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Abstract 

An efficient maximum-likelihood soft-decision decoding algorithm for linear block 
codes using a generalized Dijkstra's Algorithm was proposed by Han, Hartmann, and 
Chen. In this report we prove that this algorithm is efficient for most practical commu­
nication systems where the probability of error is less than 10-3 by finding an upper 
bound of the computation performance of the algorithm. A suboptimal decoding al­
gorithm is also proposed. The performance of this suboptimal decoding algorithm is 
within 0.25 dB and 0.5 dB of the performance of an optimal decoding algorithm for 
the (104, 52) binary extended quadratic residue code and the (128, 64) binary extended 
BCH code, respectively. 

1 Introduction 

The use of block codes is a well-known error-control technique for reliable transmission of 
digital information over noisy communication channels. Linear block codes with good coding 
gains have been known for many years; however, these block codes have not been used in 
practice for lack of an efficient soft-decision decoding algorithm. 

Several researchers [1, 16, 13] have presented techniques for decoding linear block codes 
that convert the decoding problem into a graph-search problem on a trellis derived from the 
parity-check matrix of the code. Thus the maximum-likelihood decoding (MLD) rule can be 
implemented by applying the Viterbi Algorithm [15] to this trellis. In practice, however, this 
breadth-first search scheme can be applied only to codes with small redundancy or to codes 
with a small number of codewords [10]. 

We recently proposed a novel maximum-likelihood soft-decision decoding algorithm for 
linear block codes [6, 7]. This algorithm uses a generalization of Dijkstra's algorithm (GDA) 
[11] to search through the trellis for a code equivalent to the transmitted code. The use of 
this priority-first search strategy for decoding drastically reduces the search space and results 
in an efficient optimal soft-decision decoding algorithm for linear block codes. Furthermore, 
in contrast with Wolf's algorithm [16], the decoding efforts of our decoding algorithm are 
adaptable to the noise level. 

In Section 2 we review MLD of linear block codes, describe the code tree for a linear 
code, and briefly state the decoding algorithm proposed in [7]. In Section 3 we give an 
upper bound on the computation performance of this algorithm. In the next section we 
present a suboptimal decoding algorithm. Simulation results for the (104,52) binary extended 
quadratic residue code and the (128,64) binary extended BCH code are given in Section 5. 
Concluding remarks are presented in Section 6. 

2 Preliminaries 

Let C be a binary (n, k) linear code with generator matrix G, and let c = (c0 , c1 , ... , Cn-1) be 
a codeword of C transmitted over a time-discrete memoryless channel with output alphabet 
B. Furthermore, let r = (ro, r1, ... , Tn- 1), Tj E B denote the received vector, and assume 
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that Pr(rjJci) > 0 for Tj E B and ci E GF(2). Let c be an estimate of the transmitted 
codeword c. 

The maximum-likelihood decoding rule (MLD rule) for a time-discrete memory less channel 
can be formulated as 

set c = C£, where C£ = (c£o, C£1, ... , C£(n-1)) E C and 

n-1 n-1 

I: (cPj- ( -1)cti) 2 ~ I: (cPj- ( -1)Cii) 2 for all Ci = (ciO, Ci1, ... , C£(n-l)) E C, 
j=O j=O 

Pr(rjJO) 
where cPj =In Pr(rjJ 1) 

We, therefore, may consider that the "received vector" is tjJ = (¢0 , ¢1, ... , cPn-1). In the 
special case where the codewords of C have equal probability of being transmitted, the 
MLD rule minimizes error probability. 

We now give a short description of our decoding algorithm presented in [7]. This algo­
rithm uses the priority-first search strategy, thus avoiding traversing the entire trellis, and, 
guided by an evaluation function f, searches through a graph that is a trellis for a code 
C*, which is equivalent to code C. C* is obtained from C by permuting the positions of 
codewords of C in such a way that the first k positions of codewords in C* correspond to the 
"most reliable linearly independent" positions in the received vector tjJ. G* is a generator 
matrix of C* whose first k column forms a k x k identity matrix. In our decoding algorithm 
the vector tjJ* = (¢0, ¢i, ... , ¢~_ 1 ) is used as the "received vector." It is obtained by per­
muting the positions of tjJ in the same manner in which the columns of G can be permuted 
to obtain G*. 

