
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports

L.C. Smith College of Engineering and Computer
Science

3-1-1994

Decoding Linear Block Codes Using a Priority-
First Search: Performance Analysis and Suboptimal
Version
Yunghsiang S. Han
Syracuse University

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Follow this and additional works at: http://surface.syr.edu/eecs_techreports
Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has been
accepted for inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more
information, please contact surface@syr.edu.

Recommended Citation
Han, Yunghsiang S.; Hartmann, Carlos R.P.; and Mehrotra, Kishan, "Decoding Linear Block Codes Using a Priority-First Search:
Performance Analysis and Suboptimal Version" (1994). Electrical Engineering and Computer Science Technical Reports. Paper 155.
http://surface.syr.edu/eecs_techreports/155

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports/155?utm_source=surface.syr.edu%2Feecs_techreports%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-94-4

Decoding Linear Block Codes Using a
Priority-First Search: Performance

Analysis and Suboptimal Version

Yunghsiang S. Han, Carlos R.P. Hartmann,
and Kishan G. Mehrotra

March 1994

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

Decoding Linear Block Codes

Using a Priority-First Search:

Performance Analysis and Suboptimal Version1

Yunghsiang S. Han2

Carlos R. P. Hartmann3

Kishan G. Mehrotra4

Index Terms: block codes, decoding, Dijkstra's algorithm, maximum-likelihood, priority­
first search, soft-decision, trellis, performance analysis, suboptimal

1This work was partially supported by the National Science Foundation under Grant NCR-9205422,
and used the computational facilities of the Northeast Parallel Architectures Center (NPAC) at Syracuse
University.

2Y. S. Han was with the School of Computer and Information Science at Syracuse University, Syracuse,
NY 13244-4100. He is now with the Dept. of Electronic Engineering, HuaFan College of Humanities and
Technology, 1., HuaFan Rd., Shihtin Hsiang, Taipei Hsien, Taiwan.

3C. R. P. Hartmann is with the School of Computer and Information Science at Syracuse University,
Syracuse, NY 13244-4100 (e-mail: hartmann@top.cis.syr.edu; Fax: {315) 443-1122.).

4K. G. Mehrotra is with the School of Computer and Information Science at Syracuse University, Syracuse,
NY 13244-4100 (e-mail: kishan@top.cis.syr.edu; Fax: {315) 443-1122.).

Abstract

An efficient maximum-likelihood soft-decision decoding algorithm for linear block
codes using a generalized Dijkstra's Algorithm was proposed by Han, Hartmann, and
Chen. In this report we prove that this algorithm is efficient for most practical commu­
nication systems where the probability of error is less than 10-3 by finding an upper
bound of the computation performance of the algorithm. A suboptimal decoding al­
gorithm is also proposed. The performance of this suboptimal decoding algorithm is
within 0.25 dB and 0.5 dB of the performance of an optimal decoding algorithm for
the (104, 52) binary extended quadratic residue code and the (128, 64) binary extended
BCH code, respectively.

1 Introduction

The use of block codes is a well-known error-control technique for reliable transmission of
digital information over noisy communication channels. Linear block codes with good coding
gains have been known for many years; however, these block codes have not been used in
practice for lack of an efficient soft-decision decoding algorithm.

Several researchers [1, 16, 13] have presented techniques for decoding linear block codes
that convert the decoding problem into a graph-search problem on a trellis derived from the
parity-check matrix of the code. Thus the maximum-likelihood decoding (MLD) rule can be
implemented by applying the Viterbi Algorithm [15] to this trellis. In practice, however, this
breadth-first search scheme can be applied only to codes with small redundancy or to codes
with a small number of codewords [10].

We recently proposed a novel maximum-likelihood soft-decision decoding algorithm for
linear block codes [6, 7]. This algorithm uses a generalization of Dijkstra's algorithm (GDA)
[11] to search through the trellis for a code equivalent to the transmitted code. The use of
this priority-first search strategy for decoding drastically reduces the search space and results
in an efficient optimal soft-decision decoding algorithm for linear block codes. Furthermore,
in contrast with Wolf's algorithm [16], the decoding efforts of our decoding algorithm are
adaptable to the noise level.

In Section 2 we review MLD of linear block codes, describe the code tree for a linear
code, and briefly state the decoding algorithm proposed in [7]. In Section 3 we give an
upper bound on the computation performance of this algorithm. In the next section we
present a suboptimal decoding algorithm. Simulation results for the (104,52) binary extended
quadratic residue code and the (128,64) binary extended BCH code are given in Section 5.
Concluding remarks are presented in Section 6.

2 Preliminaries

Let C be a binary (n, k) linear code with generator matrix G, and let c = (c0 , c1 , ... , Cn-1) be
a codeword of C transmitted over a time-discrete memoryless channel with output alphabet
B. Furthermore, let r = (ro, r1, ... , Tn- 1), Tj E B denote the received vector, and assume

1

that Pr(rjJci) > 0 for Tj E B and ci E GF(2). Let c be an estimate of the transmitted
codeword c.

