations 9

For each of the notions just defined, when the collection S is understood, we usually sup
press mention of it. 12

Definition 15(c) suffers from apparent difficulties analogous to the problems with Defini
tions 5 and 9-the bound q(K s, Ia I) isn't generally feasibly computable and the totality restric
tion is a nuisance. So, as in sections 3 and 4, here we introduce a clocked version of the pri
mary functional notion. Our clocking scheme is again based on the petty bureaucratic measure
of having clocked machines fill out standardized forms to justify their expenses. In the present
case this means that we equip OTMs computing our clocked functionals with a subroutine RUN
which is as follows. Supposes E Sa11 is the function oracle of one of these OTM's. When an
OTM calls RUN on x E w, the result is either (i) (s(x, 02\ 02k) is returned, if there exists a

k' such that s (x, 02e) i= * and k is the least such k'; (ii) the calling OTM goes undefined, if
no such k' exists. 13 The 02k values returned by calls to RUN are used as data for running our
lower approximation of q(Ks', lai) in the same way we used the run times from calls to UNIV
in Definition 10 as data for the running of our lower approximation of q(<l>p. Ia I). We call the
class of functionals determined by such (extensional) machines the polynomial-time effective
clocked shred-operations. Definition 20 in the appendix provides the formal definitions. 14

5.2. Comparisons

The program behind our formalization of shreds and effective shred-operations was: (i) to see if
we could partially open up black boxes in some complexity-theoretically interesting fashion, (ii)
to formalize a natural class of functionals based on these partially open black boxes that would
be analogous to the polynomial-time effective operations, and (iii) to see if we could provably
compare this new class offunctionals to the basic polynomial-time functionals. Proposition 16
delivers this comparison.

Recall from Definition 14 that x denotes the computation system associated with cp and <1>,
our standard, Turing machine-based acceptable programming system and associated complexity
measure. Also recall from that definition that Sx denotes the collection { Xp : p E w}, which
is roughly the collection of all (sanitized) Turing machine traces.

Proposition 16. The following classes of functionals all correspond on R:
(a) The polynomial-time effective shred-operations with respect to Sx.
(b) The polynomial-time clocked effective shred-operations with respect to Sx.
(c) The basic polynomial-time functionals. 15

12Parameterizing these notions with respect to the class S is a bit irritating, but an analogous parameterization
(with respect to the acceptable programming system rp) is implicit in the notion of effective operation.

13Note if RUN(x) returns (s(x, 02'), 02k), then KS(X) ::::: 2k < 2. Ks(x), and, hence, s(x, 02') = ts(x). Also note
that RUN(x) can be computed with only 1 + log2 Ks(x) calls to s. Moreover, assuming that, for all x, Ks(x) 2: lxl,
the total time to compute RUN(x) is E>(Ks(x) log2 Ks(x)).

14 Note that a polynomial-time clocked effective shred-operation has domain 'P'R. x w, whereas a polynomial
time effective shred-operation has just n x was its domain, but a polynomial-time clocked effective shred-operation
when restricted to n x w corresponds to some polynomial-time effective shred-operation.

Also note that this clocking scheme is based on sequential calls to RUN, and this causes problems for shred oracles
outside oftot(S.u), e.g., it is easy to show that ORI1 = >..s, x .OR 11 (ts, x) (where OR11 is as in (1)) fails to be a poly
nomial-time clocked shred functional. We can rectify this problem by generalizing our clocking notion as follows.
Replace the subroutine RUN above with a subroutine RACE that takes a nonempty list x of elements of w. A call to
RACE on x results in: (i) (s(x, 02k), x, 02k), where k is the least number such that, for some x' in x, s(x', 02k) ::j:. *
and x is the least such x'; or (ii) the calling OTM going undefined if no such k exists. Everything else can go as
before. Clearly, ORu can be computed by such clocked machines. We call the class of functionals determined by
such (extensional) machines the polynomial-time parallel-clocked effective shred-operations.

15We can also add: (d) The polynomial-time parallel-clocked effective shred-operations.

November 30, 1994

10 Semantics versus Syntax versus Computations

The correspondence of (a) and (b) is the shred analog of Seth's Theorem 8 and the correspon
dence of (a) and (c) is the polynomial-time/shred analog of the Kreisel-Lacombe-Shoenfield
Theorem (Theorem 3). Thus, one can partially open up black boxes and obtain something like
the classical recursion theoretic correspondences of Theorems 2 and 3.16

6. Further Problems

The results of section 4 indicate that the original question of whether a polynomial-time analog
of the Kreisel-Lacombe-Shoenfield Theorem holds is, like P = NP?, yet another technically in
tractable complexity theoretic problem. How important a problem this is, I can't say. Some of
the key problems in contemporary programming languages center around the issue of informa
tion hiding, e.g., data structures that hide their implementations. My guess is that some of these
programming language problems can be sharpened to the point where they become interesting
complexity theoretic questions, and in such a context the polynomial-time KLS problem may
play an interesting role.