Since the probability that our decoding algorithm will revisit a node of the trellis is very 
small, our implementation of this decoding algorithm did not check for repeated nodes [7]. 
In this case, the graph where the search is performed is an expanded version of a trellis that 
is denoted by a code tree. A code tree is a way to represent every codeword of an ( n, k) code 
C* as a path through a tree containing n + 1 levels . The code tree can be treated as an 
expanded version of the trellis, where every path is totally distinct from every other path. 
The leftmost node is called the start node, which is at level -1. There are two branches, 
labeled by 0 and 1, respectively, that leave each node at the first k levels. After the k levels, 
there is only one branch leaving each node. The 2k rightmost nodes are called goal nodes, 
which are at level n- 1. 

Next, we describe how to determine the sequence of labels encountered when traversing 
a path from a node at level k to a goal node. Let eo, c 1, ... , ck-l be the sequence of labels 
encountered when traversing a path from the start node to a node m at level k- 1. Then 
ck, ck+l, ... , cn_1, the sequence of labels encountered when traversing a path from node m 
to a goal node, can be obtained as follows: 

We first specify the arc costs in the code tree of C*. The cost of the arc from a node at 
level t- 1 to a node at level t is assigned the value ( ¢; - ( -1 yt )2 , where c; is the label of the 
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arc. Thus the solution of the decoding problem is converted into finding a path from the start 
node to a goal node, that is, a codeword c* = (c~, c;:, ... , c~_I) such that E?~l(¢i- ( -1)<)2 
is minimum among all paths from the start node to goal nodes. Such a path is denoted as 
an optimal path. 

Now we define the evaluation function f for every node m in the code tree as f(m) = 
g(m) + h(m), where g(m) is the cost of the path from the start node to node m and h(m) is 
an estimate of the minimum cost among all the paths from node m to goal nodes. The cost 
of a path is obtained by summing all the arc costs encountered while constructing this path. 
GDA requires that for all nodes mi and mj such that node mi is an immediate successor of 
node mi, 

(1) 

where c(mi, mi) is the arc cost between node mi and node mi. This requirement guarantees 
that GDA will find an optimal path. In GDA, the next node to be expanded is one with the 
smallest value of f on the list of all leaf nodes (list OPEN) of the subtree constructed so far 
by the algorithm. Thus, list OPEN must be kept ordered according to the values f of its 
nodes. When the algorithm chooses to expand a goal node, it is time to stop, because the 
algorithm has constructed a path with minimum cost, i.e., an optimal path. 

We now define our function h, which satisfies (1). In order to define a function h that is 
a "good" estimator, we must use properties of the linear block code that are invariant under 
any permutation of the positions of the codewords. 

Let HW = { wiiO :S i :S I} be the set of all distinct Hamming weights that codewords of 
C may have. Furthermore, assume w0 <WI < · · · < w1 . Our heuristic function is defined to 
take into consideration the linear property of C* and that the Hamming distance between 
any two codewords of C* must belong to HW. 

Let c* be a given codeword of C*. Our function h will be defined with respect to c*, 
which is called the seed of the decoding algorithm. 

1. For nodes at level f, -1 :Sf< k- 1: 

Let m be a node at level f, and let v0, vb ... , V£ be the labels of the path P'.,., from the 
start node to node m. We now construct the set, T(m), of all binary n-tuples v such 
that their first f + 1 entries are the labels of P:n and dH(v, c*) E HW, where dH(x, y) 
is the Hamming distance between x and y. That is, 

Note that T(m) =I 0. This can easily be seen by considering the binary k-tuple u = 
(v0 , vi, ... , V£, 0, ... , 0) and noting that u · G* E T(m). 

We now define function h as 

h(m) = min L (¢i- ( -l)v;)2 . { 
n-I } 

VET(m) i=HI 
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2. For nodes at level/!, k- 1 ~I!< n: 

Let m be a node at level £. We define function h as 

n-1 

h(m)= L (¢;-(-l)vi)2, 
i=l+l 

where v;+1 , v;+2 , ... , v~_ 1 are the labels of the only path Pm from node m to a goal 
node. Note that if node m is a goal node, then h(m) = 0. 