The maximum-likelihood decoding rule (MLD rule) for a time-discrete memory less channel
can be formulated as

set c = C£, where C£ = (c£o, C£1, ... , C£(n-1)) E C and

n-1 n-1

I: (cPj- (-1)cti) 2 ~ I: (cPj- (-1)Cii) 2 for all Ci = (ciO, Ci1, ... , C£(n-l)) E C,
j=O j=O

Pr(rjJO)
where cPj =In Pr(rjJ 1)

We, therefore, may consider that the "received vector" is tjJ = (¢0 , ¢1, ... , cPn-1). In the
special case where the codewords of C have equal probability of being transmitted, the
MLD rule minimizes error probability.

We now give a short description of our decoding algorithm presented in [7]. This algo­
rithm uses the priority-first search strategy, thus avoiding traversing the entire trellis, and,
guided by an evaluation function f, searches through a graph that is a trellis for a code
C*, which is equivalent to code C. C* is obtained from C by permuting the positions of
codewords of C in such a way that the first k positions of codewords in C* correspond to the
"most reliable linearly independent" positions in the received vector tjJ. G* is a generator
matrix of C* whose first k column forms a k x k identity matrix. In our decoding algorithm
the vector tjJ* = (¢0, ¢i, ... , ¢~_ 1) is used as the "received vector." It is obtained by per­
muting the positions of tjJ in the same manner in which the columns of G can be permuted
to obtain G*.

Since the probability that our decoding algorithm will revisit a node of the trellis is very
small, our implementation of this decoding algorithm did not check for repeated nodes [7].
In this case, the graph where the search is performed is an expanded version of a trellis that
is denoted by a code tree. A code tree is a way to represent every codeword of an (n, k) code
C* as a path through a tree containing n + 1 levels . The code tree can be treated as an
expanded version of the trellis, where every path is totally distinct from every other path.
The leftmost node is called the start node, which is at level -1. There are two branches,
labeled by 0 and 1, respectively, that leave each node at the first k levels. After the k levels,
there is only one branch leaving each node. The 2k rightmost nodes are called goal nodes,
which are at level n- 1.

Next, we describe how to determine the sequence of labels encountered when traversing
a path from a node at level k to a goal node. Let eo, c 1, ... , ck-l be the sequence of labels
encountered when traversing a path from the start node to a node m at level k- 1. Then
ck, ck+l, ... , cn_1, the sequence of labels encountered when traversing a path from node m
to a goal node, can be obtained as follows:

We first specify the arc costs in the code tree of C*. The cost of the arc from a node at
level t- 1 to a node at level t is assigned the value (¢; - (-1 yt)2 , where c; is the label of the

2

arc. Thus the solution of the decoding problem is converted into finding a path from the start
node to a goal node, that is, a codeword c* = (c~, c;:, ... , c~_I) such that E?~l(¢i- (-1)<)2
is minimum among all paths from the start node to goal nodes. Such a path is denoted as
an optimal path.

Now we define the evaluation function f for every node m in the code tree as f(m) =
g(m) + h(m), where g(m) is the cost of the path from the start node to node m and h(m) is
an estimate of the minimum cost among all the paths from node m to goal nodes. The cost
of a path is obtained by summing all the arc costs encountered while constructing this path.
GDA requires that for all nodes mi and mj such that node mi is an immediate successor of
node mi,

(1)

where c(mi, mi) is the arc cost between node mi and node mi. This requirement guarantees
that GDA will find an optimal path. In GDA, the next node to be expanded is one with the
smallest value of f on the list of all leaf nodes (list OPEN) of the subtree constructed so far
by the algorithm. Thus, list OPEN must be kept ordered according to the values f of its
nodes. When the algorithm chooses to expand a goal node, it is time to stop, because the
algorithm has constructed a path with minimum cost, i.e., an optimal path.

We now define our function h, which satisfies (1). In order to define a function h that is
a "good" estimator, we must use properties of the linear block code that are invariant under
any permutation of the positions of the codewords.

Let HW = { wiiO :S i :S I} be the set of all distinct Hamming weights that codewords of
C may have. Furthermore, assume w0 <WI < · · · < w1 . Our heuristic function is defined to
take into consideration the linear property of C* and that the Hamming distance between
any two codewords of C* must belong to HW.

Let c* be a given codeword of C*. Our function h will be defined with respect to c*,
which is called the seed of the decoding algorithm.

1. For nodes at level f, -1 :Sf< k- 1:

Let m be a node at level f, and let v0, vb ... , V£ be the labels of the path P'.,., from the
start node to node m. We now construct the set, T(m), of all binary n-tuples v such
that their first f + 1 entries are the labels of P:n and dH(v, c*) E HW, where dH(x, y)
is the Hamming distance between x and y. That is,

Note that T(m) =I 0. This can easily be seen by considering the binary k-tuple u =
(v0 , vi, ... , V£, 0, ... , 0) and noting that u · G* E T(m).

We now define function h as

h(m) = min L (¢i- (-l)v;)2 . {
n-I }

VET(m) i=HI

3

2. For nodes at level/!, k- 1 ~I!< n:

Let m be a node at level £. We define function h as

n-1

h(m)= L (¢;-(-l)vi)2,
i=l+l

where v;+1 , v;+2 , ... , v~_ 1 are the labels of the only path Pm from node m to a goal
node. Note that if node m is a goal node, then h(m) = 0.

