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Abstract

The main contribution of this paper is to add to the literature by suggesting a dynamic OLS
(DOLS) estimator and providing a serious comparison of the finite sample properties of the OLS,
fully modified OLS (FMOLS), and DOLS estimators in panel cointegrated regression models.
Monte Carlo results illustrate the sampling behavior of the proposed estimators and show that
(1) the OLS estimator has a non-negligible bias in finite samples, (2) the FMOLS estimator does
not improve over the OLS estimator in general, and (3) the DOLS outperforms both the OLS
and FMOLS estimators.

Key Words: Panel Data, OLS, FMOLS, DOLS, Homogeneous Panel, Heterogeneous Panel.

1 Introduction

Evaluating the statistical properties of data along the time dimension has proven to be very different from
analysis of the cross-section dimension. As economists have gained access to better data with more observa-

tions across time, understanding these properties has grown increasingly important. An area of particular

*The first part of this paper was previously circulated under the title, On the Estimation and Inference for Cointegration
in Panel Data When the Cross-Section and Time-Series Dimensions are Comparable, by Kao and Chen. We are thankful
to four referees and Peter Phillips for pointing out several technical errors in an earlier version and providing comments
that led to improvements of this paper. We also thank Suzanne McCoskey, Peter Pedroni, Andrew Levin and participants
of the 1998 North American Winter Meetings of the Econometric Society for helpful comments and Bangtian Chen for his
research assistance on an earlier draft of this paper. Thanks also go to Martha Bonney for correcting our English and carefully
checking the manuscript to enhance its readability. An electronic version of the paper in postscript format can be retrieved
from http://web.syr.edu/~cdkao. Address correspondence to: Chihwa Kao, Center for Policy Research, 426 Eggers, Syracuse
University, Syracuse, NY 13244-1020; e-mail: cdkao@maxwell.syr.edu.



concern in time-series econometrics has been the use of non-stationary data. With the desire to study the
behavior of cross-sectional data over time and the increasing use of panel data, e.g., Summers and Heston
(1991) data, one new research area is examining the properties of non-stationary time-series data in panel
form. It is an intriguing question to ask: how exactly does this hybrid style of data combine the statistical
elements of traditional cross-sectional analysis and time-series analysis? In particular, what is the correct
way to analyze non-stationarity, the spurious regression problem, and cointegration in panel data?

Given the immense interest in testing for unit roots and cointegration in time-series data, not much
attention has been paid to testing the unit roots in panel data. The only theoretical studies we know of in
this area are Breitung and Meyer (1994); Quah (1994); Levin and Lin (1993); Im, Pesaran, and Shin (1995);
and Maddala and Wu (1996). Breitung and Meyer (1994) derived the asymptotic normality of the Dickey-
Fuller test statistic for panel data with a large cross-section dimension and a small time-series dimension.
Quah (1994) studied a unit root test for panel data that simultaneously have extensive cross-section and
time-series variation. He showed that the asymptotic distribution for the proposed test is a mixture of
the standard normal and Dickey-Fuller-Phillips asymptotics. Levin and Lin (1993) derived the asymptotic
distributions for unit roots on panel data and showed that the power of these tests increases dramatically as
the cross-section dimension increases. Im et al. (1995) critiqued the Levin and Lin panel unit root statistics
and proposed alternatives. Maddala and Wu (1996) provided a comparison of the tests of Im et al. (1995)
and Levin and Lin (1993). They suggested a new test based on the Fisher test.

Recently, some attention has been given to the cointegration tests and estimation with regression models
in panel data, e.g., Kao (1997), McCoskey and Kao (1998), Pedroni (1996, 1997) and Phillips and Moon
(1998). Kao (1997) studied a spurious regression in panel data, along with asymptotic properties of the
ordinary least squares (OLS) estimator and other conventional statistics. Kao (1997) showed that the OLS
estimator is consistent for its true value, but the t-statistic diverges so that inferences about the regression
coefficient, 3, are wrong with a probability that goes to one. Furthermore, Kao (1997) examined the Dickey-
Fuller (DF) and the augmented Dickey-Fuller (ADF) tests to test the null hypothesis of no cointegration
in panel data. McCoskey and Kao (1998) proposed further tests for the null hypothesis of cointegration
in panel data. Pedroni (1997) derived asymptotic distributions for residual-based tests of cointegration
for both homogeneous and heterogeneous panels. Pedroni (1996) proposed a fully modified estimator for
heterogeneous panels. Phillips and Moon (1998) developed both sequential limit and joint limit theories for
non-stationary panel data. Pesaran and Smith (1995) are not directly concerned with cointegration but do
touch on a number of related issues, including the potential problems of homogeneity misspecification for

cointegrated panels.



This paper makes two main contributions. First, it adds to the literature by suggesting a computationally
simpler dynamic OLS (DOLS) estimator in panel cointegrated regression models. Second, it provides a serious
study of the finite sample properties of the OLS, fully modified OLS (FMOLS), and DOLS estimators.

Section 2 introduces the model and assumptions. Section 3 develops the asymptotic theory for the OLS,
FMOLS and DOLS estimators. Section 4 gives the limiting distributions of the FMOLS and DOLS estimators
for heterogeneous panels. Section 5 presents Monte Carlo results to illustrate the finite sample properties
of the OLS, FMOLS, and DOLS estimators. Section 6 summarizes the findings. The proofs of Theorems 1,
2, and 4 are not presented since the proofs can be found in Phillips and Moon (1998) and Pedroni (1997).
Appendix contains the proofs of the Theorems 5 and 6.

A word on notation. We write the integral fol W (s)ds as [ W when there is no ambiguity over limits.
We define Q'/2 to be any matrix such that Q = (Q%/?) (91/2)/ . We use ||4]| to denote {tr (A/A) }1/2 .| A
to denote the determinant of 4, = to denote weak convergence, - to denote convergence in probability, [x]
to denote the largest integer < x, I(0) and I(1) to signify a time-series that is integrated of order zero and

one, respectively, and BM () to denote Brownian motion with the covariance matrix .

2 The Model and Assumptions

Consider the following fixed effect panel regression:
Y = o + x;tﬁ + uy,i=1,.,N, t=1,..,T, (1)

where {y;+} are 1 x 1, B is a k x 1 vector of the slope parameters, {c;} are the intercepts, and {u;} are the
stationary disturbance terms. We assume that {x;:} are k x 1 integrated processes of order one for all i,
where

Tit = Tig—1 + €4t

Under these specifications, (1) describes a system of cointegrated regressions, i.e., y;; is cointegrated with
x;. The initialization of this system is y;0 = 0 = Op(1) as T' — oo for all . The individual constant term

a; can be extended into general deterministic time trends such as ag; + agt+, ..., +optP.

Assumption 1 The asymptotic theory employed in this paper is a sequential limit theory established by
Phillips and Moon (1997) in which T — oo followed by N — occ.

7

. . . ’ . .
Next, we characterize the innovation vector w;; = (uit, sit) . We assume that w;; is a linear process that

satisfies the following assumption.



Assumption 2 For each i, we assume (e.g., Phillips, 1995) :
(a) wi =T(L)eir = 3757 g Mj€u 5, 32570 5 IT]] < oo, [TI(1)] # 0 for some a > 1.
(b) € is i.4.d. with zero mean, variance matriz 3¢, and finite fourth order cumulants.

Assumption 2 implies that (e.g., Phillips and Solo, 1992) the partial sum process % qu} wy satisfies
the following multivariate invariance principle:

[T7]

% Zw“ = B;(r) = BM; (Q) as T — oo for all 4, (2)
=1
where
Bui
B; =
Bsi

The long-run covariance matrix of {w;} is given by

Q = i E(wijw;-o)

j=—0o0
= II(1)=11(1)
= S4T+T
_ Qu QUE
QEU QE
where
i ’ U ]'—"MS
I'= Z E (wijwlo) = (3)
j=1 ]-—‘Eu Fs
and
! EU EUE

are partitioned conformably with w;.

Assumption 3 Q. is non-singular, i.e., {x;} are not cointegrated.

Define
Qu.s - Qu - Qan;195u~ (5)
Then, B; can be rewritten as
B — Buz - Qi/g QuEQ;l/Q ‘/1 (6)
lBa| | 0 wi |



i

where = BM (I) is a standardized Brownian motion. Define the one-sided long-run covariance
Wi
A = ¥4T

§=0
with

Au AUE

A =
AEU AE'

Here we assume that panels are homogeneous, i.e., the variances are constant across the cross-section

units. We will relax this assumption in Section 4 to allow for different variances for different 1.

Remark 1 The benefits of using panel data model have been discussed extensively by Hsiao (1986) and Bal-
tagi (1995), though Hsiao and Baltagi assume the time dimension is small while the cross-section dimension
1s large. However, in international trade, open macroeconomics, urban regional, public finance, and finance,
panel data usually have long time-series and cross-section dimensions. The data of Summers and Heston

(1991) data are a notable example.