Section 5 showed that by weakening the notion of effective operation one can obtain a poly
mial-time analog of the Kreisel-Lacombe-Shoenfield Theorem. One obvious question left open
is whether one can replace shreds with real traces and still obtain the equivalence. My guess is
"yes." Computations can be very coy about what they are up to until very late in their course,
e.g., they can run lots of unrelated subcomputations and leave until the very end which of these
subcomputations are used to produce the final result of the main computation.

In the theory of programming languages, the effectively continuous functionals (Definition
1(c)) and their generalizations play a much greater role than the partial recursive functionals
(Definition 1(b)). So, another set of problems concerns the polynomial-time parallel-clocked
effective shred-operations of footnote 14. These functionals in some respects resemble the ef
fective continuous functionals. How close is this resemblance? Can one obtain a language char
acterization of this class along the lines of Cook and Kapron's characterizations of the basic
feasible functionals [CK90] or of Plotkin's PCF [Plo77]? Can one define a more general class
of "polynomial-time effective shred-operations" on P'R x w (as opposed to just 'R x w) and
compare these to the parallel-clocked ones?

I am curious to see if the ideas and results presented above are useful in extending type-2
complexity beyond (and below) polynomial-time to develop a general, machine-based theory
of type-2 computational complexity. Additionally, I am hopeful that shreds, or something like
them, will be of help in sorting out useful machine models for computation at above type 2.
Functional programming techniques like continuations and monads are naturally set at type 3. It
would be great fun to have good type-3 machine models so as to subject algorithms built through
such techniques to complexity analyses. 17

16If one replaces Sx with either San or Scomp = { s E S.u : s is computable} in Proposition 16, the analogous
results are true and simpler to prove. However, consider M, an OTM computing a polynomial-time effective shred
operation with respect to Sx. M has as its oracle something that reasonably represents the computations of an ac

tual TM program. Hence, the polynomial-time effective shred-operations with respect to Sx correspond much more
closely to polynomial-time effective operations than the polynomial-time effective shred-operations with respect to
either Sa11 or Scomp. There are difficulties with the use of Sx in Proposition 16. The current proof of the proposition
makes shameless use of special complexity properties of the TM model, and it is not clear how far the proposition
generalizes to apply to a broad class of computation systems. Remark 21 in the appendix discusses these problems
in more detail.

17Recently Seth [Set94] gave an extension of the Kapron and Cook Theorem (Theorem 6 above) to all finite types.

November 30, 1994

Semantics versus Syntax versus Computations 11

A. Technical Details

A.l. Background Proofs and Results

Here we present proofs of the Kreisel-Lacombe-Shoenfield Theorem and Seth's Clocking The
orem, as ideas from these arguments play important parts in the proofs of our Propositions 12
and 16. The proof of Theorem 3 is based on the one given in Rogers [Rog67]. The proof of
Theorem 8 is a considerable simplification of the one given in [Set92]. (Seth's original proof
had other goals besides simply establishing Theorem 8.)

Theorem 3 (The Kreisel-Lacombe-Sboenfield Theorem [KLS57]). Each total effective op
eration on R corresponds on R to an effective continuous functional.

Proof. Notation: For each a, a function of finite domain, define u = Ax .[a(x), if a(x)..J,;

0, otherwise]. We also define, for each p and s, 'P~ = AX.[fPp(x), if x and <l>p(x) _:::: s; t.
otherwise]. We assume a fixed canonical indexing of functions of finite domain; a _:::: s means
a's index is_:::: s.

Suppose pis such that 'Pp determines a total effective operation F on R. We construct an
effectively continuous functional G: (w ~ w) x w ~ w such that F and G correspond on R.

By the parametric recursion theorem [Rog67, RC94], there is a recursive function r such
that, for all i, 'Pr(i) = Us:;:-:0 'Pr(i),s• where, for all i and s,

(3)

'Pf(x), if(i): qJ~(i)torqJ~(i)..J, =1- qJ~(r(i));

'Pi(x), if(ii): qJ~(i)..J, = qJ~(r(i))..J,; and,
for w = max(<l>p(i), <l>p(r(i)))

'Pr(i),s - AX. and, for all a _:::: s with 'Pi ~ a,

F@) = fPp(i);

ao(x), if(iii): otherwise, where ao is the
least a 2 'Pi with F@) =1- (/Jp(i).