In [6, 7] it is shown that our decoding algorithm is a depth-first search type algorithm. Thus,
upper bounds (UBs) on the cost of an optimal path are obtained whenever a codeword is
generated. These UBs can be used to reduce the size of list OPEN. More details about this
decoding algorithm can be found in [6, 7] where we also described other speed-up techniques.
Furthermore, the algorithm will still find an optimal path even if in the computation of
function h the algorithm considers all the Hamming weights of any superset of HW.

3 Analysis of the performance of the algorithm

Our decoding algorithm can be considered as a branch-and-bound type of algorithm. In
general, it is difficult to form an idea of how well a branch-and-bound algorithm will perform
on a given problem [2]; however, we can derive an upper bound on the average number of
nodes visited by our decoding algorithm, which shows that this decoding algorithm is very
efficient for most practical communication systems where the probability of error is less than
10-3.

In order to derive this upper bound we will define another heuristic function hs that
satisfies the condition hs(m) ~ hp(m) for every node of the code tree, where function hp is
defined in the previous section. By Theorem 7 in Chapter 3 of [12] the decoding algorithm
using function hp will never open more nodes than the decoding algorithm using function
hs.

We now define function hs· Let m be a node at level£< k- 1, and let v0 , v1 , ... , Vt be
the labels of the path P'm from the start node to node m. Define hs as

n-1

hs(m) = L (I<Pil- 1)2 •

i=l+l

For a node at a level greater than k- 2, the function hs will be defined as in the previous
section. It is easy to see that hs(m) ~ hp(m) for every node of the code tree.

We now show that if m is not start node m 8 , and m is at level£< k- 1, then the time
complexity of calculating hs(m) is a constant. Let node m be an immediate successor of
node m', which is on path P:n. Furthermore, let y = (y0 , y1, ... , Yn-I) be the hard-decision
of c/J. That is,

if <P < 0,
otherwise.

4

Then

Consequently,
f(m) = f(m') + (Y£ E9 V£)(4 x I<Ptl),

where V£ is the label of the arc between node m' and node m and E9 denotes a modulo 2
addition. Thus, the time complexity of calculating f(m) is a constant when node m is not
start node ms.

In order to obtain an upper bound of the computational performance of our decoding
algorithm, we first derive an upper bound of the computational performance of a simplified
version of it, which we denote by SDA. In this version

1. we do not order the positions of €/>;

2. we use function hs as the heuristic function.

We now state the main results of the computational performance of SDA when code C
is transmitted over the AWGN channel. In order to account for the redundancy in codes of
different rates, we use the SNR per transmitted information bit 'Yb = Eb/N0 = "(n/k.

Theorem 1 Let Ns be the average number of nodes visited by SDA, and let G be the standard
normal distribution. Then

Ns:::; N,

where

N

Jl(f, d)

and

The proof of Theorem 1 is given in Appendix A.
Recall that in the decoding algorithm proposed in [7] we ordered the position of 4> to

obtain 4>*, which is assumed to be the "received vector."

5

Theorem 2 If the k-most reliable positions of l/J are linearly independent, then

where N8 (cp*) and N8 (l/J) are the number of nodes visited by SDA when cp* and cp are decoded,
respectively.

The proof of Theorem 2 can be found in Appendix B.
Let N(cp*) be the number of nodes visited by the decoding algorithm proposed in [7)

when it decodes cp*. By Theorem 7 in Chapter 3 of [12) we have the following result.

Theorem 3 If the k-most reliable positions of l/J are linearly independent, then

Now for every (n, k) linear code C we define the set

S(C) = { l/JI the k-most reliable positions of cp are linearly independent.}

From the above theorems and Chebyshev's inequality [5), we have the following result.

Theorem 4 For any cp E S(C),

Pr(N(l/J) ~ L) ~ ~,

where L is any positive real number.

We remark here that it is not always true that the k-most reliable positions of cp are
linearly independent. In this case, we cannot guarantee that N(cp*) -~ N8 (cp*). However, in
our simulations we have never encountered a case where N(cp*) > N8 (cp*). Therefore, we
can take N to be a good estimator of an upper bound on N, the average number of nodes
visited by our decoding algorithm [7).

The values of N for the (48, 24) binary extended quadratic residue code for 'Yb equal to
2 dB, 3 dB, 4 dB, 5 dB, 6 dB, 7 dB, and 8 dB are given in Figure 1. In this figure is
also given the simulation results of the average number of nodes visited by the SDA, and by
the decoding algorithm proposed in [7). These averages were obtained by simulating 10,000
samples. We remark here that the upper bound on N that we derived is not tight, because
of the simplifying assumptions we had to make.

In Figure 2 we give the values of N for the (104, 52) binary extended quadratic residue
code and the (128, 64) binary extended BCH code for 'Yb from 2 dB to 8 dB, respectively.
Even though this upper bound is not tight, we may conclude that the decoding algorithms
proposed in [7) are efficient for codes of moderate lengths for most practical communication
systems where the probability of error is less than 10-3 ('Yb greater than 6.8 dB).