Remark 2 The advantage of using the sequential limit theory is that it offers a quick and easy way to
derive the asymptotics as demonstrated by Phillips and Moon (1997). Phillips and Moon (1997) also provide

detailed treatments of the connections between the sequential limit theory and the joint limit theory.

Remark 3 If one wants to obtain a consistent estimate of B in (1) or wants to test some restrictions on
B, then an individual time-series regression or a multiple time-series regression is probably enough. So what
are the advantages of using the (N, T) asymptotics, e.g., sequential asymptotics in Assumption 1, instead of
T asymptotics? One of the advantages is that we can get a normal approximation of the limit distributions
of the estimators and test statistics with the convergence rate /NT. More importantly, the biases of the
estimators and test statistics can be reduced when N and T are large. For example, later in this paper we
will show that the biases of the OLS, FMOLS, and DOLS estimators in Table 2 were reduced by half when
the sample size was changed from (N =1,T =20) to (N =20,T = 20). However, in order to obtain an
asymptotic normality using the (N,T) asymptotics we need to make some strong assumptions; for example,

in this paper we assume that the error terms are independent across i.

Remark 4 The results in this paper require that regressors are not cointegrated. Assuming that I(1) regres-
sors are not cointegrated with each other is indeed restrictive. The authors are currently investigating this

issue.



3 OLS, FMOLS, and DOLS Estimators

Let us first study the limiting distribution of the OLS estimator for equation (1). The OLS estimator of ( is

—1

ﬂoj;s = lzz Tt — (x4 — )l] [ZZ Tig — (e —7:) | - (7)

=1 t=1 =1 t=1
All the limits in Theorems 1 — 6 are taken as T' — oo followed by N — oo sequentially from Assumption

1. First, we present the following theorem:
Theorem 1 If Assumptions 1 — 3 hold, then
(a) T (Bors = B) %> —302 Qs + 60 1Ay,
(b) VNT (BOLS - 6) —VNénr = N (0,6Q:19,..)

where

| T -1 |
—|= 7Y — 1/2 W.dw. | Q-1/2
T = lN ; 5 ; it — Tit) (Tig — T4) ] lN ;QE (/ WldWi> Q7 7Oy + Agy

and W; = Wi — [ W

The normality of the OLS estimator in Theorem 1 comes naturally. When summing across ¢, the non-
standard asymptotic distribution due to the unit root in the time dimension is smoothed out. From Theorem
1 we note that there is an interesting interpretation of the asymptotic covariance matrix, 6Q_ 1€, ., i.e.,
Q- 1€, . can be seen as the long-run noise-to-signal ratio. We also note that — qu is due to the endogeneity

of the regressor x;, and A, is due to the serial correlation. It can be shown easily that

Snr B =310, + 6071 AL,

If wiy = (uit,e;t) are i.i.d., then
ONT 2 32;1257“

which was examined by Kao and Chen (1995). Let (AZE, qu,ﬁg, and ﬁgu be consistent estimates of €.,

~+
Qcu, Qe, and A, respectively. Then from (b) in Theorem 1, we can define a bias-corrected OLS, 55, g,

o~

~+ - ONT
Bors = Bors — T

such that
VNT (agLS . ﬁ) = N (0,607 Q) ,



where

3NT = *36;16‘5“ + 6§glﬁgu.

Chen, McCoskey, and Kao (1996) investigated the finite sample proprieties of the OLS estimator in (7),
the t-statistic, the bias-corrected OLS estimator, and the bias-corrected t-statistic. They found that the
bias-corrected OLS estimator does not improve over the OLS estimator in general. The results of Chen,
McCoskey, and Kao (1996) suggest that alternatives, such as the FMOLS estimator or the DOLS estimator
(e.g., Saikkonen, 1991; Stock and Watson, 1993) may be more promising in cointegrated panel regressions.
Thus, we begin our study by examining the limiting distribution of the FMOLS estimator, B ras- The FMOLS
estimator is constructed by making corrections for endogeneity and serial correlation to the OLS estimator

BOLS in (7). Define

gy = tis — Qe e, (8)
U= g~ QO e, 9)
yjf = Yit — QuEQg_leita (10)
and
@‘t = Yit — QUEQQIAJC#. (11)
Note that
u:z; 1 79“595_1 U4t
€4t 0 I Eit ’

which has the long-run covariance matrix

Que O
0 Q.

where I is a k£ x k identity matrix. The endogeneity correction is achieved by modifying the variable y;; in

(1) with the transformation

{y\i; = yit_QusgglAl'it
= o; + x;tﬂ + uit—Q%QE—lAwit.

The serial correlation correction term has the form

Ah = (AL &)



where Agu and &; are kernel estimates of A.,, and A.. Therefore, the FMOLS estimator is

A N T / N T ~
Brm = [ZZ(JM — ) (xy — T;) ] Z (Z (wie = i) Bt~ TA;U)] . "

=1 t=1 i=1 t=1

-1

Now, we state the limiting distribution of 3 M
Theorem 2 If Assumptions 1 — 3 hold, then vNT (3FM - 5) = N (0,60:10,.) .
It can be shown easily that the limiting distribution of 3 s becomes
VNT (BFM - ﬁ) = N (0,2071Q,.) (13)
by the exclusion of the individual-specific intercept, «;.

Remark 5 Once the estimates of w;;, Wi were estimated, we used

R ;] T
=7 Z > @iy (14)
=1 t=1
to estimate X. ) was estimated by
1N (1 I 1< T
23 F St g 3w 3 (G i)} 15
=1 t=1 T7=1 t=7+1
where w,; is a weight function or a kernel. Using Phillips and Durlauf (1986) and sequential limit theory,

S and Q can be shown to be consistent for ¥ and Q.

Next, we propose a DOLS estimator, 3 s which uses the past and future values of Az;; as additional
regressors. We then show that the limiting distribution of 3 p is the same as the FMOLS estimator, BF M

But first, we need the following additional assumption:
Assumption 4 The spectral density matriz fu.,(\) is bounded away from zero and full rank for all i, i.e.,
fww(>\) > 6Ir, )\ € [O,ﬂ'] ;6 > 0.

When Assumptions 2 and 4 hold, the process {u;} can be written as (see Saillonen, 1991):

oo
Uj = Z Cij€it+j T Vit, (16)
j=—00
for all 4, where
oo
> el < o
Jj=—00



{vit} is stationary with zero mean, and {v;;} and {e;;} are uncorrelated not only contemporaneously but also
in all lags and leads. In practice, the leads and lags may be truncated while retaining (16) approximately,

so that

q
Uit = E CijEit+j+ Vit -

j=—q
for all i. This is because {c;;} are assumed to be absolutely summable, i.e., Y72 [lei; < oo.
We also need to require that ¢ tends to infinity with T" at a suitable rate:
Assumption 5 ¢ — 0o as T — oo such that q—; — 0, and
T2 3" el — 0 (17)
l71>q
for all .
We then substitute (16) into (1) to get
q
Yie = Q; -+ x;tﬁ + Z Cij€itti+ Vit,
j=—q
where
Vit= Vit + Z CijCit+j- (18)
l31>q
Therefore, we obtain the DOLS of 3, 3 s by running the following regression:
q
Yit = o + Jc;-fﬂ + Z Cij AT+ Vg (19)

j=—q

Next, we show that 3 p has the same limiting distribution 3 ras as in Theorem 2.

Theorem 3 If Assumptions 1 — 5 hold, then v NT (,@D - ,8) =N (O, 69;19%5) .

4 Heterogeneous Panels

The paper so far assumes that the panel data are homogeneous. The substantial heterogeneity exhibited by
actual data in the cross-sectional dimension may restrict the practical applicability of the FMOLS and DOLS
estimators. Also, the estimators in Sections 2 and 3 are not easily extended to cases of broader cross-sectional
heterogeneity since the variances and biases are specified in terms of the asymptotic covariance parameters
that are assumed to be shared cross-sectionally.

In this section, we propose an alternative representation of the panel FMOLS estimator for heterogeneous

panels. Before we discuss the FMOLS estimator we need the following assumptions:



Assumption 6 We assume the panels are heterogeneous, i.e., Q;,I'; and X; are varied for different i. We

also assume the invariance principle in (2), (16), and (17) in Assumption 5 still holds.

