
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports

L.C. Smith College of Engineering and Computer
Science

6-1-1992

Primality Testing
Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: http://surface.syr.edu/eecs_techreports
Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the L.C. Smith College of Engineering and Computer Science at SURFACE. It has been
accepted for inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more
information, please contact surface@syr.edu.

Recommended Citation
Hansen, Per Brinch, "Primality Testing" (1992). Electrical Engineering and Computer Science Technical Reports. Paper 169.
http://surface.syr.edu/eecs_techreports/169

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports/169?utm_source=surface.syr.edu%2Feecs_techreports%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Primality Testing 

Per Brinch Hansen 

June 1992 

SU-CIS-92-13 

School of Computer and Information Science 
Syracuse University 

Suite 4-116, Center for Science and Technology 
Syracuse, NY 13244-4100 



Primality Testing1 

PER BRINCH HANSEN 

Syracuse University, Syracuse, New York 13244 

June 1992 

This tutorial describes the Miller-Rabin method for testing the primality of large 
integers. The method is illustrated by a Pascal algorithm. The performance of the 
algorithm was measured on a Computing Surface. 

Categories and Subject Descriptors: G.3 [Probability and Statistics: [Proba
bilistic algorithms (Monte Carlo) 

General Terms: Algorithms 

Additional Key Words and Phrases: Primality testing 

CONTENTS 

INTRODUCTION 
1. FERMAT'S THEOREM 
2. THE FERMAT TEST 
3. QUADRATIC REMAINDERS 
4. THE MILLER-RABIN TEST 
5. A PROBABILISTIC ALGORITHM 
6. COMPLEXITY 
7. EXPERIMENTS 
8. SUMMARY 
ACKNOWLEDGEMENTS 
REFERENCES 

1Copyright@1992 Per Brinch Hansen 



Per Brinch Hansen: Primality Testing 2 

INTRODUCTION 

This tutorial describes a probabilistic method for testing the primality of large inte
gers. The method was developed by Miller [1976] and Rabin [1980]. 

In the RSA cryptosystem large primes play an essential role in the encoding and 
decoding of messages [Rivest et al., 1978]. A user chooses two large random primes. 
These primes are used to compute a public encoding key and a secret decoding key. 
Both keys include the product of the primes. The user can receive encoded messages 
from anyone who knows the public key. But only the user (who knows the secret key) 
can decode the messages. 

The crucial assumption is that it is feasible to generate large primes using a 
computer, but there is no known algorithm for finding the prime factors of large 
composite numbers in reasonable amounts of computer time. If that ever becomes 
possible, we will be able to break the code by factorizing the public product of the 
secret primes. 

The RSA cryptosystem is believed to be secure for keys of 150 decimal digits. The 
simplest way to find a 150-digit prime is to generate random 150-digit numbers until 
we discover a prime. The probability that a 150-digit number is a prime is about 1 in 
150ln 10 [Courant and Robbins, 1941]. We must therefore expect to test about 350 
numbers for primality before we find a prime. (Half of these tests can be skipped if 
we only examine odd numbers.) 

So the generation of primes is reduced to the problem of testing the primality 
of random numbers. Since it is not feasible to compute the prime factors of large 
numbers, we will use a probabilistic method that almost never fails to distinguish 
correctly between primes and composites. 

We will describe the Miller-Rabin method of primality testing and illustrate it by 
a Pascal algorithm. The performance of the algorithm was tested on a Computing 
Surface. 

1. FERMAT'S THEOREM 

The primality test uses a famous theorem discovered by Pierre de Fermat [1640]. 
Consider a prime p and any positive integer x that is not divisible by p. vVe now 

define the following sequence of numbers: 

Ox mod p, 1x mod p, 2x mod p, ... , (p- 1)x mod p 

These numbers are obviously integers in the range from 0 to p - 1. And they are 
distinct integers. For, if we assume that two of them are equal, say 

jx mod p= ix mod p 

where 0 ~ i < j ~ p - 1, then 

(j - i)x mod p = 0 



Per Brinch Hansen: Primality Testing 3 

Since p is a prime, it cannot be expressed as a product of factors. Consequently, 
either j- i or x (or both) must be divisible by p. But that is impossible, since j- i 
is less than p, and x is not divisible by p. 