We observe the following about the construction.

1. For all i and s, 'Pr(i),s ~ 'Pr(i),s+ I·

2. For all i and s, clause (iii) never holds in (3) because otherwise 'Pr(i) = 8Q, and hence
F((/Jr(i)) = 'Pp(r(i)) = (/Jp(i) =1- F(8Q), a contradiction.

3. If 'Pi is total, then for all but finitely many s, clause (ii) holds in (3), because otherwise
clause (i) would hold for all but finitely many s, and hence 'Pr(i) = 'Pi, but then F('Pi) =
'Pp(i) =1- 'Pp(r(i)) = F('Pr(i)), a contradiction.

Define

G - Aa.

(/Jp(j), if {i, s} is the least number such that
(a) <l>p(i}, <l>p(r(i)) ::::sand (b) for
w = <l>p(r(i)), 'Pi ~a, and where
j is a qJ-program for q;r;

t, if no such {i, s} exists.

Using the three observations, a straightforward argument shows that F and G coincide on R.
D

November 30, 1994

12 Semantics versus Syntax versus Computations

Theorem 8 (Seth's Clocking Theorem [Set92]). The class of basic polynomial-time clocked
functionals correspond on (w ---+ w) to the class basic polynomial-time functionals.

Proof Sketch. We need to show:
(a) Each Mq,m computes a basic polynomial-time functional.
(b) Each basic polynomial-time functional is computed by some Mq,m·
Proof of (a). Clearly, q£m] (If 1. Ia I) bounds the number of steps simulated by Mq,m on input

(f, a). The overhead of the clocking machinations blows up the run time by no more than a

quadratic amount. Hence there exists a constant c such that c · (q£m](lfl, Ia I))2 bounds the total
run time ofMq,m on input {f, a). Therefore, (a) follows.

Proof of (b). Suppose M is an OTM that computes r with time bound given by q, where
q is a second-order polynomial over g and x. We may assume without loss of generality that
q = q[m] for some first-order polynomial q and m E w. We show that, for all f: w ---+ wand
all a E w, M(f, a) = Mq,m(f, a). Fix f and a. Lett* be the number of steps taken by M on
input {f, a). By hypothesis, t* ~ q(lfl, Ia I). For each t ~ t*, define

{
f (x), if M on input {f, a) makes the query

fr = A.x • f (x) = ? within its first t steps;

0, otherwise.

(4)

A straightforward induction argument shows that, for each t ~ t*:
(i) After t steps, Mq,m on input (f, a) has q(lfr 1. Ia I) as the contents ofx[m].
{ii) M{fr, a)= Mq,m(fr, a).

HenceM{f1.,a) = Mq,m(fr.,a). Butby(4)itfollowsthatM{f,a) = M(fr.,a). Therefore,
M{f, a)= Mq,m(f. a), as claimed. Hence (b) follows. 0

We state without proof the following lemma about Turing machines of which we make use.

Lemma 17 (The Patching Lemma). For each cp-program p and for each finite function a,
there is an other cp-program Pa such that, for all x,

{
a(x), ifx E domain(a);

(/Jpa(x) = ({Jp(x), otherwise.
<I> () _ { lxl + la(x)l.

Pu X - <l>p(X),
ifx E domain(a);
otherwise.

A.2. Proofs and Proof Sketches for the Results of Sections 4 and 5

The following proposition implies that, for any non-trivial, polynomial-time analog of effective
operation, the "polynomial" upper bound of the cost of computing such thing needs to depend,
in part, on the costs of running the program argument on various values during the course of the
computation.

Proposition 18. Suppose that cp; determines a total effective operation on 'R and that there is
a second-order polynomial q such that, for all p with ({Jp total and all x, <l>;(p, x) runs within

q(lcppl. max{lpl, lxl)) time. Then, there is a polynomial-time computable f: w---+ w such that,
for all p with cp P total and all x, cp; (p, x) = f (x).

Proof. The argument is a variant of a standard proof of Rice's Theorem. (See Case's proof in
either of [DW83, DSW94].) Suppose by way of contradiction that

(5) there are po, PI· and x such that (/Jp0 and ({Jp1 are total and cp;(po. x) =I cp;(PI. x).

November 30, 1994

Semantics versus Syntax versus Computations 13

If cp Po = cp Pt, then, clearly, a is not extensional in its first argument, a contradiction. So, suppose
CfJpo # ({Jp 1• Without loss of generality, assume that q is monotone. Let g = J...n. max(ICfJpol(n),
ICfJp1 l(n)). By the recursion theorem there is a cp-program e such that, for ally,

{
0, if(i): <l>;(e, x) > q(g, max(lel, lxl));

CfJe(Y) = ({Jp1 (y), ~f (~~?: not (i) ~d cp;(e, x) = cp;(po, x);
({Jp0 (y), tf (m): otherwtse.