Let
Tip = ﬁ;gl/zzit, (20)
ufy = Qe (21)
U, = uy-— Qiusﬁfgl&it,
T = v — Qe A — 02 (ﬁful.gz -0, 2) i3, (22)
and
vio = QT (23)

where ﬁig and ﬁm,g are consistent estimators of ;. and

Qive = QU — e U Qi
respectively. Similar to Pedroni (1996) the correction term, A%i (ﬁ;jéz - ﬁi;l/ 2) 23, is needed in (22) in
the heterogeneous panel. We note that (22) will be the same as (11) only if ﬁiu_g = flis in the heterogeneous
panel. Also (22) requires knowing something about the true 8. In practice, 8 in (22) can be replaced by a
preliminary OLS, Bo 1.g- Therefore, let

~ Al 812 (6-1/2  &-1/2\ . 3
U5 = v~ QO Ay — Q) (Q 2 -Q /)IitﬁoLSa

iu.€ u.€ €

and
* - 1/2~4+
Yir = Sjue Yir -
Assumption 7 Q. is not singular for all i.

Then, we define the FMOLS estimator for heterogeneous panels as

B;M = [ZZ (23 — ;) (25 — Tf)/] lz (Z (€ =) vz — Tﬁi‘guﬂ ) (24)

i=1 t=1 1=1 =1
where
N+ O-1/27+ A-1/2
Aif—:u - Qis Aif—:uQiu.s
and
~ 1
+ . ~ ~
Aisu - ( Aif—:u Aia ) PP
_Qig Qisu



Theorem 4 If Assumptions 1 —2 and 6 — 7 hold, then v NT (B;M - 6) = N(0,6I).

The DOLS estimator for heterogeneous panels, B*D, can be obtained by running the following regression:

qi
vi = o + xuB + Z Cij ATy i+ Uy, (25)

J=—qi
where v}, is defined similarly as in (18). Note that in (25) different lag truncations, ¢;, may have to be used

because the error terms are heterogeneous across i. Therefore, we need to assume that g; tends to infinity

with T at a suitable rate for all <:

3
Assumption 8 ¢; — 0o as T — oo such that %;L — 0, and

TY2 Y eyl —0 (26)

[71>g:

for all 1.
In the following theorem we show that 3; also has the same limiting distribution as ﬁ; M-
Theorem 5 If Assumptions 1 —2 and 6 — 8 hold, then vV NT (BE — 6) = N (0,6I) .

Remark 6 Theorems 4 and 5 show that the limiting distributions of B;M and 573 are free of nuisance

parameters.

Remark 7 We now consider a linear hypothesis that involves the elements of the coefficient vector 3. We
show that hypothesis tests constructed using the FMOLS and DOLS estimators have asymptotic chi-squared
distributions. The null hypothesis has the form:

Hy: RB=r, (27)

where r is an m X 1 known vector and R is a known m X k matriz describing the restrictions. A natural test

statistic of the Wald test using B M OT ,@ p for homogeneous panels is
1 ol "ToA A R PN
W= ZNT (RﬁD - r) [RQ; QMR] (RﬁD - r) . (28)
Remark 8 For the heterogeneous panels, a natural statistic using B; A OT BZ to test the null hypothesis is

W = %NTQ (RB}; - 7’)/ [RR’] o (R@}; - 7") . (29)

11



It is clear that W and W™ converge in distribution to a chi-squared random wvariable with m degrees of
freedom, x2,, as T — oo and followed by N — oo sequentially under the null hypothesis. Hence, we establish
the following results:

W =2,

and

W* = x2.
Because the FMOLS and the DOLS estimators have the same asymptotic distributions, it is easy to verify
that the Wald statistics based on the FMOLS estimator share the same limiting distributions as those based
on the DOLS estimator.

5 Monte Carlo Simulations

The ultimate goal of this Monte Carlo study is to compare the sample properties of OLS, FMOLS, and
DOLS for two models: a homogeneous panel and a heterogeneous panel. The simulations were performed by
a Sun SparcServer 1000 and an Ultra Enterprise 3000. GAUSS 3.2.31 and COINT 2.0 were used to perform
the simulations. Random numbers for error terms, (uj,e}), for Sections 5.1, 5.2, and 5.4 were generated
by the GAUSS procedure RNDNS. At each replication, we generated an N (T + 1000) length of random
numbers and then split it into N series so that each series had the same mean and variance. The first 1,000
observations were discarded for each series. {u},} and {e},} were constructed with u;o = 0 and &;9 = 0.

In order to compare the performance of the OLS, FMOLS, and DOLS estimators, the following data

generating process (DGP) was used:
Yie = o + frig + ui (30)

and

Tit = Ti—1 + €4t

where (u;, ;) follows an ARMA(1,1) process:

uit | 05 0 Uit —1 N (O n 03 -04 Ujy_q
Eit 0 0.5 Eit—1 €5 021 0.6 i1
with _
ugy iid 0 , 1 on
el 0 o21 1
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05 0 00
The design in (30) nests several important special cases. First, when is replaced by and

0 0.5 0 0
091 18 constant across i, then the DGP becomes the homogeneous panel in Section 5.1. Second, when

05 0
is replaced by , and #21; and o097 are random variable across ¢, then the DGP is
0 05 0

the heterogeneous panel in Section 5.4.

5.1 Homogeneous Panel

To compare the performance of the OLS, FMOLS, and DOLS estimators for the homogeneous panel we
conducted Monte Carlo experiments based on a design similar to that of Phillips and Hansen (1990) and

Phillips and Loretan (1991).
Yie£ = o + Pry + ug
and

Tit = Tijt—1 T €it

fori=1,..,N,t=1,..T, where

U; u, 03 -04 Uy
Eit 62} (921 0.6 82}_1
with
uy, iid N 0 ’ 1 o9
6;} 0 g921 1

We generated «; from a uniform distribution, U[0, 10], and set 3 = 2. From Theorems 1-3 we know that
the asymptotic results depend upon variances and covariances of the errors u;; and ;. The design in (31)
is a good one since the endogeneity of the system is controlled by only two parameters, 627 and ga1. We
allowed 27 and 091 to vary and considered values of {0.8,0.4,0.0,—0.8} for #3; and {—0.8,—0.4,0.4} for
O91.

The estimate of the long-run covariance matrix in (15) was obtained by using the procedure KERNEL
in COINT 2.0 with a Bartlett window. The lag truncation number was set arbitrarily at five. Results with
other kernels, such as Parzen and quadratic spectral kernels, are not reported, because no essential differences
were found for most cases.

Next, we recorded the results from our Monte Carlo experiments that examined the finite-sample proper-

ties of the OLS estimator, 30,;3; the FMOLS estimator, BFM; and the DOLS estimator, BD. The results we
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report are based on 10,000 replications and are summarized in Tables 1 - 4 and Figures 1 - 8. The FMOLS
estimator was obtained by using a Bartlett window of lag length five as in (15). Four lags and two leads
were used for the DOLS estimator.

Table 1 reports the Monte Carlo means and standard deviations (in parentheses) of (Bo LS — ﬁ),
<3FM — 6) , and (BD — ﬁ) for sample sizes T = N = (20, 40,60) . The biases of the OLS estimator, ﬁOLS,
decrease at a rate of T. For example, with 097 = —0.8 and 657 = 0.8, the bias at T' = 20 is — 0.201 and at
T =40 is —0.104. Also, the biases increase in a1 (with 027 > 0) and decrease in ;.

While we expected the OLS estimator to be biased, we expected the FMOLS estimator would produce
much better estimates. However, it is noticeable that the FMOLS estimator has a downward bias when
021 > 0 and an upward bias when 657 < 0. In general, the FMOLS estimator, B as, bresents the same degree
of difficulty with bias as does the OLS estimator, Bo r.g- For example, while the FMOLS estimator, BF M
reduces the bias substantially and outperforms Bo g When 621 > 0 and 091 < 0, the opposite is true when
021 > 0 and 097 > 0. Likewise, when 657 = —0.8, BFM is less biased than 3OLS for values of 097 = —0.8.
Yet, for values of 097 = —0.4, the bias in BOLS is less than the bias in BFM. There seems to be little to
choose between Bo g and BF o when 27 < 0. This is probably due to the failure of the nonparametric
correction procedure in the presence of a negative serial correlation of the errors, i.e., a negative MA value,
021 < 0. Finally, for the cases where 657 = 0.0, ﬁFM outperforms 3OLS when 021 < 0. On the other hand,
EFM is more biased than BOLS when 027 > 0.

In contrast, the results in Table 1 show that the DOLS, 3 1, is distinctly superior to the OLS and FMOLS
estimators for all cases in terms of the mean biases. It was noticeable that the FMOLS leads to a significant
bias. Clearly, the DOLS outperformed both the OLS and FMOLS estimators. The FMOLS estimator is also
complicated by the dependence of the correction in (11) and (12) upon the preliminary estimator (here we
use OLS), which may be biased in finite samples. The DOLS differs from the FMOLS estimator in that the
DOLS requires no initial estimation and no nonparametric correction.