6

il
Ill
>
Ill

-8
g
....
0

H cu

1

100000 ,.-----r----.-------,,------,------y------,

--+-._

...
-----------+-

...........

10000

1000

100 ···················~ ..•..
·········· ...

10 ···.'El
·.

formula in Theorem 1 -+­
SDA -+--·

the decoding algorithm proposed in [7] ·8--·

-------..........
--"'""-

--------------._--~--------

·.
~

·· .. · .. ·.
1~---~--~~--~r---~r---~~--~

2 3 4 5 6 7 8
SNR per transmitted information bit (dB)

Figure 1: Average number of nodes visited for the (48, 24) code

4 Suboptimal decoding algorithm

In the previous section we showed that G DA is very efficient for codes of moderate lengths for
most practical communication systems where probability of error is less than w-3 ; however,
for low SNRs the number of nodes on list OPEN is still too large for the algorithm to have
practical application.

The results of our simulations have shown that the number of nodes that need to be
stored on list OPEN before an optimal path is found is considerably smaller than the total
number of nodes stored before the algorithm stops. Thus we may limit the search with small
degradations on the performance of the algorithm.

In this section we present a suboptimal soft-decision decoding algorithm. In this algo­
rithm we limit the size of list OPEN using two criteria that we will describe next.

1. If a node m needs to be stored on list OPEN when the size of list OPEN has reached
a given upper bound, then we discard the node with larger f value between node m
and the node on list OPEN with the maximum value of function f.

2. If the probability that an optimal path goes through a node is smaller than a given
parameter, then we do not store this node.

Memory requirement is usually a crucial factor in the practical implementation of any

7

<ll
<tt
u
"'

0
.-i
Ol
0

'0
<ll
J.J .,..,
"' .,..,
>

"' <ll
'0
g

14r-------r-----~r-----~~----~------~------~

10

8

6

4

the (104,52) code-­
the (128, 64) code ----·

2 L-------~------~----~~----~------~------~
2 3 4 5 6 7 8

SNR per transmitted information bit (dB)

Figure 2: N for the (104, 52) code and the (128, 64) code

decoding algorithm. Thus, in the first criterion we limit the size of list OPEN by giving an
upper bound on the maximum number of nodes that can be stored on list OPEN.

To use the second criterion we need to calculate the probability that an optimal path
goes through a node. Now we will demonstrate how to calculate this probability for the
AWGN channel. For any received vector cp*, if an optimal decoding algorithm decodes it to
a non-transmitted codeword, then it is very difficult for a suboptimal decoding algorithm to
decode it to the transmitted codeword. Thus, when an optimal decoding algorithm decodes a
received vector to a non-transmitted codeword we do not care which codeword a suboptimal
decoding algorithm will decode to. Therefore, it is reasonable to consider only those received
vectors that will be decoded to transmitted codewords by an optimal decoding algorithm.
That is, when we derive the probability that an optimal path goes through a node, we will
assume that no decoding error will occur if we employ an optimal decoding algorithm.

Let h * (ms) note the cost of an optimal path. Under this assumption we have the following
theorem.

Theorem 5 Let an (n, k) code C be transmitted over the A WGN channel. When no decoding
error occurs, the probability distribution of h*(ms) is approximately a normal distribution
with mean JL and variance a2, where

8

N?
CJ2 = n-o.

2

The proof of Theorem 5 is given in Appendix C.
Let node m be a node in the code tree of the transmitted (n, k) code C and let UB be the

lowest upper bound on the cost of an optimal path found so far by the algorithm. In [7] it is
shown that for any node m of the code tree, h(m)~h*(m) where h*(m) is the actual cost of
the minimum cost path among all the paths from node m to goal nodes. Thus, if an optimal
path goes through node m, then h(m) ::::; h*(m) ::::; h*(ms)· Thus, the probability that an
optimal path goes through node m is less than or equal to Pr(h(m) ::::; h*(ms) ::::; UB). This
leads us to the following theorem.

Theorem 6 Let T be the probability that an optimal path goes through node m. Furthermore,
let UB be an upper bound on the cost of an optimal path. Then T ::::; TUB, where

where

1 1UB 1 (!.=1!)2 TuB = -- e-2 " dt,
(J..j2ii h(m)

No
n-

2 '
N2

n-o
2

Thus, when a node is visited, the algorithm calculates TuB for this node. If this value is
less than a given threshold, then we will discard this node.

Now we describe the outline of our decoding algorithm. In our suboptimal decoding
algorithm we will fix the maximum number of nodes, MB, allowed on list OPEN. As in an
optimal decoding algorithm, list OPEN is always kept ordered. When a node m is visited,
the algorithm calculates TuB for this node. If TuB is less than a given threshold 8, then
discard this node. Otherwise, we need to insert this node into list OPEN. If the number
of nodes on list OPEN is equal to MB, then the algorithm discards the node with larger f
value between node m and the node with the largest f value on list OPEN. The algorithm
inserts the remaining node into list OPEN.