In [6, 7] it is shown that our decoding algorithm is a depth-first search type algorithm. Thus, 
upper bounds (UBs) on the cost of an optimal path are obtained whenever a codeword is 
generated. These UBs can be used to reduce the size of list OPEN. More details about this 
decoding algorithm can be found in [6, 7] where we also described other speed-up techniques. 
Furthermore, the algorithm will still find an optimal path even if in the computation of 
function h the algorithm considers all the Hamming weights of any superset of HW. 

3 Analysis of the performance of the algorithm 

Our decoding algorithm can be considered as a branch-and-bound type of algorithm. In 
general, it is difficult to form an idea of how well a branch-and-bound algorithm will perform 
on a given problem [2]; however, we can derive an upper bound on the average number of 
nodes visited by our decoding algorithm, which shows that this decoding algorithm is very 
efficient for most practical communication systems where the probability of error is less than 
10-3. 

In order to derive this upper bound we will define another heuristic function hs that 
satisfies the condition hs(m) ~ hp(m) for every node of the code tree, where function hp is 
defined in the previous section. By Theorem 7 in Chapter 3 of [12] the decoding algorithm 
using function hp will never open more nodes than the decoding algorithm using function 
hs. 

We now define function hs· Let m be a node at level£< k- 1, and let v0 , v1 , ... , Vt be 
the labels of the path P'm from the start node to node m. Define hs as 

n-1 

hs(m) = L (I<Pil- 1)2 • 

i=l+l 

For a node at a level greater than k- 2, the function hs will be defined as in the previous 
section. It is easy to see that hs(m) ~ hp(m) for every node of the code tree. 

We now show that if m is not start node m 8 , and m is at level£< k- 1, then the time 
complexity of calculating hs(m) is a constant. Let node m be an immediate successor of 
node m', which is on path P:n. Furthermore, let y = (y0 , y1, ... , Yn-I) be the hard-decision 
of c/J. That is, 

if <P < 0, 
otherwise. 
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Then 

Consequently, 
f(m) = f(m') + (Y£ E9 V£)(4 x I<Ptl), 

where V£ is the label of the arc between node m' and node m and E9 denotes a modulo 2 
addition. Thus, the time complexity of calculating f(m) is a constant when node m is not 
start node ms. 

In order to obtain an upper bound of the computational performance of our decoding 
algorithm, we first derive an upper bound of the computational performance of a simplified 
version of it, which we denote by SDA. In this version 

1. we do not order the positions of €/>; 

2. we use function hs as the heuristic function. 

We now state the main results of the computational performance of SDA when code C 
is transmitted over the AWGN channel. In order to account for the redundancy in codes of 
different rates, we use the SNR per transmitted information bit 'Yb = Eb/N0 = "(n/k. 

Theorem 1 Let Ns be the average number of nodes visited by SDA, and let G be the standard 
normal distribution. Then 

Ns:::; N, 

where 

N 

Jl(f, d) 

and 

The proof of Theorem 1 is given in Appendix A. 
Recall that in the decoding algorithm proposed in [7] we ordered the position of 4> to 

obtain 4>*, which is assumed to be the "received vector." 
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Theorem 2 If the k-most reliable positions of l/J are linearly independent, then 

where N8 (cp*) and N8 (l/J) are the number of nodes visited by SDA when cp* and cp are decoded, 
respectively. 

The proof of Theorem 2 can be found in Appendix B. 
Let N(cp*) be the number of nodes visited by the decoding algorithm proposed in [7) 

when it decodes cp*. By Theorem 7 in Chapter 3 of [12) we have the following result. 

Theorem 3 If the k-most reliable positions of l/J are linearly independent, then 

Now for every (n, k) linear code C we define the set 

S( C) = { l/JI the k-most reliable positions of cp are linearly independent.} 

From the above theorems and Chebyshev's inequality [5), we have the following result. 

Theorem 4 For any cp E S(C), 

Pr(N(l/J) ~ L) ~ ~, 

where L is any positive real number. 

We remark here that it is not always true that the k-most reliable positions of cp are 
linearly independent. In this case, we cannot guarantee that N(cp*) -~ N8 (cp*). However, in 
our simulations we have never encountered a case where N(cp*) > N8 (cp*). Therefore, we 
can take N to be a good estimator of an upper bound on N, the average number of nodes 
visited by our decoding algorithm [7). 