It is important to know the effects of the variations in panel dimensions on the results, since the actual
panel data have a wide variety of cross-section and time-series dimensions. Table 2 considers 20 different
combinations for N and T, each ranging from 20 to 120 with o097 = —0.4 and 657 = 0.4. First, we notice
that the cross-section dimension has a significant effect on the biases of BO LS BF s and 3 p when N is
increased from 1 to 20. However, when N is increased from 20 to 40 and beyond, there is little effect on
the biases of 30 LS B Fary and B p- From this it seems that in practice the T' dimension must exceed the
N dimension, especially for the OLS and FMOLS estimators, in order to get a good approximation of the

limiting distributions of the estimators. For example, for each of the estimators in Table 2, the reported
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bias is substantially less for (7" = 120, N = 40) than it is for either (T' =40, N = 40) or (T' = 40, N = 120).
The results in Table 2 again confirm the superiority of the DOLS. The largest bias in the DOLS with four
lags and two leads, DOLS(4,2), is less than or equal to 0.02 for all cases except at N = 1 and T = 20,
which can be compared with a simulation standard error (in parentheses) that is less than .007 when N > 20
and T > 60, confirming the accuracy of the DOLS(4,2). The biases in DOLS with two lags and one lead,
DOLS(2,1) start off slightly biased at N = 1 and T = 20, and converge to an almost unbiased coefficient
estimate at N = 20 and T" = 40. The biases of DOLS(2,1) move in the opposite direction to those of
DOLS(4,2).

Figures 1, 3, 5 and 7 display estimated pdfs for the estimators for 091 = —0.4 and § = 0.4 with N = 40
(T =20 in Figure 1, T = 40 in Figure 3, T = 60 in Figure 5 and T' = 120 in Figure 7). In Figure 1, N = 40,
T = 20, the DOLS is much better centered than the OLS and FMOLS. In Figures 3, 5 and 7, the biases of
the OLS and FMOLS were reduced as T increases, the DOLS still dominates the OLS and FMOLS.

Monte Carlo means and standard deviations of the t-statistic, t3—g,, are given in Table 3. Here, the
OLS t-statistic is the conventional t-statistic as printed by standard statistical packages, and the FMOLS
and DOLS t-statistics. With all values of 91 and o21, the DOLS(4,2) t-statistic is well approximated by
a standard N(0,1) suggested from the asymptotic results. The DOLS(4,2) t-statistic is much closer to the
standard normal density than the OLS t-statistic and the FMOLS t-statistic. When 637 > 0 and 021 < 0,
the OLS t-statistic is more heavily biased than the FMOLS ¢-statistic. Again, when #2; > 0 and o091 > 0,
the opposite is true. Even when 657 = 0, the FMOLS t-statistic is not well approximated by a standard
N(0,1). The OLS t-statistic performs better than the FMOLS t-statistic when 091 = 0.8 and 027 > 0 and
when 097 < —0.4 and 02; = —0.8, but not in other cases. The FMOLS t-statistic in general does not perform
better than the OLS ¢-statistic.

Table 4 shows that both the OLS t-statistic and the FMOLS t-statistic become more negatively biased as
the dimension of cross-section N increases. The heavily negative biases of the FMOLS t-statistic in Tables
3-4 again indicate the poor performance of the FMOLS estimator. For the DOLS(4,2), the biases decrease
rapidly and the standard errors converge to 1.0 as T" increases. Similar to Table 2, we observe from Table 4
that for the DOLS t-statistic the T dimension is more important than the N dimension in reducing the biases
of the t-statistics. However, the improvement of the DOLS t-statistic is rather marginal as T increases.

Figures 2, 4, 6 and 8 display estimated pdfs for the t-statistics for 091 = —0.4 and 6 = 0.4 with N = 40
(T = 20 in Figure 2, T' = 40 in Figure 4, T = 60 in Figure 6 and 7' = 120 in Figure 8). The figures show
clearly that the DOLS t-statistic is well approximated by a standard N(0,1) especially as T increases. From

the results in Tables 2 and 4 and Figures 1-8 we note that the sequential limit theory approximates the
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limiting distributions of the DOLS and its t-statistic very well.

It is known that when the length of time series is short the estimate Q in (15) may be sensitive to the
length of the bandwidth. In Tables 2 and 4, we first investigate the sensitivity of the FMOLS estimator with
respect to the choice of length of the bandwidth. We extend the experiments by changing the lag length
from 5 to 2 for a Barlett window. Overall, the results show that changing the lag length from 5 to 2 does
not lead to substantial changes in biases for the FMOLS estimator and its t-statistic. However, the biases of
the DOLS estimator and its t-statistic are reduced substantially when the lags and leads are changed from
(2,1) to (4,2) as predicted from Theorem 3. The results from Tables 2 and 4 show that the DOLS method
gives different estimates of 3 and the t-statistic depending on the number of lags and leads we choose. This
seems to be a drawback of the DOLS estimator. Further research is needed on how to choose the lags and

leads for the DOLS estimator in the panel setting.

5.2 ARMA(1,1) Error Terms

In this section, we look at simulations where, instead of the errors being generated by an MA(1) process in
(31), the errors are generated by an ARMA(1,1) process in (30). As pointed out by a referee, the MA(1)
specification in (31) may be unfair to the FMOLS estimator. One of the reasons why the performance of
the DOLS is much better than that of the FMOLS lies in the simulation design in (31), which assumes that
the error terms are MA(1) processes. If (u; ,eit)/ is an MA(1) process, then u;; can be written exactly with
three terms, €;;—1, €, and €;:41 and no lag truncation approximation is required for the DOLS.

Tables 5 and 6 report the performance of OLS, FMOLS, and DOLS and their ¢-statistics when the errors
are generated by an ARMA(1,1) process. Tables 5 and 6 show that the FMOLS estimator and its t-statistic
are less biased than the OLS estimator for most cases and is outperformed by the DOLS. Again, when
A1 > 0.0 and 097 = 0.8 the FMOLS estimator and its t-statistic suffer from severe biases. On the other
hand, we observe that DOLS shows less improvement compared with OLS and FMOLS, in contrast to Tables
1 and 3. This observation is correctly pointed out by a referee. However, the good performance of DOLS

may disappear for high order ARMA (p.q) error process.
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5.3 Non-normal Errors

In this section, we conduct an experiment where the error terms are non-normal. The DGP is similar to

that of Gonzalo (1994):

£
B2

uly N 03 —-04 Uy 4

€% a1 0.6 €5 1

™
=

* 1 * 1/2
uit = <;> 0.58@5 + (1 - 0.52) / uit 3
and

* *ok
Eit = Ot

where u} and €} are independent exponential random variables with a parameter 1. The results from
Tables 7-8 show that while the DOLS estimator performs better in terms of the biases, the distribution of
the DOLS t-statistic is far from the asymptotic N(0,1). The standard deviations of the DOLS t-statistic are
badly underestimated.

To summarize the results so far, it would appear that the DOLS estimator is the best estimator overall,
though the standard error for the DOLS t-statistic shows significant downward bias when the error terms

are generated from non-normal distributions.

5.4 Heterogeneous Panel

In Sections 5.1-5.3 we compare the small sample properties of the OLS, FMOLS and DOLS estimators and
conclude that the DOLS estimator and its t-statistic generally exhibit the least bias. One of the reasons
for the poor performance of the FMOLS estimator in the homogeneous panel is that the FMOLS estimator
needs to use a kernel estimator for the asymptotic covariance matrix, while the DOLS does not. By contrast,
for the heterogeneous panel both DOLS in (20) and OLS in (33) use kernel estimators. Consequently, one
may expect that the much better performance of the DOLS estimator in Sections 5.1-5.3 is limited to only
very specialized cases, e.g., in the homogeneous panel. To test this, we now compare the performance of the
OLS, FMOLS, and DOLS estimators for a heterogeneous panel using Monte Carlo experiments similar to

those in Section 5.1. The DGP is
Yie = o + Bry + uy

and

Tip = Tig—1 + €4t
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fori=1,..,N,t=1,..T, where

Ugp B ul 03 —-04 U4
€4t €5 o1 0.6 €311
with
uft Z,Z\fl N 0 1 g921
62} 0 ’ J921 1

As in Section 5.1, we generated «; from a uniform distribution, U|0, 10], and set S = 2. In this section,
we allowed 691 and 021 to be random in order to generate the heterogeneous panel, i.e., both 031 and o9
are generated from a uniform distribution, U[—0.8,0.8]. An estimate of Q; =%, +T'; + F;, Qi, was obtained
by the COINT 2.0 with a Bartlett window. The lag truncation number was set at 5.