We remark here that all the speed-up techniques in [7] can be applied to the suboptimal
decoding algorithm.

5 Simulation results for the AWGN channel

In order to verify the performance of our suboptimal decoding algorithm, we present sim­
ulation results for the (104, 52) binary extended quadratic residue code and the (128, 64)
binary extended BCH code when these codes are transmitted over the AWGN channel. We
assume that antipodal signaling is used in the transmission so that the Ph components of
the transmitted codeword c and received vector rare

Cj = (-1 y; v'E and r j = (-1 y; v'E + ej,

9

I threshold II 1.5 dB I 1. 75 dB I 2.0 dB I 2.25 dB I 2.5 dB I 2. 75 dB I
0.0 26357 23909 18366 13240 10070 6698

0.25 10976 9643 6481 3980 2879 1579
0.5 3166 2827 1818 950 703 344

Table 1: The average number of nodes visited during the decoding of (104, 52) code

respectively, where E is the signal energy per channel bit and ej is a noise sample of a
Gaussian process with single-sided noise power per hertz N0 . The variance of ej is N0/2
and the signal to noise ratio (SNR) for the channel is "(= E / N0 . In order to account for
the redundancy in codes of different rates, we used the SNR per transmitted information bit
"ib = Eb/N0 = "(n/k in our simulation. For the AWGN channel, cjJ = 4"fl r [8], so we can
substitute r(r*) for cp(cp*) in our decoding algorithm.

We do not know HW for these two codes, so we use a superset for them. For (104,52)
we know that dmin = 20 and that the Hamming weight of any codeword is divisible by 4 [9].
Thus for this code the superset used is {xJ(x is divisible by 4 and 20 ~ x ~ 84) or (x = 0)
or (x = 104)}; for (128,64), the superset used is {xl (xis even and 22 ~ x ~ 106) or (x = 0)
or (x = 128)}, since this code has dmin = 22.

We have implemented a suboptimal version of the adaptive decoding algorithm presented
in [7]. Since this suboptimal decoding algorithm is performed on low SNR, the initial c0 is
constructed by considering the 16 codewords as follows. Let y = (y0 , y1 , ... , Yn- 1) be the
hard-decision of r*. Furthermore, letS= {ulu = (u0 , u1 , ... , uk_ 1) and ui = Yi for 0 ~ i ~
k- 5}. For every element u inS, we get a codeword c* = u · G*. Now we let c0 = c*, where
the value of h(ms), calculated with respect to c*, is the largest among all the 16 codewords.
The rule of updating seed is the same as that in [7].

The simulation results for the (104, 52) code for 'Yb equal to 1.5 dB, 1.75 dB, 2.0 dB, 2.25
dB, 2.5 dB, and 2.75 dB are given in Figure 3 and in Table 1 for three threshold values. MB
is equal to 3000.

In Figure 3 we also give a lower bound on the bit error probability of the maximum­
likelihood decoding algorithm. This lower bound is obtained as follows [4]. For every sample,
when suboptimal decoding algorithm terminates, we have a codeword that is obtained from
the algorithm. If this codeword is closer with respect to Euclidean distance to the received
vector than the transmitted codeword, then any optimal decoding algorithm will also decode
the received vector to a non-transmitted codeword. Thus, we assume that the optimal
decoding algorithm will decode to the codeword obtained from the suboptimal decoding
algorithm and report a decoding error occurs. Bit error probability of the uncoded data is
also given in Figure 3.

From Figure 3, for the (104, 52) code the performance of the suboptimal decoding algo­
rithm with 8 = 0.0 is within 0.25 dB of the performance of an optimal decoding algorithm;
the performance of the suboptimal decoding algorithm with 8 = 0.25 is within 0.5 dB of
the performance of an optimal decoding algorithm; and the performance of the suboptimal

10

>. ..,
rl
.0

~
" 0.

" 0

" " Q) ..,
.0

0.1~----~----~------~-----r------r-----~-----.

& -·--- --_.__

0.01

0.001

X············· - - -6- - - - - - - - - -A--·

~::::::_::::::::::::.~::::.~~:- . ----- ---~-- ----- --.
T, ········l(..... .

----------------~:·

nnooded da<o ~ ··,·,·-----••••• ::·

lower bound on maximum-likelihood -+--· ·T,
threshold=O. 0 ·B·· ',

threshold=O. 2 5 ··i><····· '•,, B

threshold=O. 5 -~>-·- ------------,.,..

······)(

0. 0 001 .__ ____ _,_ ____ __._ ________ _____ ____ _...J.__ ____ _.__ ____ __J

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
SNR per transmitted information bit (dB)

Figure 3: Performance of suboptimal decoding algorithm for the (104, 52) code

decoding algorithm with 8 = 0.5 is within 1 dB of the performance of an optimal decod­
ing algorithm. Thus, for the samples tried, limiting the size of list OPEN to 3000 nodes
introduced only a small degradation on the performance of the algorithm for the (104, 52)
code. However, the average number of nodes visited for the sample tried is several orders of
magnitude smaller than the upper bound given in Figure 2.