The values of N for the ( 48, 24) binary extended quadratic residue code for 'Yb equal to 
2 dB, 3 dB, 4 dB, 5 dB, 6 dB, 7 dB, and 8 dB are given in Figure 1. In this figure is 
also given the simulation results of the average number of nodes visited by the SDA, and by 
the decoding algorithm proposed in [7). These averages were obtained by simulating 10,000 
samples. We remark here that the upper bound on N that we derived is not tight, because 
of the simplifying assumptions we had to make. 

In Figure 2 we give the values of N for the (104, 52) binary extended quadratic residue 
code and the (128, 64) binary extended BCH code for 'Yb from 2 dB to 8 dB, respectively. 
Even though this upper bound is not tight, we may conclude that the decoding algorithms 
proposed in [7) are efficient for codes of moderate lengths for most practical communication 
systems where the probability of error is less than 10-3 ('Yb greater than 6.8 dB). 
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Figure 1: Average number of nodes visited for the ( 48, 24) code 

4 Suboptimal decoding algorithm 

In the previous section we showed that G DA is very efficient for codes of moderate lengths for 
most practical communication systems where probability of error is less than w-3 ; however, 
for low SNRs the number of nodes on list OPEN is still too large for the algorithm to have 
practical application. 

The results of our simulations have shown that the number of nodes that need to be 
stored on list OPEN before an optimal path is found is considerably smaller than the total 
number of nodes stored before the algorithm stops. Thus we may limit the search with small 
degradations on the performance of the algorithm. 

In this section we present a suboptimal soft-decision decoding algorithm. In this algo­
rithm we limit the size of list OPEN using two criteria that we will describe next. 

1. If a node m needs to be stored on list OPEN when the size of list OPEN has reached 
a given upper bound, then we discard the node with larger f value between node m 
and the node on list OPEN with the maximum value of function f. 

2. If the probability that an optimal path goes through a node is smaller than a given 
parameter, then we do not store this node. 

Memory requirement is usually a crucial factor in the practical implementation of any 
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Figure 2: N for the (104, 52) code and the (128, 64) code 

decoding algorithm. Thus, in the first criterion we limit the size of list OPEN by giving an 
upper bound on the maximum number of nodes that can be stored on list OPEN. 

To use the second criterion we need to calculate the probability that an optimal path 
goes through a node. Now we will demonstrate how to calculate this probability for the 
AWGN channel. For any received vector cp*, if an optimal decoding algorithm decodes it to 
a non-transmitted codeword, then it is very difficult for a suboptimal decoding algorithm to 
decode it to the transmitted codeword. Thus, when an optimal decoding algorithm decodes a 
received vector to a non-transmitted codeword we do not care which codeword a suboptimal 
decoding algorithm will decode to. Therefore, it is reasonable to consider only those received 
vectors that will be decoded to transmitted codewords by an optimal decoding algorithm. 
That is, when we derive the probability that an optimal path goes through a node, we will 
assume that no decoding error will occur if we employ an optimal decoding algorithm. 

Let h * ( ms) note the cost of an optimal path. Under this assumption we have the following 
theorem. 

Theorem 5 Let an ( n, k) code C be transmitted over the A WGN channel. When no decoding 
error occurs, the probability distribution of h*(ms) is approximately a normal distribution 
with mean JL and variance a2, where 
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N? 
CJ2 = n-o. 

2 

The proof of Theorem 5 is given in Appendix C. 
Let node m be a node in the code tree of the transmitted ( n, k) code C and let UB be the 

lowest upper bound on the cost of an optimal path found so far by the algorithm. In [7] it is 
shown that for any node m of the code tree, h(m)~h*(m) where h*(m) is the actual cost of 
the minimum cost path among all the paths from node m to goal nodes. Thus, if an optimal 
path goes through node m, then h(m) ::::; h*(m) ::::; h*(ms)· Thus, the probability that an 
optimal path goes through node m is less than or equal to Pr(h(m) ::::; h*(ms) ::::; UB). This 
leads us to the following theorem. 