Well, then we know that the sequence is simply a permutation of the integers 
0, 1, ... , p - 1. Since the first number in the sequence is zero, the rest of it must be 
a permutation of the integers 1, 2, ... , p - 1. Consequently, 

(1x mod p)(2x mod p) ... ((p -1)x mod p) = 1*2* ... (p -1) 

which is equivalent to 
(p- 1)!(x"-1 -1) mod p = 0 

Since none of the factors of (p-1)! are divisible by p, the rest of the product must 
be divisible by p: 

(x"-1 - 1) mod p = 0 

In short, if pis a prime and x is a positive integer that is not divisible by p, then 

x"-1 mod p = 1 (1) 

This is Fermat's theorem. 

2. THE FERMAT TEST 

Fermat's theorem suggests a simple way to test the primality of a positive integer p: 

1. Generate a random integer x in the range 

Since x is less than p, x is obviously not divisible by p. 

2. Raise x to the power of p -1 modulo p. 

3a. If the result is not 1, then p does not satisfy Eq. (1). This proves that p 
is not a prime. In that case, the integer xis called a witness to the compositeness of p. 

3b. If the result is 1, p may be a prime. But the Fermat test is not foolproof. 
For each base value x, there are an infinite number of composites p that satisfy Eq. 
(1). These composites are known as pseudoprimes (Burton 1980]. 

Algorithm 1 defines the Fermat test. The boolean value of the function defines 
whether or not x is a witness to the compositeness of p. 



Per Brinch Hansen: Primality Testing 

function witness(x, p: integer): boolean; 
var e, m, y: integer; 
begin {1 <= x <= p- 1} 

m := 1; y := x; e := p - 1; 
while e > 0 do 

if e mod 2 = 1 then 
begin 

m := (m*y) mod p; e := e - 1 
end else 
begin 

y := sqr(y) mod p; e := e div 2 
end; 

witness := (m <> 1) 
end 

Algorithm 1 

4 

The function defines modular exponentiation by repeated squaring. The loop 
maintains the invariant 

mye mod p = xP-1 mod p 

where 1 ~ m ~ p - 1 and e ~ 0. 
When the loop terminates withe= 0, we have 

m = xP-1 mod p 

If m is not 1, then x is a witness; otherwise, it is not. 
The algorithm assumes that numbers are represented by standard integers. This is 

obviously not possible for 150-digit decimal integers. In practice, the algorithm must 
be reprogrammed using multiple-length arithmetic. We will discuss this requirement 
later. 

We will use three methods to reduce the probability that the primality test gives 
the wrong answer: 

1. Test large numbers. 

It can be shown that the probability that a random number is a pseudoprime 
approaches zero as the number of digits goes toward infinity [Pomerance, 1981). 

2. Repeat the Fermat test for different base values x. 

Although this helps, it is not watertight either. There are composite integers p, 
which satisfy Eq. (1) for any base value x. Fortunately, these Carmichael numbers 



Per Brinch Hansen: Primality Testing 5 

are extremely rare (Carmichael, 1912]. 

3. Supplement the Fermat test with another test. 

The supplementary test is based on a theorem about quadratic remainders. 

3. QUADRATIC REMAINDERS 

Consider the quadratic equation 

y2 mod p = 1 (2) 

where y and p are positive integers. This equation is equivalent to 

(y- 1)(y + 1) mod p = 0 

If pis a prime, either y -l or y + 1 (or both) must be divisible by p: 

(y - 1) mod p = 0 

or 
(y + 1) mod p = 0 

In that case, the only solutions to Eq. (2) are the trivial square roots of 1 modulo 
p: 

y mod p= 1 y mod p= p-1 

A nontrivial square root of 1 is an integer y modulo pin the range 

1 < y mod p < p- 1 

which satisfies Eq. (2). If we can find such an integer y, then pis not a prime. 