(6)

Note that the clauses (i), (ii), and (iii) in (6) do not depend on y. Also note that, whichever of
clauses (i), (ii), and (iii) hold, CfJe is total, and hence cp;(e, x)-1,. We consider the following three
exhaustive cases.

Case 1: Clause (i)in (6)holds. Then, CfJe = J...y.O. Hence by our hypotheses on i, <l>;(e, x) .:::;
q(lcpel. max(lel, lxl).:::; q(g, max(lel, lxl)), which contradicts clause (i).

Case 2: Clause (ii) in (6) holds. Then, CfJe = ({Jpp hence cp;(e, x) = cp;(pJ, x), by cp;'s
extensionality. But, since cp;(Pt. x) # cp;(po, x), this contradicts clause (ii).

Case 3: Clause (iii) in (6) holds. Then, CfJe = CfJpo• hence cp;(e, x) = cp;(po, x), by cp;'s
extensionality. But, in this clause, clause (ii) should hold, which contradicts clause (iii).

Thus, since(5) fails, we have that, for all Po and PI with CfJpo andcpp1 total andallx, cp;(po, x)
= cp;(pJ, x). Let p* be a cp-program for J...x .0. Then f = J...x .cp;(p*, x) is as required. 0

Recall from Section 4.2 that, for each a: w ----"- wand x E w,

{
t.

fo(a, x) =def 1,

0,

Proposition 11.

if (i): for some y E { 0, 1 }lxl, a(y)t;

if (ii): not (i) and (3y E { 0, 1 }lxl)[a(y) is odd];

if (iii): not (i) and 0fy E { 0, 1 }lxl)[a(y) is even].

(a) The restriction offo to (w ~ w) x w is not basic feasible. Moreover, there is an honest,
exponential-time computable function g such that, for each q and m, there is an n for which
fo(g, on)# Mq,m(g, on).

(b) If P = NP, then r o is a polynomial-time clocked effective operation.

Proof Sketch of Proposition 11. The proof of part (a) is a standard oracle construction, where
in this case, g is the oracle constructed.

For part (b), first consider the predicates:

P(p,om,on) _ (3xe{0,1}m)[<l>p(x)>n].

Q(p, on, XQ, XJ) - [lxol = lxtl & Xo _::::XI & (3x: Xo _::::X_:::: Xt)[<l>p(X) > n1].

R(p,Om,on) _ (3xe{0,1}m}[<l>p(x)_::::n and ({Jp(x)isodd].

Clearly, P, Q, and R both are nondeterministically decidable in time polynomial in the lengths
of their arguments. Hence, since P = NP, P, Q, and R are each in polynomial-time. Fix
polynomial-time decision procedures for P, Q, and R, and let q1 be a polynomial such that
q1 (the max over the lengths of all the arguments) > the run times of these procedures. Let 1/t
be the partial recursive function computed by the following informally stated program.

Program for 1/t.
Input p, x.

Set m ~ lx I and n ~ max(lp l.m).

November 30, 1994

14 Semantics versus Syntax versus Computations

While P(p, om, on) do

Use Q in a binary search to find an xo E { 0, 1 }m such that <l>p(xo) > n.

Set n +-- 2 · <l>p(xo). (Note: if<l>p(xo)t, then the program diverges.)

End while

If R(p, om, on) then output 1 else output 0.

End program

Clearly, 1/f = 'Ap, x. f'o(f{Jp, x). We argue that one can insert an appropriate clocking mech
anism into the above program so as to make it equivalent to an Mq,m· Note that throughout the
course of execution ofthe program we have that n :::_ max(! pi, m). Now, evaluating P(p, om,
on) in the while test takes q1 (n) time, and using Q in the binary search takes c · n · q1 (n) time for
some constant c. Determining <l>p(xo) can be done through a normal query to UNIV, and once
we know the value of <l>p(xo), we can bound the co~t of the next iteration by q2(<1>p(x0)), where
q2 is an appropriate polynomial such that, for all n, q2(n) > c · (2n + 2) · q1 (2n). Thus, with
appropriate choice of q, it is clear that we can transform the above program into an equivalent
Mq,I· Hence, part (b) follows. 0

Remark 19. The only use of the P = NP hypothesis in the argument for Proposition 11 (b) is in
making the predicates P, Q, and R polynomial-time decidable. One can exploit this to convert
the argument into a construction of an oracle relative to which: (i) 1 0 is again a polynomial
time clocked effective operation, and (ii) P =/=- NP. Hence P = NP is not equivalent to the
failure of the correspondence on R of the polynomial-time clocked effective operations the ba
sic polynomial-time functionals. 0

We delay discussing the proof of Proposition 12 until after we've shown Proposition 16,
since the ideas developed in the latter argument are used in the former.