The simulation results for the (128, 64) code for 'Yb equal to 1.0 dB, 1.25 dB, 1.5 dB, 1.75
dB, and 2.0 dB are given in Figure 4 and in Table 2 for three threshold values. Ms is equal
to 6000.

In Figure 4 we also give a lower bound on the bit error probability of the maximum­
likelihood decoding algorithm and bit error probability of the uncoded data.

From Figure 4, for the (128, 64) code the performance of the suboptimal decoding algo-

I threshold 111.0 dB 11.25 dB IL5 dB IL75 dB I 2.0 dB I

0.0 88325 82650 75905 65223 55474
0.25 54416 41694 35613 29554 23162
0.5 22294 16705 13478 10389 6910

Table 2: The average number of nodes visited during the decoding of (128, 64) code

11

0.1.--------.---------.--------.---------.-------~

0.01

0.001

uncoded data ~
lower bound on maximum-likelihood -+--­

threshold=O. 0 ·B···
threshold=0.25 --*·--­

threshold=O. 5 -&---

0. 00 01 L--------~-----------L.---------'----------.1....----------'
1 1.2 1.4 1.6 1.8 2

SNR per transmitted information bit (dB)

Figure 4: Performance of suboptimal decoding algorithm for the {128, 64) code

rithm with 6 = 0.0 is within 0.5 dB of the performance of an optimal decoding algorithm;
the performance of the suboptimal decoding algorithm with 6 = 0.25 is within 0.6 dB of
the performance of an optimal decoding algorithm; and the performance of the suboptimal
decoding algorithm with 8 = 0.5 is within 0. 75 dB of the performance of an optimal de­
coding algorithm. Thus, for the samples tried, limiting the size of list OPEN to 6000 nodes
introduced only a small degradation on the performance of the algorithm for the {128, 64)
code. However, the average number of nodes visited for the samples tried is several orders
of magnitude smaller than the upper bound given in Figure 2.

6 Conclusions

In this report we determine an upper bound of the probability distribution of the number of
nodes visited by the algorithm proposed in [7]. Even though this bound is not tight, Figure
2 shows that this decoding algorithm is efficient for most practical communication systems
where the probability of error is less than 10-3 .

For low SNRs we propose a suboptimal decoding algorithm. From Figures 3 and 4, for
the SNRs we tried, the performance of this algorithm is within 0.25 dB of the performance
of an optimal decoding algorithm for the (104, 52) binary extended quadratic residue code
and within 0.5 dB for the (128, 64) binary extended BCH code.

12

Appendix A

Proof of Theorem 1

Let an (n, k) code C be transmitted over an AWGN channel. In this case, from [8]

Thus,
,I.- 4-/E
.,.,- No r,

and, for fixed SNR, 4ft can be treated as a positive constant. Since any positive constant
multiplied to c/> will not affect the decoding procedure, we can substitute r for cf> in our
decoding algorithm when Cis transmitted over an AWGN channel [3]. Furthermore, without
loss of generality we can assume that 0 is transmitted over an AWGN channel.

Let P~ be the path from start node ms to a goal node whose labels are all zero. Let us
define the cost of the path P~ as g(P~). That is

n-1

g(P~) = E(ri- 1)2 •

i=O

From the definition of f*(ms) which is the cost on an optimal path, we have

Now let node m be a node at level £ in the code tree and the labels of path P:n, the path
from node ms to node m, are vo,Vt, ... ,Vt. LetS'= {ilvi = 1,0 ~ i ~£}and IS'I =d.
From the definition of function f

f(m) g(m) + hs(m)
1. n-1

- L (ri- (-1)tr') + L (lril-11)2 •

i=O i=l.+l

Now we want to calculate the probability that node m is expanded by the algorithm. From
Result 5 in Chapter 2 of [11], this probability will be less than or equal to the probability
that f(m) ~ f*(ms), i.e., Pr(J(m) ~ f*(ms)). Since

g(P~) ;:::: J*(ms),

then
Pr(J(m) ~ f*(ms)) ~ Pr(J(m) ~ g(P~)).

13

Furthermore,

£ n-1 n-1

f(m) :S g(P~) iff L (ri- (-1)11;)
2 + L (JriJ-11) 2 :S 2:(ri -1)2

i=O i=£+1 i=O

n-1

iff L 4ri + L 2(ri- hi) :S 0
iES' i=£+1

n-1

iff L 2ri + L (ri- JriJ) :S 0.
iES' i=£+1

Now let us define two new random variables Zi and z: as

Since 0 is transmitted,
Pr(ri) = Pr(riJO).

Let E(X) be the mean of random variable X and let V ar(X) be the variance of X. Thus,
E(ri) is v'E and Var(ri) is ~· Then

and

4Var(ri)

2No.

Now let us calculate E(Z:) and Var(ZI). We first note that z: = 2ri if ri < 0 and z: = 0 if
ri 2: 0, where ri is normally distributed with mean v'E and variance N 0/2.

1 10 (t-v'E)2
E(ZD = y'1fNo 2te- No dt.

1rN0 -oo

Let x = t-v'E, then dx = ____M_. Thus

~ ~

E(ZD =

where G is the standard normal distribution.