4. THE MILLER-RABIN TEST 

Algorithm 2 is an extension of the Fermat test proposed by Miller [1976] and refined 
by Rabin [1980]. Every time the function squares the current value of y, it checks 
whether y modulo pis a nontrivial square root of 1. In that case, the function stops 
the Fermat test and returns the value true, indicating that p surely is composite. 



Per Brinch Hansen: Primality Testing 

function witness(x, p: integer): boolean; 
var e, m, p1, r, y: integer; 

sure: boolean; 
begin {1 <= x <= p-1} 

m := 1; y := x; e := p - 1; 
p1 := e; sure := false; 
while not sure and (e > 0) do 

if e mod 2 = 1 then 
begin 

m := (m*y) mod p; e := e - 1 
end else 
begin 

r := y; 
y := sqr(y) mod p; e := e div 2; 
ify = 1 then 

sure:= (1 < r) and (r < p1) 
end; 

witness:= sure or (m <> 1) 
end 

Algorithm 2 

6 

The loop invariant is unchanged, but the termination condition is slightly different: 

sure or (m = xP-l mod p) 

The Miller-Rabin test is also probabilistic. 

5. A PROBABILISTIC ALGORITHM 

The Miller-Rabin test gives the wrong answer if it fails to discover a witness to a 
composite number. Rabin [1980] proved that the probability of failure is less than ~· 
To improve the chance of finding the correct result, he suggested repeating the test 
m times with different random base values (Algorithm 3). 

function prime(p, m: integer): boolean; 
var sure: boolean; i: integer; 
begin 

sure := false; 
fori := 1 to m do 

if witness(random(1, p - 1), p) then 
sure := true; 

prime:= not sure 
end 

Algorithm 3 



Per Brinch Hansen: Primality Testing 7 

If the algorithm discovers a single witness, then p is definitely composite. At this 
point we could skip further tests. Instead, we let the algorithm complete the sequence 
of trials to make it obvious that the m trials can be performed simultaneously on a 
parallel computer. 

If the algorithm finds no witnesses in, say, 40 trials, then p is a prime with over
whelming probability: The probability that the algorithm fails to detect a composite 
is less than (:} )40 ~ 10-24 • 

This is far less than the probability of a computer error. A computer that performs 
one million operations per second with the same probability of failure per operation 
will fail only once in thirty billion years. That is roughly the age of the universe since 
the Big Bang [Sagan, 1980]! 

6. COMPLEXITY 

In practice, Algorithms 2-3 must be reprogrammed to perform multiple-length arith
metic on large natural numbers. These serial operations imitate the familiar paper
and-pencil methods [Knuth, 1969]. Multiple-length division turns out to be a problem 
of surprising difficulty [Brinch Hansen, 1992a]. 

Consider primality testing of an integer p with N decimal digits. During the 
computation, an integer with O(N) decimal digits is represented by an array of O(n) 
digits in a radix b, which is a power of ten: 

b = 101ogb n ~ Njlogb 

The witness test performs O(N) iterations (unless it is interrupted by the discov
ery of nontrivial square root of 1). Each iteration involves multiplication and division 
of O(n2 ) complexity. Each step also requires operations of O(n) complexity, includ
ing the time-consuming computation of trial digits during division [Brinch Hansen, 
1992a]. 

Consequently, primality testing has the complexity 

T = O((n2 + n)N) = O((n + l)nN) 

In other words, 
T ~(eN/log b + d)N2 /log b (3) 

where c and dare system-dependent constants of decimal arithmetic. 

7. EXPERIMENTS 

We programmed Rabin's algorithm in occam and tested it on a Computing Surface 
with T800 transputers using the random number generator of Park and Miller [1988]. 

After systematic testing of the multiple-length arithmetic, we performed several 
experiments. In each experiment a random integer p was tested 40 times for primality 
using different random base values x. The trials were performed in parallel by 40 
transputers [Brinch Hansen, 1992b]. 