Proposition 13.
(a) If P = NP, then the polynomial-time effective operations correspond on R to the poly

nomial-time clocked effective operations.
(b) There is an oracle relative to which there is a polynomial-time effective operation that

fails to correspond on R to any polynomial-time clocked effective operation.

Proof Sketch. Part (a). Suppose M determines a total polynomial-time effective operation on
R and that q is a second-order polynomial such that, for all p with cp P total and all x, M (p, x)
runs in time q(<l>p, lx 1). Without loss of generality, suppose q = q[k] for some polynomial q

and k E w. Using the P = NP hypothesis and the technique of the proof of Proposition 11,
construct a TM M' that (i) clockably computes q(<l>p, lxl) and then (ii) runs M on p and x. A
straightforward argument shows that M' corresponds to a Mq,m·

Part (b). We build an oracle A, relative to which the functional

(7) rA =)..j E R, X E (t). max{ f(y): IYI = lxl}

is a polynomial-time effective operation, but fails to correspond on R to any polynomial-time
clocked effective operation. This A is built by means of a simple coding and witness-hiding
construction.

Let (cp:) pew and (<I>:) pew respectively denote the standard relativizations of (cpp) pew and
(<I> p) pew to an oracle B. Let (Mi)iew be an effective indexing of the relativized Mq,m 's (where,

November 30, 1994

Semantics versus Syntax versus Computations 15

in this case, the relativization is to a set oracle). Also, for each i, let q; = q [mJ for the appropriate
q and m forM;.

We first determine A on strings of the form (p + 1, x, y) (p, x, y E w) as follows.

A((p+1,x,y)) = 0, if x ¢ 0* or y ¢ 0*.

1, if either (a) <I>; (m) > nor (b) for some j 2: 0,

n = <I>; (m) + 2j + 1 and 1 is the ph bit of the

binary expansion of max { rp: (x) : lx I = m } is 1 or

(c) for some j 2: 0, n = <l>;(m) + 2j and

j ::: I max{ rp:(x): lxl = m }I;

0, otherwise.

Note that, for each p, m, and n, since I (p + 1' om' on) I > n, there is no rpA-program p that, on
input X with lx I ::: n, can in its first n steps query A on (p + 1' om' on). From this definition of
A on { (p + 1, x, y) : p, x, y E w } , it is a simple argument that, no matter how we determine
the rest of A, the functional of (7) is a polynomial-time effective operation.

(8)

(9)

Now let po be a relativized program and c E w such that, for all oracles X and x e w,

rpffo<x) - (ttOm)[X(O, X, om)= 0].

<~>;,(x) < c · (max(lx\, lrpff0(x)\))2•

We define A on strings of the form (0, x, y) to make rp:0 total and to guarantee that, for each

M;A, there is an x such that M;A(po. x) # rA(rpp0 , x).
We determine A on { (0, x, y) : x, y E w } in stages. Define Ao: w ~ { 0, 1, *} as follows.

For each p, x, andy, define Ao((p + 1, x, y)) = A((p + 1, x, y)) and Ao((O, x, y)) = *· Also
define no = 0. At each stage i, determine A;+I: w ~ { 0, 1, *}and n;+I E w. For all i, the
A; 'sand n; 's will satisfy:

1. For all z, if A; (z) # *• then A;+I (z) = A; (z).

2. Aj 1({0, 1}) = { (p,x, y): p > Oor lxl < n; }.

3. There is an x such that M;Ai+J (po, x) # f(rppo• x), wherein the computation of M;Ai+l (po,
x) all the queries to Ai+I are in AN!1 ({ 0, 1 }).

The construction also arranges that lim;__,. 00 n; = oo so that defining A =)..z. lim;__,. 00 A; (z)
yields an A as required.

Stage i.

Let A' =)..z. [A; (z), if A; (z) =!= *; 0, otherwise].

Let n be the least number 2: n; such that
--A' 3 3 (a) <I>P0 (n)::: n and (b) q;()..z.z , n) < 2n.

Let k = IM((po, on)\.

(By (9) such an n must exist.)

Letx' be the leastnumberoflengthn such that in the computation of M((po, on), no number
of the form (0, x', y) is queried. (By (a) and (b), such an x' must exist.)

November 30, 1994

16 Semantics versus Syntax versus Computations

Set ni+I = 1 + max(k, qi()..z.z3 , n)) and, for each p, x, andy E w, define Ai+I as follows:

Ai+t ({p, X, y)) = A((p, X, y)), p > 0.