14

2
Let y = ~ , then dy = xdx. Thus,

E(ZD = rr.; (../E) ~0 - ..!L 2v nG --- - -e No. Pi 7r

Similarly,

Var(ZD

Now let us define a new random variable X as

n-1

X= L:Zi+ L z:.
iES' i=l+l

By Linde berg's central limit theorem [5], the probability distribution of X is approximately
a normal distribution with mean Ji(P, d) and variance lf2 (P, d), where

Ji(P, d) dE(Zi) + (n- P- 1)E(Z;)

- rr.; { rr.; ../E ~0 E } 2dvE+(n-P-1) 2vEG(--)- -e-No , Pi 7r

dVar(Zi) + (n- P- 1)Var(ZD

2dN0 + (n -£-1) 2(2E + N0)G(--)- 2 -e-No - { ../E ~No E

Pi 7r

_ (2v'EG{-~)-~e-:,)'}.
Thus,

Pr(f(m) ~ f*(ms)) ~ Pr(X ~ 0) = G(-:~~:~~).
Since f(m)o ~ g(P0) for any node moon path P 0, we can assume that node mo will

be expanded. There are k nodes on this path that will be expanded. We now consider those

15

nodes that are not on this path. It is easy to see that, for any node that is not on path P 0,
the labels of the path from node ms to it will contain at least one 1. Consider those nodes
at level f whose paths contain d ones, where 1 :::; d :::; f + 1 and 0 :::; f :::; k - 2. From the

above argument, the probability of these nodes being expanded are G (- ~~!::~). The total

number of these nodes is (£~ 1). Since the first k positions of any codeword are information
bits, the average number of nodes expanded by the algorithm is less than or equal to

[
k-2 H 1 (f+ 1) (Jl(i,d))] k+LL d G-_ .
l=O d=1 u(f, d)

Since when a node is expanded by the algorithm, the algorithm will visit two nodes, the
average number of nodes visited is less than or equal to

2 [k+ ~I: (£~1) G (-~(i,d))]·
l=O d=1 u(i, d)

D

Appendix B

Proof of Theorem 2

Let cp = (¢o, c/J1, ... , c/Jn-1) be the received vector and let cp* = (¢0,, ¢i, ... , ¢~_1) be obtained
by permuting the positions of cp such that the first k positions are the "most reliable linearly
independent" positions in cp. Furthermore, let ¢0 = c/J1r(O), ¢i = c/J1r(1), ... , and ¢~_ 1 :__ ¢7r(n-1)·
We now prove that N8 (cp*) :::; N8 (cp) by proving that, for every node m1 in the search
tree generated by the decoding algorithm when it decodes cp, we can find a one-to-one
correspondent node m2 in the search tree generated by the decoding algorithm when it
decodes cp* such that f(mi) :::; j(m2). Let the labels of the path from the start node to
node m1 that is at level f be c0 , cb ••. , and C£. Let us define 88 (£), Sa(f), Sb(f), Be(f), Sd(f),
which are subsets of {0, 1, 2, ... , n- 1} as follows:

Ss(f) = {xlx:::; f and 1r(x):::; £},
Sa(f) = {xlx :S £}- {1r(x)lx E Ss(f)},
Sb(f) = {xlx :S £}- {xlx E Ss(f)},
Sc(f) = {1r(x)lx E Sb(f)}, and
Sd(R) = {xl1r(x) E Sa(R)}.

It is clear that ISa(R)I = ISb(R)I = ISc(£)1 = ISd(£)1. Now let us define the labels c0, ci, ... , c£
from the start node to node m2 as follows:

c~ = C1r(x) for X E Ss(R),
c~ = y; EB Yq(cp,t)(x) EB cq(cp,t)(x) for x E Sb(R),

16

where
Yi 0 when ¢i 2: 0,

1 otherwise,
y; 0 when ¢; 2: 0,

1 otherwise, and

q(l/J, f) is a bijection from Sb(f) to Sa(f).
It is easy to see that for any node m17 node m2 is a one-to-one correspondent to node

m1.
We next prove that /(m1) ~ /{m2)·

l n-1

/(m2)- J{m1) = E (¢;- (-1)<)2 + E (1¢;1- 1)2
i=O i=l+1

l n-1

- L:(¢i-{-1Y:')2 - E (lif>il-1)2 = E (¢;-{-1)<)2+ E (lif>tl-1)2
i=O i=l+1

iESa(l) iESc(L)

E [(11>:1 + 1)2 - (lif>il- 1)2]

iESt(l)

- E [(1¢il + 1)2 - (lif>il- 1?] = 4 [E 11>:1- E lif>ill ,
iESe(L) iESt(L) iESe(L)

where St(f) = {xlx E Sb(f) and c; E11 y; = 1} and Se(f) = {xlx E Sa(f) and ex E11 Yx = 1}.
Since c; = y; El1 Yq(l/J,L)(x) El1 cq(l/J,L)(x) for x E Sb(f) and q(l/J, f) is a bijection from Sb(f) to