Per Brinch Hansen: Primality Testing 

The program correctly identified the 121-digit Afersenne number 

2400- 1 

as a composite, and confirmed that 

2400 -593 

almost certainly is a prime [Rabin, 1980]. 

8 

Table I shows measured (and predicted) run times T in seconds for a random 
integer p with N = 120 decimal digits. The integer is represented by an array of 
random digits in radix b. In theory, radix 10,000 reduces the run time by a factor 16 
(or less) compared to radix 10. In practice, it makes the program run 13 times faster. 

Table I 
b T s 
10 219 (226) 

100 59 (61) 
1,000 29 (29) 

10,000 17 (18) 

Table II shows measured (and predicted) run times T for primality testing of 
random numbers with N decimal digits represented in radix b = 10, 000. 

The empirical formula 

Table II 
N T s 

120 17 (18) 
160 39 (39) 
200 73 (73) 
240 124 (122) 
280 190 (190) 

T ~ (0.12N/ log b + 1.3)N2 /log b ms 

defines the estimated run times shown in parentheses in Tables I and II. 

8. SUMMARY 

We have described a probabilistic algorithm for testing the primality of a large integer 
without factorizing it. The Miller-Rabin algorithm is always right when it identifies 
a number as composite. A number that is not recognized as composite is prime with 
extremely high probability. On a Computing Surface the algorithm tests the primality 
of a 150-digit decimal integer 40 times in about 30 seconds. 



Per Brinch Hansen: Primality Testing 9 

ACKNOWLEDGEMENTS 

I am grateful to Jonathan Greenfield for valuable advice. 

REFERENCES 

BRINCH HANSEN, P. 1992a. Multiple-length division revisited: A tour of the 
minefield. School of Computer and Information Science, Syracuse University, 
Syracuse, NY. 

BRINCH HANSEN, P. 1992b. Parallel Monte Carlo trials. School of Computer and 
Information Science, Syracuse University, Syracuse, NY. 

BURTON, D. M. 1980. Elementary Number Theory. Allyn and Bacon, Boston, MA. 

CARMICHAEL, R. D. 1912. On composite numbers p which satisfy the Fermat 
congruence ap-I = 1 mod p. American lvfathematical Monthly 19:22-27. 

COURANT, R., and ROBBINS, H. 1941. JtVhat is Mathematics? Oxford University 
Press, NY. 

FERMAT, P. de, 1640. Letter to Bernard Frenicle de Bessy. (Oct. 18). 

KNUTH, D. 1969. The Art of Computer Programming. Volume 2: Seminumerical 
Algorithms. Addison-Wesley, Reading, MA. 

MILLER, G. L., 1976. Riemann's hypothesis and tests for primality. Journal of 
Computer and System Sciences 13:300-317. 

PARK, S. K., and MILLER, K. W. 1988. Random number generators: good ones 
are hard to find. Communications of the ACA-f 31:1192-1201. 

POMERANCE, C. 1981. On the distribution of pseudoprimes. ~Mathematics of 
Computation 37:587-593. 

RABIN, M. 0. 1980. Probabilistic algorithms for testing primality. Journal of 
Number Theory 12:128-138. 

RIVEST, R. L., SHAMIR, A., and ADLEMAN, L. M. 1978. A method for obtaining 
digital signatures and public-key cryptosystems. Communications of the ACJ\1 
21:120-126. 

SAGAN, C. 1980. Cosmos. Random House, NY. 


	Syracuse University
	SURFACE
	6-1-1992

	Primality Testing
	Per Brinch Hansen
	Recommended Citation


	SU-CIS-92-13_001c
	SU-CIS-92-13_002c
	SU-CIS-92-13_003c
	SU-CIS-92-13_004c
	SU-CIS-92-13_005c
	SU-CIS-92-13_006c
	SU-CIS-92-13_007c
	SU-CIS-92-13_008c
	SU-CIS-92-13_009c
	SU-CIS-92-13_010c