Theorem 6 Let T be the probability that an optimal path goes through node m. Furthermore, 
let UB be an upper bound on the cost of an optimal path. Then T ::::; TUB, where 

where 

1 1UB 1 (!.=1!)2 TuB = -- e-2 " dt, 
(J..j2ii h(m) 

No 
n-

2 ' 
N2 

n-o 
2 

Thus, when a node is visited, the algorithm calculates TuB for this node. If this value is 
less than a given threshold, then we will discard this node. 

Now we describe the outline of our decoding algorithm. In our suboptimal decoding 
algorithm we will fix the maximum number of nodes, MB, allowed on list OPEN. As in an 
optimal decoding algorithm, list OPEN is always kept ordered. When a node m is visited, 
the algorithm calculates TuB for this node. If TuB is less than a given threshold 8, then 
discard this node. Otherwise, we need to insert this node into list OPEN. If the number 
of nodes on list OPEN is equal to MB, then the algorithm discards the node with larger f 
value between node m and the node with the largest f value on list OPEN. The algorithm 
inserts the remaining node into list OPEN. 

We remark here that all the speed-up techniques in [7] can be applied to the suboptimal 
decoding algorithm. 

5 Simulation results for the AWGN channel 

In order to verify the performance of our suboptimal decoding algorithm, we present sim­
ulation results for the (104, 52) binary extended quadratic residue code and the (128, 64) 
binary extended BCH code when these codes are transmitted over the AWGN channel. We 
assume that antipodal signaling is used in the transmission so that the Ph components of 
the transmitted codeword c and received vector rare 

Cj = ( -1 y; v'E and r j = ( -1 y; v'E + ej, 
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I threshold II 1.5 dB I 1. 75 dB I 2.0 dB I 2.25 dB I 2.5 dB I 2. 75 dB I 
0.0 26357 23909 18366 13240 10070 6698 

0.25 10976 9643 6481 3980 2879 1579 
0.5 3166 2827 1818 950 703 344 

Table 1: The average number of nodes visited during the decoding of (104, 52) code 

respectively, where E is the signal energy per channel bit and ej is a noise sample of a 
Gaussian process with single-sided noise power per hertz N0 . The variance of ej is N0/2 
and the signal to noise ratio (SNR) for the channel is "( = E / N0 . In order to account for 
the redundancy in codes of different rates, we used the SNR per transmitted information bit 
"ib = Eb/N0 = "(n/k in our simulation. For the AWGN channel, cjJ = 4"fl r [8], so we can 
substitute r(r*) for cp( cp*) in our decoding algorithm. 

We do not know HW for these two codes, so we use a superset for them. For (104,52) 
we know that dmin = 20 and that the Hamming weight of any codeword is divisible by 4 [9]. 
Thus for this code the superset used is {xJ(x is divisible by 4 and 20 ~ x ~ 84) or (x = 0) 
or (x = 104)}; for (128,64), the superset used is {xl (xis even and 22 ~ x ~ 106) or (x = 0) 
or (x = 128)}, since this code has dmin = 22. 

We have implemented a suboptimal version of the adaptive decoding algorithm presented 
in [7]. Since this suboptimal decoding algorithm is performed on low SNR, the initial c0 is 
constructed by considering the 16 codewords as follows. Let y = (y0 , y1 , ... , Yn- 1) be the 
hard-decision of r*. Furthermore, letS= {ulu = (u0 , u1 , ... , uk_ 1 ) and ui = Yi for 0 ~ i ~ 
k- 5}. For every element u inS, we get a codeword c* = u · G*. Now we let c0 = c*, where 
the value of h(ms), calculated with respect to c*, is the largest among all the 16 codewords. 
The rule of updating seed is the same as that in [7]. 

The simulation results for the (104, 52) code for 'Yb equal to 1.5 dB, 1.75 dB, 2.0 dB, 2.25 
dB, 2.5 dB, and 2.75 dB are given in Figure 3 and in Table 1 for three threshold values. MB 
is equal to 3000. 

In Figure 3 we also give a lower bound on the bit error probability of the maximum­
likelihood decoding algorithm. This lower bound is obtained as follows [4]. For every sample, 
when suboptimal decoding algorithm terminates, we have a codeword that is obtained from 
the algorithm. If this codeword is closer with respect to Euclidean distance to the received 
vector than the transmitted codeword, then any optimal decoding algorithm will also decode 
the received vector to a non-transmitted codeword. Thus, we assume that the optimal 
decoding algorithm will decode to the codeword obtained from the suboptimal decoding 
algorithm and report a decoding error occurs. Bit error probability of the uncoded data is 
also given in Figure 3. 