Ai+l ((0, X, y)) -

End stage i.

Ai((O, X, y)), if(i): Ai((O, X, y)) # *;

1,

0,

if (ii): not (i) and x = x' and y = Oj
for some j ~ k;

if (iii): not (i) and not (ii) and lx I < ni+ 1;

otherwise.

A straightforward argument shows that the Ai 's and ni 's are as required.

Definition 20.

0

(a) Let RUN denote a fixed OTM subroutine such that when an OTM calls RUN on x E w,
the result is

{
(s (x' 02\ 02k) is returned,

the calling OTM goes undefined,

if k = (JLk')[s(x, ozk') #*];and

if no such k exists.

(b) A special oracle Turing machine (SOTM) M is an oracle Turing machine defined as
follows. M takes an oracle s E Sail and an input x E w. M includes RUN as a subroutine and
obeys the same constraints M (of Definition 10) does with respect to UNIV.

(c) Suppose M is a SOTM, q is a polynomial over two variables, and m E w. Let Mq.m be
the SOTM that, on input (s, a), operates as follows. Mq,m maintains a counter clock and two
arrays x[O .. m] and y[O .. m - 1]. Mq,m maintains the invariants: X[O] = q(O, Ia I); X[i + 1] =
q(y[i], lal), i < m; and

[.] _ ({ ozk . lxl ~ x[i] and the call RUN(x) was }) .
y t - max . ad d d ((02k) ~t.?k) , t < m. m e an retume s x, , u-

On start up Mq,m initializes clock, x, andy exactly as Mq,m does. Then, Mq,m simulates M step
by step on input (s, a). For each step of M simulated:

• If the step of M just simulated was the last step of an execution of RUN, then, if necessary, Mq.m recomputes
the X[i)'s and y[i]'s to re-establish the invariants.

• If, in the step of M just simulated, M halts with output y, then Mq,m outputs y and halts.

• If M did not halt in the step just simulated, then the value of clock is increased by I and, if clock < x[m] or
if the step of M just simulated was part of an execution of RUN, then the simulation continues; otherwise,
Mq.m outputs 0 and halts.

(d) Suppose s ~ sail is such that P'R = tS. r: P'R X w w is a polynomial-time clocked
effective shred-operation with respect to S if and only if there exists an extensional (wrt S) Mq ,m

that detennines r as per Definition 15. <>

Proposition 16. The following classes of functionals all correspond on 'R:
(a) The polynomial-time effective shred-operations with respect to Sx.

(b) The polynomial-time clocked effective shred-operations with respect to Sx.
(c) The basic polynomial-time functionals.

November 30, 1994

Semantics versus Syntax versus Computations 17

Proof. Convention: All the clocked and unclocked polynomial-time effective shred-operations
mentioned in this proof will be with respect to Sx. So, to cut the clutter, the "with respect to
S x" clause will be dropped below.

Now, when all the functionals concerned are restricted to R we clearly have that

(a) 2 (b) 2 (c).

Our job is then to show that the two containments reverse. Claims 1 and 2 below correspond to
(a) ~ (b) and (b) ~(c), respectively. We first consider Claim 1.

Claim 1. Each polynomial-time effective shred-operation corresponds on R to some polynom
ial-time clocked effective shred-operation.

Our argument for Claim I is a modification of the proof given for Theorem 8.
Suppose r: R X (J) ---* (J) is a polynomial-time effective shred-operation. Suppose also that M

is an extensional OTM that determines r and that q is a second-order polynomial such that, for
alls e Sx and a E w, M(s, a) runs withinq{KS, laD time. We sketch two otherOTMs, Mo and
M1, that both run a step-by-step simulation of M on an input a and an oracle to be determined.

Program for Mo

Input (a, Ok) with oracles'.

Set step +-- 0.

Go through a step-by-step simulation M on input a. After each step, add one to step. Each
M step that is not an oracle call is faithfully carried out. Each oracle query, s(x, Ok) =?,is
simulated as follows.

Condition 1. k < lx I + 1.
Make *the answer to the query in the simulation of M.

Condition 2. k 2:: max(lx I + 1, step).
Call RUN(x) to determine ts'(x) and give ts'(x) as the answer toM's query.

Condition 3. lx I + 1 :::: k < step.
Give 0 as the answer toM's query.

If, in the course of the simulation, M halts with output y, then output y and halt.

End program

The program for M1 is the same as for M0 except that M1 takes only a as input and omits
using step (and hence omits Condition 3).