The three estimators considered are the FMOLS, DOLS, and the OLS, where the OLS is defined as

. N T / “lrny 7T
Bors = | D> (@i —7") (&l — %) 1 lzz (x5 —77) (yft*)] (33)
i=1 t=1 i=1 t=1

K3 K3

considered, one using the lag length of 5 (FMOLS(5)), the second using the lag length of 2 (FMOLS(2)).
Two DOLS estimators are also considered: DOLS with four lags and two leads, DOLS(4,2) and DOLS

with 3 = wizy, ¥ = Wy, TF = F Zle i, and w; = [@71] . Two FMOLS estimators will be
11

with two lags and one leads, DOLS(2,1). The relatively good performance of the DOLS estimator in a
homogeneous panel can also be observed in Table 9. The biases of the OLS and FMOLS estimators are
substantial. Again, the DOLS outperforms the OLS and FMOLS. Note from Table 9 that the FMOLS
always has more bias than the OLS for all N and T except when N = 1. The poor performance of the
FMOLS in the heterogenous panels indicates that the FMOLS in Section 4 is not recommended in practice.
A possible reason for the poor performance of the FMOLS in heterogenous panels is that it has to go through
two nonparametric corrections, as in (22) and (23). Therefore the failure of the nonparametric correction
could be very severe for the FMOLS estimator in heterogenous panels. Pedroni (1996) proposed several
alternative versions of the FMOLS estimator such as an FMOLS estimator based on the transformation of
the estimated residuals and a group-mean based FMOLS estimator. It would be interesting to study further
the issues of estimation and inference in heterogenous panels. However, it goes beyond the scope of this
paper.

From Table 10, we note that the DOLS t-statistics tend to have heavier tails than predicted by the
asymptotic distribution theory, though the bias of the DOLS t¢-statistic is much lower than those of the OLS
and FMOLS t-statistics.

It appears that the DOLS still is the best estimator overall in a heterogeneous panel.
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5.5 Summary

The results from the above four Monte Carlo simulations can be summarized as follows: First, for the
homogeneous panel, when the serial correlation parameter, 621, and the endogeneity parameter, 021, are both
negative, the OLS is the most biased estimator. The OLS is biased in almost all cases for the heterogenous
panel. Second, the FMOLS is more biased than the OLS when 057 > 0 and 091 > 0 for the homogeneous
panel. The FMOLS is severely biased for the heterogenous panel in almost all trials. This indicates the failure
of the parametric correction is very serious, especially in the heterogenous panel. Third, DOLS performs
very well in all cases for both the homogeneous and heterogenous panels. Adding the number of leads and
lags reduces the bias of the DOLS substantially. This was predicted by the asymptotic theory in Theorem
3. Fourth, the sequential limit theory approximates the limit distributions of the DOLS and its t-statistic

very well.

6 Conclusion

This paper discusses limiting distributions for the OLS, FMOLS, and DOLS estimators in a cointegrated
regression. We also investigate the finite sample proprieties of the OLS, FMOLS, and DOLS estimators.

Our findings are summarized as follows:

(i) The OLS estimator has a non-negligible bias in finite samples.
(ii) The FMOLS estimator does not improve over the OLS estimator in general.

(iii) The DOLS estimator may be more promising than the OLS or FMOLS estimators in estimating

cointegrated panel regressions.

Appendix

A Proof of Theorem 3

First we write (19) in vector form:

yi = eo;taif+ Z;Ct+ vy

= x;0+ Z;D+ v; (say),
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where y;is a T' x 1 vector of y;;; e a is T x 1 unit vector; Z;, is the T' x 2¢ matrix of observations on the 2 x ¢
regressors Air_q, -+, ATijrtq; @; is a vector of T' X k of xs; C is a (2 x ¢) x 1 vector of ¢;;; v; is a T x 1
vector of vy; Z; is a T X (2 x ¢+ 1) matrix, Z; = (e, Z;q); and D is a (2 x ¢+ 1) x 1 vector of parameters.
Let Q; = I — Z;(Z!Z;)~'Z,. It follows that

(o-5) =[S (o) [35 000

We rescale (B D— ﬁ) by VNT to get

N
where {5y = % Z Csiry Coir = ( Ql 1) s SeNT = % 2_31 Ceir> and Cgir = % (5172@1%)
Observe that from Saikkonen (1991)

(2;Qix;)

= (x;WTxZ) +0,(1)
1

€6iT

T—q

= T3 (230 — T;) (wir — Ti) + 0p(1)
t=q+1

= /Esiésilv
and
(23Qs 05)

(a;;WT v) +0,(1)
T—

Z Tit — U’Lt +Op(1)

= / B..dB,

as T — oo for all 7, where Eﬂ» = B — fBEZ and Wpr = Ip — Tee Then applying the multlvarlate

C5iT

e L e e

Lindeberg-Levy central limit theorem to \/— S BﬂdB and combining this with the limit of & Z i B‘EZ i
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as in Theorem 2, we have

1 X [~ =,
~T BEiBEi
sx/

as N — oo. It follows that using the sequential limit theory

-1

1 ~
— [ B.dB*| = N (0,607, .
|7 [ Baani| =N 0.60710,.)

VNT (BD - ﬁ) = N (0,60;'Q,.)

as required. W

B Proof of Theorem 5

The proof is the same as that of Theorem 3. First, similar to Theorem 3, we write (25) in vector form:

y; = ea;taif+ Z;,C+ 7}:

x; B+ Z D+ vf (say),

and define ¥, e, Z}

G i € vf Z¥, Z;i, D, and Q7 as in the proof of Theorem 3. Then we have:

VNT (B - 8)

N -1 N .
= [% 2 7 (o 2-‘172-‘)] {W% > (e )]

[+ ] [ f]
= (éonr] ™" [V

N N
1 1 - 1 1
where {7y = ~ 21 Crirs Crir = T (35?/@? ”i) s SsnT = N~ 21 Cgirs> and (g = Tz (7' Q).
1= =

Observe that from Assumption 8, we have

1 * * ok
Cir T2 (xi/Qi xy)
1 /
= = (5 Wiar) +0,(1)
1 T—q; ,
- T2 Z (xy —T7) (23 —T7) +o0p(1)
t=q;+1
= [W.
and
1/ s o
Crir = T(xi/Qi Ui)
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1 : "
= 7 (35;‘ W vi) + 0,(1)
1 T—q;
= 7 Z (i = T7) vy +0p(1)

t=qi+1

T
= /WidVi,

as T — oo for all 7. The remainder of the proof follows that of Theorem 3. B
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Table 1: Means Biases and Standard Deviations of OLS, FMOLS, and DOLS Estimators

091 — —-0.8 091 = —04 091 — 0.8

Bors—B Bru—B Bp—8  Bors—B Bru—B Bo—B  Bors—B Bru—B Bp—B

f21=10.8

T =20 -.201 -.176 -.001 -.097 -.113 -.002 -.022 -.069 -.009
(.049) (.044) (.040) (.032) (.035) (.033) (.011) (.016) (.009)

T =40 -.104 -.099 -.000 -.049 -.062 -.001 -.011 -.036 -.004
(.019) (.017) (.013) (.012) (.013) (.011) (.004) (.006) (.003)

T =60 -.070 -.069 -.000 -.033 -.042 -.000 -.007 -.024 -.003
(.010) (.009) (.007) (.007) (.007) (.006) (.002) (.003) (.002)

f#o1=0.4

T =20 -.132 -.064 -.001 -.082 -.068 -.002 -.014 -.073 -.003
(.038) (.025) (.027) (.030) (.029) (.031) (.013) (.018) (.013)

T =40 -.066 -.038 -.001 -.041 -.038 -.001 -.007 -.037 -.001
(.014) (.009) (.027) (.011) (.011) (.009) (.005) (.006) (.004)

T =60 -.044 -.027 -.000 -.027 -.026 -.001 -.005 -.025 -.001
(.007) (.005) (.005) (.006) (.006) (.005) (.002) (.003) (.002)

f#21=0.0

T =20 -.079 -.002 .001 -.059 -.019 .002 .005 -.069 .006
(.027) (.015) (.017) (.026) (.022) (.026) (.016) (.021) (.017)

T =40 -.039 -.005 .001 -.029 -.012 .001 .002 -.035 .003
(.009) (.005) (.005) (.009) (.008) (.008) (.006) (.007) (.005)

T = 60 -.026 -.004 .000 -.019 -.009 -.001 .001 -.023 .002
(.005) (.003) (.003) (.005) (.004) (.008) (.003) (.004) (.003)

fo1=—0.8

T =20 -.029 .038 .007 -.019 .036 .007 114 .012 .000
(.016) (.012) (.008) (.017) (.015) (.014) (.034) (.028) (.031)

T =40 -.015 .018 .003 -.009 .018 .003 .057 .011 -.000
(.006) (.004) (.002) (.006) (.005) (.004) (.012) (.009) (.009)

T =60 -.009 .011 .002 -.007 .012 .002 .038 .010 .000
(.003) (.002) (.001) (.003) (.002) (.002) (.007) (.005) (.005)

Note:

(a) N =T.
(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.
(c) 4 lags and 2 leads are used for the DOLS estimator.
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Table 2: Means Biases and Standard Deviations of OLS, FMOLS, and DOLS Estimators for Different N and

(N,T) Bors—H Brme) =P Brme—B Bpaz—B Bp.1)—B
(1.20) ~135 ~104 122 ~007 031
(.184) (.196) (.189) (:297) (211)
(1,40) -.070 -.059 -.065 -.001 .015
(.093) (.012) (.092) (.106) (.090)
(1,60) -.047 -.041 -.043 -.001 .009
(.063) (.064) (.061) (.064) (.057)
(1,120) -.024 -.023 -.022 -.001 .004
(.032) (.031) (.031) (.029) (.027)
(20,20) ~.082 ~.068 ~075 ~.002 017
(.030) (.029) (.029) (.031) (.028)
(20,40) -.042 ~.039 ~.039 ~.001 008
(.016) (.015) (.015) (.015) (.014)
(20,60) -.028 -.027 -.026 -.000 .006
(.010) (.010) (.009) (.009) (.009)
(20,120) -.014 -.014 -.013 -.000 .003
(.005) (.005) (.005) (.005) (.004)
(40,20) -.081 -.066 -.073 -.001 017
(.022) (.021) (.021) (.022) (.019)
(40,40) -.041 -.038 -.038 -.001 .008
(.011) (.011) (.011) (.009) (.009)
(40,60) -.028 -.026 -.025 -.001 .005
(.007) (.007) (.007) (.007) (.006)
(40,120) ~.014 ~.014 ~013 ~.000 003
(.004) (.004) (.003) (.003) (.004)
(60,20) -.080 -.067 -.073 -.002 .016
(.017) (.017) (.017) (.018) (.016)
(60,40) -.041 -.038 -.038 -.001 .008
(.009) (.009) (.009) (.008) (.008)
(60,60) -.027 -.026 -.025 -.001 .005
(.006) (.006) (.006) (.005) (.005)
(60,120) ~.014 ~.014 ~.012 ~.000 003
(.003) (.003) (.003) (.003) (.003)
(120,20) -.079 -.066 -.072 -.002 .016
(.012) (.012) (.012) (.012) (011)
(120,40) ~.041 037 037 ~.001 008
(.006) (.006) (.006) (.006) (.005)
(120,60) -.027 -.026 -.025 -.001 .005
(.004) (.004) (.004) (.004) (.004)
(120,120) ~.014 ~.014 ~013 ~.000 003
(.002) (.002) (.002) (.002) (.002)
Note:

(a) A lag length 5 and 2 of the Bartlett windows are used for the FMOLS(5) and FMOLS(2) estimators.
(b) 4 lags and 2 leads and 2 lags and 1 lead are used for the DOLS(4,2) and DOLS(2,1) estimators.
(C) 0921 = —0.4 and (921 =0.4.
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Table 3: Means Biases and Standard Deviations of t-statistics

091 — —-0.8 091 = —04 091 — 0.8
OLS FMOLS DOLS OLS FMOLS DOLS OLS FMOLS DOLS
021=0.8
T =20 -7.247  -5.594  -.047 -4.650  -4.823  -.086 -1.758  -7.927  -1.049
(1.526)  (1.330) (1.281) (1.393) (1.414) (1.423) (.859)  (1.719) (1.122)
T = 40 -10.047 -8.435  -.004 -6.503  -6.833  -.069 -2.491  -11.584 -1.386
(1.484) (1.382) (1.119) (1.389) (1.366) (1.187) (.847)  (1.826) (1.006)
T =60 -12.250 -10.749 -.004 -7.937 -8.429 -.084 -3.030 -14.402  -1.633
(1.468)  (1.439)  (1.093) (1.397) (1.377) (1.135) (.847)  (1.840) (.959)
021=0.4
T =20 -5.425 -2.377 -.046 -3.905 -3.017 -.124 -.925 -6.864 =277
(1.340)  (1.042) (1.132) (1.334) (1.282) (1.402) (.867)  (1.642) (1.203)
T =140 -7.507 -4.558 -.017 -5.462 -4.401 -.104 -1.336 -9.744 -.362
(1.302)  (1.071) (1.023) (1.325) (1.205) (1.168) (.856)  (1.665) (1.054)
T = 60 -9.161  -6.012  -.009 -6.676  -5.489  -.126 -1.626 -11.966 -.408
(1.287)  (1.109)  (1.009) (1.329) (1.197) (1.118) (.859)  (1.644) (.999)
621=10.0
T =20 -3.927 -.145 .054 -2.944 -1.006 .096 277 -5.198 439
(1.200)  (.919)  (.993)  (1.241) (1.180) (1.342) (.897)  (1.503) (1.277)
T =40 -5.453 -.796 .001 -4.134 -1.684 .168 334 -7.086 .o47
(1.173)  (.888)  (.926)  (1.229) (1.086) (1.134) (.885)  (1.441) (1.104)
T =60 -6.674 -1.294 147 -5.070 -2.198 .199 405 -8.556 .663
(1.161)  (.899)  (.927)  (1.229) (1.065) (1.088) (.891)  (1.395) (1.047)
f21=—0.8
T =20 -2.067 3.694 .635 -1.229 2.893 .030 4.495 .542 .013
(1.066) (1.201) (.732)  (1.084) (1.214) (1.107) (1.123) (1.209) (1.350)
T =40 -2.898 5.509 948 -1.758 4.041 .741 6.255 1.349 -.002
(1.050) (1.243) (.712)  (1.067) (1.161) (.984)  (1.088) (1.103) (1.160)
T =60 -3.574 7.130 1.236 -2.188 4.983 913 7.630 1.975 .003
(1.040) (1.281) (.737)  (1.061) (1.143) (.964)  (1.092) (1.087) (1.109)
Note:
(a) N =T.
(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.
(c) 4 lags and 2 leads are used for the DOLS estimator.
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Table 4: Means Biases and Standard Deviations of t-statistics for Different N and T

(N,T) OLS FMOLS(5) FMOLS(2) DOLS(4,2) DOLS(2,1)
(1,20) -1.169 -1.264 -1.334 -.304 .232
(1.497) (2.326) (2.031) (3.224) (2.109)
(1,40) -1.116 -1.169 -1.232 -.113 .258
(1.380) (1.805) (1.738) (2.086) (1.689)
(1,60) -1.090 -1.162 -1.195 -.071 .254
(1.357) (1.692) (1.676) (1.778) (1.554)
(1,120) -1.092 -1.239 -1.217 -.056 234
(1.333) (1.165) (1.652) (1.531) (1.448)
(20,20) -3.905 -3.017 -3.156 -.124 .695
(1.334) (1.281) (1.230) (1.402) (1.184)
(20,40) -3.934 -3.202 -3.169 -.114 .634
(1.307) (1.206) (1.200) (1.186) (1.099)
(20,60) -3.861 -3.202 -3.111 -.053 677
(1.306) (1.150) (1.191) (1.122) (1.079)
(20,120) -3.893 -3.247 -3.141 -.073 .642
(1.312) (1.149) (1.209) (1.078) (1.061)
(40,20) -5.439 -4.163 -4.342 -.088 1.008
(1.347) (1.269) (1.226) (1.358) (1.169)
(40,40) -5.462 -4.401 -4.344 -.104 .928
(1.325) (1.205) (1.197) (1.168) (1.092)
(40,60) -5.457 -4.506 -4.339 -.098 913
(1.328) (1.199) (1.192) (1.121) (1.081)
(40,120) -5.469 -4.647 -4.356 -.106 .879
(1.296) (1.190) (1.176) (1.050) (1.033)
(60,20) -6.677 -5.097 -5.314 -.169 1.179
(1.329) (1.258) (1.208) (1.361) (1.162)
(60,40) -6.699 -5.384 -5.309 -.162 1.097
(1.323) (1.204) (1.192) (1.169) (1.094)
(60,60) -6.676 -5.489 -5.289 -.126 1.106
(1.329) (1.197) (1.191) (1.118) (1.074)
(60,120) -6.677 -5.656 -5.299 -.115 1.083
(1.311) (1.196) (1.182) (1.056) (1.041)
(120,20) -9.407 -7.153 -7.446 -.220 1.662
(1.350) (1.262) (1.215) (1.348) (1.163)
(120,40) -9.418 -7.753 -7.753 -.193 1.565
(1.313) (1.171) (1.171) (1.157) (1.085)
(120,60) -9.411 7.7 -7.429 =177 1.549
(1.310) (1.182) (1.174) (1.093) (1.053)
(120,120) -9.408 -7.932 -7.432 -.152 1.530
(1.315) (1.195) (1.181) (1.057) (1.040)
Note:

(a) A lag length 5 and 2 of the Bartlett windows are used for the FMOLS(5) and FMOLS(2) estimators.
(b) 4 lags and 2 leads and 2 lags and 1 lead are used for the DOLS(4,2) and DOLS(2,1) estimators.
(¢) 021 = —0.4 and 037 = 0.4.
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Table 5: Means Biases and Standard Deviations of OLS, FMOLS, and DOLS Estimators

091 = —0.8 091 = —0.4 021 = 0.8

Bors—B Bru—B_ Bp=B  Bors—B Bru—B Bp—B  Bors—B Bryu—B Bp—5

f21=0.8

T =20 -.110 -.101 .003 -.049 -.062 .000 -.009 -.036 -.003
(.042) (.038) (.037) (.029) (.020) (.030) (.011) (.012) (.009)

T =40 -.052 -.052 .001 -.024 -.031 .000 -.004 -.017 -.001
(.015) (.014) (.012) (.010) (.011) (.010) (.004) (.004) (.003)

T = 60 -.034 -.035 .000 -.015 -.021 -.000 -.003 -.012 -.001
(.008) (.008) (.007) (.006) (.006) (.005) (.002) (.002) (.002)

021=10.4

T =20 -.073 -.039 .001 -.045 -.038 -.000 -.006 -.037 -.001
(.032) (.024) (.024) (.028) (.027) (.028) (.013) (.014) (.012)

T =40 -.034 -.020 .000 -.021 -.019 -.000 -.002 -.017 -.001
(.011) (.008) (.008) (.010) (.009) (.009) (.004) (.004) (.004)

T =60 -.022 -.013 .000 -.013 -.012 -.000 -.002 -.012 -.000
(.006) (.004) (.004) (.005) (.005) (.005) (.002) (.002) (.002)

f#21=0.0

T =20 -.046 -.006 .001 -.035 -.013 .001 -.001 -.034 .003
(.025) (.015) (.015) (.025) (.022) (.023) (.016) (.016) (.015)

T =40 -.021 -.003 .000 -.016 -.006 .001 -.001 -.016 .001
(.009) (.005) (.005) (.008) (.007) (.008) (.006) (.005) (.005)

T =60 -.014 -.002 .001 -.011 -.004 .001 -.000 -.010 .002
(.005) (.003) (.003) (.005) (.004) (.004) (.003) (.003) (.003)

1= —0.8

T =20 -.020 .017 .002 -.016 .017 .003 .035 .012 .000
(.016) (.009) (.007) (.017) (.013) (.012) (.024) (.024) (.031)

T =40 -.008 .008 .002 -.007 .008 .001 .016 .007 -.000
(.005) (.003) (.002) (.006) (.004) (.004) (.009) (.009) (.009)

T = 60 -.006 .005 .001 -.005 .005 .001 .011 .005 .000
(.003) (.001) (.001) (.003) (.002) (.002) (.005) (.005) (.005)

Note:

)N

(a

(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.

(c) 4 lags and 2 leads are used for the DOLS estimator.

(d) The error terms are generated by an ARMA(1,1) process from equation (27).
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Table 6: Means Biases and Standard Deviations of t-statistics

091 = —0.8 091 = —0.4 091 = 0.8
OLS FMOLS DOLS OLS FMOLS DOLS  OLS FMOLS DOLS
021=10.8
T =20 -5.316 -3.569 119 -3.411 -2.912 .006 -1.158 -4.589 -.347
(1.929)  (1.323) (1.290) (1.924) (1.390) (L.417) (1.426) (1.420) (1.139)
T =40 -7.013  -4.601  .090 -4.583  -3.580  .009 -1.723  -6.144  -505
(1.903) (1.219) (1.119) (1.949) (1.216) (1.166) (1.445) (1.343) (1.011)
T =60 -8.437  -5.22 .068 -5.523  -4.206  -.006 -2.097  -7.428  -.603
(1.899)  (1.195) (L.077) (1.969) (1.178) (L.111) (1.435) (1.294) (.978)
021=10.4
T =20 -4.152  -1.857  .056 -3.064  -1.877  -.025 -.705 -3.858  -.068
(1.762)  (1.106) (1.132) (1.867) (1.314) (1.388) (1.454) (1.373) (1.208)
T =40 -5.424  -2.576  .045 -4.069  -2.346  -.011 -1.099  -5.034 -.134
(1.733)  (1.044)  (1.027) (1.880) (1.149) (1.152) (1.479) (1.268) (1.053)
T =60 -6.521  -3.179  .034 -4.899  -2.779  -.027 -1.343 -6.016  -.144
(1.721)  (1.036)  (1.004) (1.898) (1.114) (1.096) (1.473) (1.211) (1.014)
f21=10.0
T =20 -3.184  -.353 .034 -2.538  -.732 .038 -.047 -2.825  .230
(1.644)  (.952)  (.956)  (L.769) (1.226) (L.313) (1.498) (1.327) (L.276)
T =40 -4.120  -.624 .047 -3.327  -.967 .075 -.194 -3.557 212
(1.616)  (.897)  (.909)  (L.771) (1.085) (L116) (1.528) (1.194) (1.095)
T =60 -4.952  -.827 .058 -4.131  -1.141  .206 -.064 -4.005  .693
(1.599)  (.904) (.913) (1.746)  (1.021) (1.118) (1.498) (1.096) (1.094)
f21=—0.8
T =20 -1.956 1.733 214 -1.496 1.429 221 2.315 .b64 .002
(1.529)  (.933)  (.663)  (1.589) (1.015) (1.052) (L.577) (1.195) (1.551)
T = 40 -2.471 2511 317 -1.888  1.917 .294 3.089 .876 -.005
(1.507)  (.871) (.664) (1.578)  (1.010)  (.956) (1.644)  (1.088) (1.239)
T =60 -2.966  3.270 428 -2.267  2.237 .363 3.736 1.132 .003
(1.484)  (897)  (.694)  (L571) (.999)  (.941)  (1.676) (1.062) (1.155)
Note:
(a) N =T.
(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.
(c) 4 lags and 2 leads are used for the DOLS estimator.
(d) The error terms are generated by an ARMA(1,1) process from equation (27).
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Table 7: Means Biases and Standard Deviations of OLS, FMOLS, and DOLS Estimators

o=0.25 oc=20.5 oc=1

Bors—B Bru—B_ Bp=B  Bors—B Bru—B Bp—B  Bors—B Bryu—B Bp—5

f21=0.8

T =20 -.005 -.011 -.000 -.002 -.007 -.000 -.001 -.004 -.000
(.009) (.009) (.002) (.006) (.006) (.003) (.003) (.003) (.002)

T =40 -.001 -.003 -.000 -.001 .002 -.028 -.000 -.001 -.000
(.002) (.002) (.000) (.001) (.001) (.001) (.001) (.001) (.000)

T = 60 -.001 -.001 -.000 -.000 -.001 -.000 -.000 -.001 -.000
(.001) (.001) (.000) (.001) (.001) (-000) (.000) (.000) (.000)

021=10.4

T =20 -.002 -.008 -.001 -.002 -.008 -.000 -.001 -.005 -.000
(.009) (.009) (.005) (.009) (.009) (.005) (.004) (.004) (.002)

T =40 -.002 -.005 -.000 -.000 -.002 -.000 -.000 -.001 -.000
(.004) (.004) (.001) (.002) (.002) (.001) (.001) (.001) (.001)

T =60 -.001 -.002 -.000 -.000 -.001 -.000 -.000 -.001 -.000
(.002) (.002) (.001) (.001) (.001) (.001) (.000) (.000) (.000)

f#21=0.0

T =20 .012 -.010 .001 .005 -.007 .001 .001 -.005 .000
(.058) (.057) (.054) (.017) (.016) (.014) (.005) (.005) (.003)

T =40 .003 -.002 .000 .001 -.002 .000 .000 -.001 .000
(.014) (.014) (.013) (.004) (.004) (.003) (.001) (.001) (.001)

T = 60 .001 -.001 .000 .001 -.001 -.000 .000 -.001 .000
(.007) (.007) (.006) (.002) (.002) (.002) (.001) (.001) (.000)

1= —0.8

T =20 .011 .022 -.000 .034 .049 .001 .039 .008 .000
(.013) (.012) (.002) (.020) (.019) (.013) (.016) (.014) (.013)

T =40 .003 .006 .000 .009 .014 .000 .012 .003 -.000
(.003) (.003) (.001) (.005) (.005) (.003) (.004) (.004) (.003)

T = 60 .001 .003 .000 .004 .007 .000 .005 .002 -.000
(.001) (.001) (.000) (.002) (.002) (.001) (.002) (.002) (.001)

Note:

)N

(a
(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.
(c) 4 lags and 2 leads are used for the DOLS estimator.