From Figure 3, for the (104, 52) code the performance of the suboptimal decoding algo­
rithm with 8 = 0.0 is within 0.25 dB of the performance of an optimal decoding algorithm; 
the performance of the suboptimal decoding algorithm with 8 = 0.25 is within 0.5 dB of 
the performance of an optimal decoding algorithm; and the performance of the suboptimal 
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Figure 3: Performance of suboptimal decoding algorithm for the (104, 52) code 

decoding algorithm with 8 = 0.5 is within 1 dB of the performance of an optimal decod­
ing algorithm. Thus, for the samples tried, limiting the size of list OPEN to 3000 nodes 
introduced only a small degradation on the performance of the algorithm for the (104, 52) 
code. However, the average number of nodes visited for the sample tried is several orders of 
magnitude smaller than the upper bound given in Figure 2. 

The simulation results for the (128, 64) code for 'Yb equal to 1.0 dB, 1.25 dB, 1.5 dB, 1.75 
dB, and 2.0 dB are given in Figure 4 and in Table 2 for three threshold values. Ms is equal 
to 6000. 

In Figure 4 we also give a lower bound on the bit error probability of the maximum­
likelihood decoding algorithm and bit error probability of the uncoded data. 

From Figure 4, for the (128, 64) code the performance of the suboptimal decoding algo-

I threshold 111.0 dB 11.25 dB IL5 dB IL75 dB I 2.0 dB I 

0.0 88325 82650 75905 65223 55474 
0.25 54416 41694 35613 29554 23162 
0.5 22294 16705 13478 10389 6910 

Table 2: The average number of nodes visited during the decoding of (128, 64) code 
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Figure 4: Performance of suboptimal decoding algorithm for the {128, 64) code 

rithm with 6 = 0.0 is within 0.5 dB of the performance of an optimal decoding algorithm; 
the performance of the suboptimal decoding algorithm with 6 = 0.25 is within 0.6 dB of 
the performance of an optimal decoding algorithm; and the performance of the suboptimal 
decoding algorithm with 8 = 0.5 is within 0. 75 dB of the performance of an optimal de­
coding algorithm. Thus, for the samples tried, limiting the size of list OPEN to 6000 nodes 
introduced only a small degradation on the performance of the algorithm for the {128, 64) 
code. However, the average number of nodes visited for the samples tried is several orders 
of magnitude smaller than the upper bound given in Figure 2. 

6 Conclusions 

In this report we determine an upper bound of the probability distribution of the number of 
nodes visited by the algorithm proposed in [7]. Even though this bound is not tight, Figure 
2 shows that this decoding algorithm is efficient for most practical communication systems 
where the probability of error is less than 10-3 . 

For low SNRs we propose a suboptimal decoding algorithm. From Figures 3 and 4, for 
the SNRs we tried, the performance of this algorithm is within 0.25 dB of the performance 
of an optimal decoding algorithm for the (104, 52) binary extended quadratic residue code 
and within 0.5 dB for the (128, 64) binary extended BCH code. 
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Appendix A 

Proof of Theorem 1 

Let an (n, k) code C be transmitted over an AWGN channel. In this case, from [8] 

Thus, 
,I.- 4-/E 
.,.,- No r, 

and, for fixed SNR, 4ft can be treated as a positive constant. Since any positive constant 
multiplied to c/> will not affect the decoding procedure, we can substitute r for cf> in our 
decoding algorithm when Cis transmitted over an AWGN channel [3]. Furthermore, without 
loss of generality we can assume that 0 is transmitted over an AWGN channel. 