Sa(f), then IS1{f)l = ISe{f)l. Furthermore, since the k-most reliable positions in 4> are linear
independent, then lif>il 2: lif>il for any i E St(f) and j E Se(f). Thus /{m2) 2: /{m1)· By
Theorem 7 in Chapter 3 of [12], we have Ns{cp*) ~ N8 (cp). D

17

Appendix C

Proof of Theorem 5

Let an {n, k) code C be transmitted over an AWGN channel. If we assume that no decoding
error occurs,

n-1

L ((-1)Civ'E- (ei + (-1)Civ'E))2
i=O
n-1

L:e~,
i=O

where for each 0:::; i:::; n- 1, e/s are i.i.d. and ei is a normal random variable with mean 0

and variance N0/2. Consequently, ;o ~ e~ = ~ j*(ms) will be distributed as a chi-square
i=O 0

random variable with n degrees of freedom. From [14] it follows that

No
E(j*(ms)) = n2,

and Var{f:n{ms)) = n¥.
However, for large value of n, the probability distribution of f*(ms) is approximately a

normal distribution with mean IL and variance u2 , given above. 0

Acknowledgment

The authors would like to thank Elaine Weinman for her invaluable help in the preparation
of this manuscript.

18

References

[1] R.W. D. Booth, M. A. Herro, and G. Solomon, "Convolutional Coding Techniques for
Certain Quadratic Residue Codes," Proc. 1975 Int. Telemetering Conf., pp. 168-177,
1975.

[2] G. Brassard and P. Bratley, Algorithmics Theory and Practice. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1988.

[3] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications.
New York, NY: Plenum Press, 1981.

[4] B. G. Dorsch, "A Decoding Algorithm for Binary Block Codes and J-ary Output
Channels," IEEE Transactions on Information Theory, pp. 391-394, May 1974.

[5] W. Feller, An Introduction to Probability Theory and its Applications. New York, NY:
John Wiley and Sons, 1966.

[6] Y. S. Han and C. R. P. Hartmann, "Designing Efficient Maximum-Likelihood Soft­
Decision Decoding Algorithms for Linear Block Codes Using Algorithm A*," Technical
Report SU-CIS-92-10, School of Computer and Information Science, Syracuse Univer­
sity, Syracuse, NY 13244, June 1992.

[7] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, "Efficient Priority-First Search
Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes," IEEE Trans­
actions on Information Theory, pp. 1514-1523, September 1993.

[8] T.-Y. Hwang, "Decoding Linear Block Codes for Minimizing Word Error Rate," IEEE
Transactions on Information Theory, pp. 733-737, November 1979.

[9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. New
York, NY: Elsevier Science Publishing Company, Inc., 1977.

[10] K. R. Matis and J. W. Modestino, "Reduced-Search Soft-Decision Trellis Decoding of
Linear Block Codes," IEEE Transactions on Information Theory, pp. 349-355, March
1982.

[11] N. J. Nilsson, Principle of Artificial Intelligence. Palo Alto, CA: Tioga Publishing Co.,
1980.

[12] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving. Read­
ing, MA: Addison-Wesley Publishing Company, 1984.

[13] G. Solomon and H. C. A. van Tilborg, "A Connection Between Block and Convolutional
Codes," SIAM J. Appl. Math., pp. 358-369, 1979.

19

[14] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. Englewood Cliffs, NJ: Prentice-Hall Inc., 1982.

[15] A. J. Viterbi, "Error Bound for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm," IEEE Transactions on Information Theory, pp. 260-269, April
1967.

[16] J. K. Wolf, "Efficient Maximum Likelihood Decoding of Linear Block Codes Using a
Trellis," IEEE Transactions on Information Theory, pp. 76-80, January 1978.

20

Figure Captions

Figure 1. Average number of nodes visited for the (48, 24) code

Figure 2. N for the (104, 52) code and the (128, 64) code

Figure 3. Performance of suboptimal decoding algorithm for the (104, 52) code

Figure 4. Performance of suboptimal decoding algorithm for the (128, 64) code

21

	Syracuse University
	SURFACE
	3-1-1994

	Decoding Linear Block Codes Using a Priority-First Search: Performance Analysis and Suboptimal Version
	Yunghsiang S. Han
	Carlos R.P. Hartmann
	Kishan Mehrotra
	Recommended Citation

	SU-CIS-94-04_001c
	SU-CIS-94-04_002c
	SU-CIS-94-04_003c
	SU-CIS-94-04_004c
	SU-CIS-94-04_005c
	SU-CIS-94-04_006c
	SU-CIS-94-04_007c
	SU-CIS-94-04_008c
	SU-CIS-94-04_009c
	SU-CIS-94-04_010c
	SU-CIS-94-04_011c
	SU-CIS-94-04_012c
	SU-CIS-94-04_013c
	SU-CIS-94-04_014c
	SU-CIS-94-04_015c
	SU-CIS-94-04_016c
	SU-CIS-94-04_017c
	SU-CIS-94-04_018c
	SU-CIS-94-04_019c
	SU-CIS-94-04_020c
	SU-CIS-94-04_021c
	SU-CIS-94-04_022c
	SU-CIS-94-04_023c