(d) The error terms are non-normal.
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Table 8: Means Biases and Standard Deviations of t-statistics

o =0.25 c=0.> oc=1
OLS FMOLS DOLS  OLS FMOLS DOLS OLS FMOLS DOLS
03— 0.8
T =20 -.699 -1.248 -.006 -.472 -1.055 -.039 -.406 -1.265 -.118
(1.311)  (.940)  (.209)  (1.245) (.931)  (421)  (1.040) (.925)  (.520)
T =40 =717 -.892 -.002 -.484 -.752 -.003 -.424 -.918 -.096
(1.253)  (.599) (.139)  (1.191)  (.597) (.276) (.981) (.588)  (.336)
T = 60 -.741 -.738 -.002 -.506 -.623 -.028 -.445 -.764 -.088
(1.267)  (488)  (.113)  (1.199) (483)  (.227)  (.979)  (472)  (.276)
f21=04
T =20 -.259 -.884 -.071 -.259 -.884 -.071 -.199 -1.152 -.019
(1.243)  (.932)  (561)  (1.243) (.932)  (.561)  (1.040) (.927)  (.567)
T =40 -.587 -. 787 -.007 -.268 -.626 -.054 -.213 -.831 -.016
(1.250)  (.599)  (.230)  (1.189) (.599)  (.363)  (.981)  (.589)  (.368)
T =60 -.611 -.651 -.008 -.289 -.519 -.052 -.232 -.692 -.020
(1.264)  (488)  (.188)  (L.197) (485)  (.299)  (.978)  (474)  (.304)
02:=10.0
T =20 275 -.164 .014 .340 -.398 .031 145 -.961 .066
(1.271)  (.941)  (.896)  (1.236) (.941)  (.784)  (1.041) (.931)  (.619)
T =40 .282 -.106 .013 347 -.268 .025 141 -.685 .053
(1.231)  (.616)  (579)  (L186) (.611)  (.509)  (.982)  (.594)  (.407)
T =60 .264 -.093 .002 .332 -.226 .013 125 -.570 .039
(1.248)  (.505)  (477)  (1.193) (497)  (421)  (.978)  (478)  (.337)
f21=—0.8
T =20 1.104 1.714 -.000 2.286 2.528 .035 2.749 .539 .026
(1.326)  (.951)  (.189)  (1.278) (.976)  (.650)  (1.067) (.984)  (.899)
T =40 1.134 1.249 .001 2.368 1.947 .035 2.946 .598 .008
(1.262)  (.605)  (.126)  (1.208) (.633)  (.446)  (.992)  (.672)  (.624)
T = 60 1.163 1.036 .001 2.416 1.637 .033 3.011 .538 -.002
(1.274)  (492)  (.102)  (L.214) (.513)  (.363)  (.981)  (.554)  (.525)
Note:
(a) N =T.
(b) A lag length 5 of the Bartlett windows is used for the FMOLS estimator.
(c) 4 lags and 2 leads are used for the DOLS estimator.
(d) The error terms are non-normal.
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Table 9: Means Biases and Standard Deviations of OLS, FMOLS, and DOLS Estimators for Different N and
T in a Heterogeneous Panel

(N,T) Bors — B Brmi) =B Brume)y =B  Bpuzy—B  Bpeiy —B
(1,20) -.102 .076 -.008 -.011 .004
(.163) (.319) (:212) (.405) (.264)
(1.40) ~.052 006 ~018 001 006
(.079) (.116) (.084) (.121) (.099)
(1,60) -.035 -.004 -.014 .001 .005
(.052) (.066) (.050) (.071) (.061)
(1,120) ~018 ~.008 ~.009 000 002
(.026) (.027) (.023) (.030) (.029)
(20,20) -.025 -.069 -.073 -.000 .006
(.032) (.054) (.034) (.054) (.040)
(20,40) ~.016 ~.041 ~.035 ~.001 004
(.014) (.019) (.014) (.020) (.017)
(20,60) ~012 ~.028 ~.023 ~.000 003
(.009) (.011) (.009) (.012) (.011)
(20,120) ~.006 ~.014 ~011 ~.000 002
(.004) (.005) (.004) (.005) (.005)
(40,20) -.023 -.089 -.083 .000 .007
(.024) (.038) (.024) (.038) (.028)
(40,40) -.015 -.048 -.039 -.001 .004
(.009) (.013) (.009) (.014) (.012)
(40,60) -.013 -.032 -.026 .000 .003
(.006) (.008) (.006) (.009) (.008)
(40,120) -.014 -.014 -.012 -.000 .002
(.004) (.004) (.003) (.003) (.004)
(60,20) -.023 -.073 -.074 .001 .006
(.019) (.031) (.019) (.031) (.023)
(60,40) -.015 -.042 -.036 -.001 .004
(.008) (.011) (.008) (.011) (.009)
(60,60) -.011 -.029 -.023 -.000 .003
(.005) (.006) (.005) (.007) (.006)
(60,120) -.006 ~.014 ~011 ~.000 002
(.002) (.003) (.002) (.003) (.003)
(120,20) ~.022 ~.075 ~.072 001 016
(.014) (.003) (.022) (.022) (.011)
(120,40) ~015 ~.042 ~.036 ~.001 004
(.006) (.008) (.006) (.008) (.007)
(120,60) ~011 ~.029 ~.024 ~.000 003
(.004) (.004) (.004) (.005) (.004)
(120,120) -.006 -.014 -.011 -.000 .002
(.002) (.002) (.002) (.002) (.002)
Note:

(a) A lag length 5 and 2 of the Bartlett windows are used for the FMOLS(5) and FMOLS(2) estimators.
(b) 4 lags and 2 leads and 2 lags and 1 lead are used for the DOLS(4,2) and DOLS(2,1) estimators.
(c) 021 ~U[—0.8,0.8] and 621 ~ U[—0.8,0.8].
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Table 10: Means Biases and Standard Deviations of t-statistics for Different N and T in a Heterogeneous
Panel

(N,T) OLS FMOLS(5) FMOLS(2) DOLS(4,2) DOLS(2,1)
(1,20) -.893 .588 -.058 -.093 .029
(1.390) (2.473) (1.643) (3.303) (2.156)
(1,40) -.861 .101 .280 .009 .106
(1.265) (1.849) (1.331) (1.980) (1.618)
(1,60) -.844 -.095 -.347 .016 119
(1.233) (1.579) (1.207) (1.729) (1.489)
(1,120) -.845 -.372 -.459 .016 101
(1.212) (1.336) (1.139) (1.510) (1.405)
(20,20) -1.221 -2.411 -2.530 .010 .219
(1.578) (1.902) (1.192) (1.983) (1.468)
(20,40) -1.629 -2.899 -2.518 -.059 271
(1.344) (1.345) (.999) (1.485) (1.259)
(20,60) -1.774 -3.031 -2.508 .004 347
(1.282) (1.195) (.952) (1.329) (1.184)
(20,120) -1.957 -3.095 -2.466 .046 .393
(1.239) (1.047) (.907) (1.197) (1.121)
(40,20) -1.612 -4.381 -4.079 .039 .365
(1.640) (1.882) (1.191) (1.987) (1.466)
(40,40) -2.194 -4.807 -3.969 -.068 432
(1.392) (1.341) (1.004) (1.472) (1.233)
(40,60) -2.417 -4.905 -3.932 .007 015
(1.306) (1.199) (.960) (1.319) (1.169)
(40,120) -2.832 -4.886 -3.839 .099 .608
(1.234) (1.059) (.911) (1.181) (1.099)
(60,20) -1.946 -4.408 -4.474 .041 .408
(1.697) (1.884) (1.182) (1.932) (1.449)
(60,40) -2.715 -5.171 -4.407 -.110 472
(1.389) (1.320) (.976) (1.452) (1.221)
(60,60) -3.045 -5.361 -4.380 -.027 572
(1.328) (1.170) (.933) (1.307) (1.165)
(60,120) -3.346 -5.420 -4.281 .105 .697
(1.250) (1.033) (.889) (1.181) (1.099)
(120,20) -2.675 -6.382 -6.383 .073 .580
(1.720) (1.878) (1.169) (1.939) (1.439)
(120,40) -3.802 -7.399 -6.272 -.145 .683
(1.408) (1.314) (.967) (1.444) (1.215)
(120,60) -4.269 -7.633 -6.209 -.047 .803
(1.336) (1.162) (.931) (1.307) (1.165)
(120,120) -4.715 -7.723 -6.084 .136 977
(1.250) (1.045) (.897) (1.178) (1.098)
Note:

(a) A lag length 5 and 2 of the Bartlett windows are used for the FMOLS(5) and FMOLS(2) estimators.
(b) 4 lags and 2 leads and 2 lags and 1 lead are used for the DOLS(4,2) and DOLS(2,1) estimators.
(c) 021 ~U[—0.8,0.8] and 621 ~ U[—0.8,0.8].
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