Let P~ be the path from start node ms to a goal node whose labels are all zero. Let us 
define the cost of the path P~ as g(P~). That is 

n-1 

g(P~) = E(ri- 1)2 • 

i=O 

From the definition of f*(ms) which is the cost on an optimal path, we have 

Now let node m be a node at level £ in the code tree and the labels of path P:n, the path 
from node ms to node m, are vo,Vt, ... ,Vt. LetS'= {ilvi = 1,0 ~ i ~£}and IS'I =d. 
From the definition of function f 

f(m) g(m) + hs(m) 
1. n-1 

- L (ri- (-1)tr') + L (lril-11)2 • 

i=O i=l.+l 

Now we want to calculate the probability that node m is expanded by the algorithm. From 
Result 5 in Chapter 2 of [11], this probability will be less than or equal to the probability 
that f(m) ~ f*(ms), i.e., Pr(J(m) ~ f*(ms)). Since 

g(P~) ;:::: J*(ms), 

then 
Pr(J(m) ~ f*(ms)) ~ Pr(J(m) ~ g(P~)). 
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Furthermore, 

£ n-1 n-1 

f(m) :S g(P~) iff L (ri- (-1)11;)
2 + L (JriJ-11) 2 :S 2:(ri -1)2 

i=O i=£+1 i=O 

n-1 

iff L 4ri + L 2(ri- hi) :S 0 
iES' i=£+1 

n-1 

iff L 2ri + L (ri- JriJ) :S 0. 
iES' i=£+1 

Now let us define two new random variables Zi and z: as 

Since 0 is transmitted, 
Pr(ri) = Pr(riJO). 

Let E(X) be the mean of random variable X and let V ar(X) be the variance of X. Thus, 
E(ri) is v'E and Var(ri) is ~· Then 

and 

4Var(ri) 

2No. 

Now let us calculate E(Z:) and Var(ZI). We first note that z: = 2ri if ri < 0 and z: = 0 if 
ri 2: 0, where ri is normally distributed with mean v'E and variance N 0/2. 

1 10 (t-v'E)2 
E(ZD = y'1fNo 2te- No dt. 

1rN0 -oo 

Let x = t-v'E, then dx = ____M_. Thus 

~ ~ 

E(ZD = 

where G is the standard normal distribution. 
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2 
Let y = ~ , then dy = xdx. Thus, 

E(ZD = rr.; ( ../E ) ~0 - ..!L 2v nG --- - -e No. Pi 7r 

Similarly, 

Var(ZD 

Now let us define a new random variable X as 

n-1 

X= L:Zi+ L z:. 
iES' i=l+l 

By Linde berg's central limit theorem [5], the probability distribution of X is approximately 
a normal distribution with mean Ji(P, d) and variance lf2 (P, d), where 

Ji(P, d) dE(Zi) + (n- P- 1)E(Z;) 

- rr.; { rr.; ../E ~0 E } 2dvE+(n-P-1) 2vEG(--)- -e-No , Pi 7r 

dVar(Zi) + (n- P- 1)Var(ZD 

2dN0 + (n -£-1) 2(2E + N0)G(--)- 2 -e-No - { ../E ~No E 

Pi 7r 

_ (2v'EG{-~)-~e-:,)'}. 
Thus, 

Pr(f(m) ~ f*(ms)) ~ Pr(X ~ 0) = G(-:~~:~~). 
Since f(m)o ~ g(P0) for any node moon path P 0, we can assume that node mo will 

be expanded. There are k nodes on this path that will be expanded. We now consider those 
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nodes that are not on this path. It is easy to see that, for any node that is not on path P 0, 
the labels of the path from node ms to it will contain at least one 1. Consider those nodes 
at level f whose paths contain d ones, where 1 :::; d :::; f + 1 and 0 :::; f :::; k - 2. From the 

above argument, the probability of these nodes being expanded are G (- ~~!::~). The total 

number of these nodes is (£~ 1). Since the first k positions of any codeword are information 
bits, the average number of nodes expanded by the algorithm is less than or equal to 

[ 
k-2 H 1 ( f+ 1) ( Jl(i,d))] k+LL d G-_ . 
l=O d=1 u(f, d) 

Since when a node is expanded by the algorithm, the algorithm will visit two nodes, the 
average number of nodes visited is less than or equal to 

2 [k+ ~I: ( £~1) G (-~(i,d))]· 
l=O d=1 u(i, d) 