It follows from Lemma 17 that, in any run of Mo or M 1, the answers fed to the simulation
of M are consistent with some actual Xp· Hence, if ts' is total, the simulations of M by Mo and
M1 eventually halt. Moreover, it also follows that, for each a and s', for all sufficiently large k,

• when Mo is run on input (a, ok) Condition 3 never occurs, and

• the use M makes of the (simulated) oracle is identical in the simulations both Moon input
(a, Ok) and oracles' and M1 on input a and oracles'.

Fix some a and p e w. We argue that:

(10)

(11)
M1 on input a and oracle Xp can be clocked (as per Definition 20)
by a second-order q0, where q0 is independent of p and a.

November 30,1994

18 Semantics versus Syntax versus Computations

Let a be the finite function such that

= { (()) . when M1 is run on input a and oracle Xp. the simu-}
a x,cppx · lationofMqueriess(x,Ok)forsomek::: lxl+1 ·

By Lemma 17 there is a cp-program Pa such that:

{
a(x),

({Jpa(x) = ({Jp(X),
if x E domain(a);
otherwise.

<I> () _ { lxl + la(x)l, if x E domain(a);
Pa x - <l>p(x), otherwise.

We observe that M's use of the oracle is identical in both M1 's simulation M and M on input
a and oracle X Pa. It follows from this observation that M 1 (X P, a) = M (X Pa, a). Since l x P =
({Jp = ({Jpa = lXPa• we have by M's extensionality that M(Xp.,.. a)= M(xp. a). Therefore, (10)
follows.

Now, for each k, let ak be the finite function

= { (()) . when Mo is run on input (a, Ok) and oracle Xp• the sim-}
ak x, ({Jp x . . M . k .

ulatiOn of quenes s (x, 0) for some k 2':: lx I + 1

By Lemma 17, for each k, there is a cp-program Zk such that:

(x) = { ak(x), if x E domain(ak);
({Jzk 0, otherwise.

<I> (x) = { lxl + lak(x)l,
Zk lxl + 1,

if x E domain(ak);
otherwise.

It follows that, for each k, the run time ofM on input a and oracle Xzk is bounded by q(KXzk• Ia I),
and the run time of Moon input (a, Ok) and oracle Xp is bounded above by

(12) c · ((max{KXp(x): x E domain(ak)}) · q((KXzk• lalt,

where c and m are numbers independent of a, k, and p. By a little second-order algebra, there
is a second-order polynomial qo, independent of a and p, such that, qo(KXPk• Ia I) is an upper
bound on (12). Hence, for each k, the time used by M0 (on input (a, Ok) and oracle Xp) in sim
ulating the first k steps of M is bounded above by qo(K Xpk, Ia I). By our observations it follows
that, for each k, the state of the simulation of M after k steps is identical in both M0 on input
(a, Ok) and oracle Xzk and M1 on input a and oracle Xp· Therefore, we have that, for each k, the
time used by M 1 (on input a and oracle x P) in simulating the first k steps of M is also bounded
above by qo(KXpk' Ia I). Thus, by this observation, the definitions of Mo, M1, and the ak's, and
the clocking scheme of Definition 20, (11) follows. Claim 1 thus follows.

Claim 2. Each polynomial-time clocked effective shred-operation corresponds on R to some
basic polynomial-time functional.

Suppose r: R X (t) --+ (t) is a polynomial-time clocked effective shred-operation. Suppose
also that Mq,m is an extensional OTM that determines r. By the argument for Claim 1, we may
assume without loss of generality that the only way that Mq,m queries its oracle is through calls
to the RUN subroutine. Consider the OTM M whose program is sketched below.

Program for M

Input a with oracle g.

Go through a step-by-step simulation Mq,m on input a. Each Mq,m step that is not an oracle
call is faithfully carried out. Each oracle query, s (x, Ok) =?, is simulated as follows.

November 30, 1994

Semantics versus Syntax versus Computations 19

Condition 1. k < lxl + lg(x)l.
Make * the answer to the query in the simulation of Mq ,m.

Condition2. k ~ lxl + lg(x)l.
Give g(x) as the answer to Mq,m 's query.

If, in the course of the simulation, Mq ,m halts with output y, then output y and halt.

End program

By similar argument to that given in Claim 1, we have that, for each a e w and each p e w
with '{Jp e 'R:

(13) M(rpp, a) = M(xp. a).

(14)
There is a second-order polynomial q, independent of a and p, such that the
run time of M on input a and oracle 'Pp is bounded above by q(I'Pp I, Ia 1).

Claim 2 thus follows. 0 Proposition 16

Remark 21. The strong dependence on Lemma 17 in the above argument is very unsatisfy
ing, but it is indicative of deeper problems. Consider an acceptable programming system rp'
and associated complexity measure Cl>' which are polynomially related to our standard, Turing
machine-based rp and Cl>, but which are such that, for each p such that '{Jp(O)-!,, one can some
how reconstruct p from <l>p(O). Let x' be the computation system associated with the rp' and
Cl>'. Any attempt to prove the analog of Proposition 16 will run into the difficulties of Section
4. What is probably needed for the analog of Proposition 16 to be true for a given computation
system x" is some strong, complexity theoretic version of Rice's Theorem to hold for the rp"
and Cl>" with which x" is associated. 0

Finally we discuss the proof of

Proposition 12. There is an oracle relative to which every polynomial-time effective operation
corresponds on 'R to some polynomial-time functional.

In this version of the paper we omit the proof of this theorem. The proof, which is more
involved than any of the above, is an amalgam of the proofs of Theorem 3 and Proposition 16.
The oracle enters to help swarms of programs perform diagonalizations like those of (3) and to
hide information about certain programs from polynomial-time effective operations.

B. Acknowledgements

Thanks to Jin Yi Cai, John Case, Robert Irwin, Bruce Kapron, Stuart Kurtz, Ken Regan, and
Alan Selman for discussing this work at various stages of its development. Special thanks to
Neil Jones and the TOPPS group at DIKU for letting me spend a week at DIKU to discuss my
ideas and to Peter O'Hearn for many, many discussions on these and related topics.

November 30,1994

20 Semantics versus Syntax versus Computations

References

[CK90] S. Cook and B. Kapron, Characterizations of the basic feasible functions of finite type, Feasi
ble Mathematics: A Mathematical Sciences Institute Workshop, (S. Buss and P. Scott, eds.),
Birkhauser, 1990, pp. 71-95.

[Cob65] A. Cobham, The intrinsic computational difficulty of junctions, Proc. Int. Conf. Logic,
Methodology and Philosophy (Y. Bar Hillel, ed.), North-Holland, 1965, pp. 24-30.

[Coo91] S. Cook, Computability and complexity of higher type functions, Logic from Computer Sci
ence (Y.N. Moschovakis, ed.), Springer-Verlag, 1991, pp. 51-72.

[CU89] S. Cook and A. Urquhart, Functional interpretations of feasibly constructive arithmetic, Proc.
of the 21st Ann. ACM Symp. on Theory of Computing, 1989, pp. 107-112.

[DSW94] M. Davis, R. Sigal, and E. Weyuker, Computability, complexity, and languages, Academic
Press, 1994, second edition of [DW83].

[DW83] M. Davis and E. Weyuker, Computability, complexity, and languages, Academic Press, 1983.

[Fri58] R. Friedberg, Un contre-example relatifauxfonctionnelles recursives, Comptes Rendus Heb
domadaires des seances de I' Academie des Sciences 247 (1958), 852-854.

[KC91] B. Kapron and S. Cook, A new characterization of Mehlhorn's polynomial time functionals,
Proc. of the 32nd Ann. IEEE Symp. Found. ofComp. Sci., 1991, pp. 342-347.

[KLS57] G. Kreisel, D. Lacombe, and J Shoenfield, Partial recursive functionals and effective oper
ations, Constructivity in Mathematics: Proceedings of the Colloquium held at Amsterdam
(A. Heyting, ed.), North-Holland, 1957, pp. 195-207.

[Meh76] K. Mehlhorn, Polynomial and abstract sub recursive classes, Journal of Computer and System
Science 12 (1976), 147-178.

[MS55] J. Myhill and J. Shepherdson, Effective operations on partial recursive functions, Zeitschrift
fiir Mathematische Logik und Grundlagen der Mathematik 1 (1955), 310-317.

[Odi89] P. Odifreddi, Classical recursion theory, North-Holland, 1989.

[Plo77] G. Plotkin, Lcf considered as a programming language, Theoretical Computer Science 5
(1977), 223-255.

[RC94] J. Royer and J. Case, Subrecursive programming systems: Complexity & succinctness,
Birkhauser, 1994.

[Rog67] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, 1967,
reprinted, MIT Press, 1987.

[Sco75] D. Scott, Lambda calculus and recursion theory, Proceedings of the Third Scandinavian
Logic Symposium (S. Kanger, ed.), North-Holland, 1975, pp. 154-193.

[Set92] A. Seth, There is no recursive axiomatizationfor feasible functionals of type 2, Seventh An
nual IEEE Symposium on Logic in Computer Science, 1992, pp. 286-295.

[Set94] A. Seth, Complexity theory of higher type functionals, Ph.D. thesis, University of Bombay,
1994.

November 30, 1994