D 

Appendix B 

Proof of Theorem 2 

Let cp = (¢o, c/J1, ... , c/Jn-1) be the received vector and let cp* = (¢0,, ¢i, ... , ¢~_1 ) be obtained 
by permuting the positions of cp such that the first k positions are the "most reliable linearly 
independent" positions in cp. Furthermore, let ¢0 = c/J1r(O), ¢i = c/J1r(1), ... , and ¢~_ 1 :__ ¢7r(n-1)· 
We now prove that N8 (cp*) :::; N8 (cp) by proving that, for every node m1 in the search 
tree generated by the decoding algorithm when it decodes cp, we can find a one-to-one 
correspondent node m2 in the search tree generated by the decoding algorithm when it 
decodes cp* such that f(mi) :::; j(m2). Let the labels of the path from the start node to 
node m1 that is at level f be c0 , cb ••. , and C£. Let us define 88 (£), Sa( f), Sb(f), Be( f), Sd(f), 
which are subsets of {0, 1, 2, ... , n- 1} as follows: 

Ss(f) = {xlx:::; f and 1r(x):::; £}, 
Sa(f) = {xlx :S £}- {1r(x)lx E Ss(f)}, 
Sb(f) = {xlx :S £}- {xlx E Ss(f)}, 
Sc(f) = {1r(x)lx E Sb(f)}, and 
Sd(R) = {xl1r(x) E Sa(R)}. 

It is clear that ISa(R)I = ISb(R)I = ISc(£)1 = ISd(£)1. Now let us define the labels c0, ci, ... , c£ 
from the start node to node m2 as follows: 

c~ = C1r(x) for X E Ss(R), 
c~ = y; EB Yq(cp,t)(x) EB cq(cp,t)(x) for x E Sb(R), 
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where 
Yi 0 when ¢i 2: 0, 

1 otherwise, 
y; 0 when ¢; 2: 0, 

1 otherwise, and 

q( l/J, f) is a bijection from Sb(f) to Sa(f). 
It is easy to see that for any node m17 node m2 is a one-to-one correspondent to node 

m1. 
We next prove that /(m1) ~ /{m2)· 

l n-1 

/(m2)- J{m1) = E (¢;- ( -1)<)2 + E (1¢;1- 1)2 
i=O i=l+1 

l n-1 

- L:(¢i-{-1Y:')2 - E (lif>il-1)2 = E (¢;-{-1)<)2+ E (lif>tl-1)2 
i=O i=l+1 

iESa(l) iESc(L) 

E [(11>:1 + 1)2 - (lif>il- 1)2] 

iESt(l) 

- E [(1¢il + 1)2 - (lif>il- 1?] = 4 [ E 11>:1- E lif>ill , 
iESe(L) iESt(L) iESe(L) 

where St(f) = {xlx E Sb(f) and c; E11 y; = 1} and Se(f) = {xlx E Sa(f) and ex E11 Yx = 1}. 
Since c; = y; El1 Yq(l/J,L)(x) El1 cq(l/J,L)(x) for x E Sb(f) and q( l/J, f) is a bijection from Sb(f) to 

Sa(f), then IS1{f)l = ISe{f)l. Furthermore, since the k-most reliable positions in 4> are linear 
independent, then lif>il 2: lif>il for any i E St(f) and j E Se(f). Thus /{m2) 2: /{m1)· By 
Theorem 7 in Chapter 3 of [12], we have Ns{cp*) ~ N8 (cp). D 
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Appendix C 

Proof of Theorem 5 

Let an {n, k) code C be transmitted over an AWGN channel. If we assume that no decoding 
error occurs, 

n-1 

L ( ( -1)Civ'E- (ei + ( -1)Civ'E) )2 
i=O 
n-1 

L:e~, 
i=O 

where for each 0:::; i:::; n- 1, e/s are i.i.d. and ei is a normal random variable with mean 0 

and variance N0/2. Consequently, ;o ~ e~ = ~ j*(ms) will be distributed as a chi-square 
i=O 0 

random variable with n degrees of freedom. From [14] it follows that 

No 
E(j*(ms)) = n2, 

and Var{f:n{ms)) = n¥. 
However, for large value of n, the probability distribution of f*(ms) is approximately a 

normal distribution with mean IL and variance u2 , given above. 0 
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Figure Captions 

Figure 1. Average number of nodes visited for the (48, 24) code 

Figure 2. N for the (104, 52) code and the (128, 64) code 

Figure 3. Performance of suboptimal decoding algorithm for the (104, 52) code 

Figure 4. Performance of suboptimal decoding algorithm for the (128, 64) code 
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