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Alternative technical efficiency measures: Skew, bias and scale

Qu Feng, Nanyang Technological University
William C. Horrace, Syracuse University

Introduction
There are several ways to estimate time-invariant technical efficiency in stochastic frontier models for panel data.
Compared to maximum likelihood or generalized least-squares estimation (Battese and Coelli, 1988), fixed-effects
estimation (Schmidt and Sickles, 1984) has the advantage of not requiring distributional assumptions on the error
components. Without these distributional assumptions, efficiency levels cannot be identified directly. Hence a
measure relative to the best firm in the sample is universally employed (Schmidt and Sickles, 1984). In this case
only the efficiency distance to the best firms matters. The worst firm in the sample is ignored. For example, suppose
there are 3 firms with efficiency levels 0.30, 0.90 and 0.99 respectively. It appears that firm 2 is quite efficient. If the
efficiency level of the worst firm improves to 0.89 due to technological change, the distance between firm 2 and the
best firm is unchanged. However, firm 2 is now almost as inefficient as the worst firm. This example shows that
using the worst firm as a reference point provides a different perspective on technical efficiency. Actually, in
competitive settings the worst firm is of particular importance because the marginal cost of this firm may determine
price.* This paper considers an alternative efficiency measure relative to the worst firm in the sample and compares
this measure to the traditional relative efficiency measure on a variety of metrics.

More generally, it may be interesting to use both the best firm and the worst firm as reference points. Therefore, a
two-sided measure relative to both the best firm and the worst firm in the sample is also proposed. Different from
efficiency measures relative to the best or to the worst firms alone, the two-sided measure linearly scales the
efficiency level onto the unit interval with efficiency scores of 0 for the worst firm and 1 for the best firm.
Consequently, the distance of the efficiency level between any firms becomes informative.

This paper discusses fixed-effects estimates of the measure relative to the worst firm and the two-sided measure
(relative to the best and the worst). We focus on estimation bias and inference. The level of the bias of relative
efficiency estimates is related to the skewness of the underlying distribution of technical (in)efficiency. Since the
‘max’ operator favors positive noise, the traditional estimate has larger bias when there are more efficient firms in
the population. Qian and Sickles (2008) describe this scenario as ‘mostly stars, few dogs’. When there are ‘mostly
stars’ our estimate (relative to the worst firm) is less biased than the traditional estimate. However, not surprisingly,
the bias results are reversed when there are ‘mostly dogs’. When the distribution of (in)efficiency is symmetric, the
bias results of the two estimators are identical. These results are borne out in our simulations based on three
parameterizations of the beta distribution. The two-sided estimate balances these sources of bias (in a sense), as we
shall see in the sequel.

Inference on estimated technical efficiency is often important, and it proceeds with construction of confidence
intervals. When distributional assumptions are made on the two error components (noise and inefficiency), the
theory for confidence interval construction is straightforward (Horrace and Schmidt, 1996). The intervals are valid
in both finite samples and asymptotically. In the case of fixed-effects estimation, confidence intervals for technical
efficiency may be based on asymptotic normality, when the sample size is large (Horrace and Schmidt, 2000).
However, when the time dimension of the data is small, the preferred method to construct confidence intervals
without distributional assumptions is to perform the bootstrap. Kim et al. (2007) provide a detailed and intuitive
survey on constructing varieties of bootstrap confidence intervals. They argue that the ‘max’ operator of the
traditional estimate (relative to the best firm) produces bias, leading to low coverage rates when constructing simple
bootstrap confidence intervals. Our proposed estimates suffer from the same source of bias.

! ¢ Correspondence to: William C. Horrace, Economics Department, 426 Eggers Hall, Syracuse University, Syracuse, NY



However, the coverage rates of bootstrap confidence intervals are a function of the magnitude of the bias which is
related to the skewness of the underlying distribution of (in)efficiency and to the estimate employed (i.e., relative to
best, relative to worst, or two-sided).

Ultimately, the fixed-effects estimates provide information on the skewness of the underlying distribution of
(in)efficiency. Given this skewness information there may be an empirical trade-off between bias and the efficiency
measure employed. For example, if the data suggest there are ‘mostly stars, few dogs’, then the traditional estimate
has large bias and our estimate (relative to the worst) has small bias. However, a measure relative to the best firm
may be of interest. In this case, the empiricist must decide which is more important: bias or the empirical relevance
of the measure. (This trade-off also has implications for bootstrap inference.) Of course, if a measure relative to the
worst firm is needed, then there is no trade-off in this case. This trade-off underscores the fact that the proposed
estimates are alternatives to the traditional estimate and that all three estimates are measuring different quantities
(although they are all normalizations to the unit interval, as we shall see). There is no sense in which the estimates
are substitutes; they are complements that simply add to the empiricist's toolbox.

The paper is organized as follows. The next section discusses the efficiency measure relative to the worst firm, our
proposed estimate of this measure, and performs simulations to compare the bias of the estimate to that of the
tradition estimate under different (in)efficiency distributions. Section 3 introduces a two-sided efficiency measure
that pegs relative efficiency not only to the most efficient firm in the sample but also to the least efficient firm. A
simulation study of its bias is also conducted. In Section 4 bootstrap confidence intervals are discussed for the
different measures, and a simulation study of coverage rates and interval widths is provided in the spirit of Kim et al.
(2007). Our contribution is to demonstrate how these measures and their estimates perform in finite samples under
different skewnesses of the distribution of technical inefficiency. Section 5 applies the estimators to a panel of
Indonesian rice farms, and the salient features of all three measures are discussed and compared. The last section
summarizes and concludes.

2. Relative Efficiency Measures
The stochastic frontier model for panel data is

e —a+apf—u+uwy, i=1,...,N, t=1,...,T

The error term contains two parts: time-invariant ui > 0, a measure of technical inefficiency; and it ~ i-i.d.(0,@3)
A large value of ui implies that the firm i is inefficient. Usually, technical efficiency is defined as ri = exp(—ui)
under a log-linear specification of the Cobb—Douglas production function.? Letting ai = a— ui, slope parameter [ can

be estimated consistently using fixed-effects estimation. Call this estimate . The usual estimate of ai ist =% —FB
, where §i and Xi are within-group averages. However, u; is unidentified without additional assumptions. The
Ilterature e suggests an  efficiency measure relative to the best firm U = Maxy oy — oy = %y — My Uy ang jts
estimateti; = maxs &5 — & where the (li are fixed-effects estimates of ai (Schmidt and Sickles, 1984).
Correspondingly, when output is in logarithms, relative technical efficiency is defined as r’,= exp (-u’;) with its

*
fixed-effects estimate . We call i the max-measure or the traditional measure.
In the stochastic frontier model (1), the efficient frontier is defined as the best firm using min; u; or max;« ;. Hence u}
measures technical inefficiency as the deviation from this frontier. Similarly, we can define the inefficient frontier as
the worst firm using max;u; or min;oy, and measure technical efficiency as
%

;" =o; —min o = max u;j — u;
J J

This is simply the deviation from the inefficient frontier. We call u** the min-measure. Its corresponding technical
_— _ "* - . . . .
efficiency score is rit=1—exp(—uf). . Using exp(—x)~ 1 — x for small x, is an approximation of on the unit

interval. To fix ideas, we image that u; has some upper support bound T, so that realizations of u; cannot be too large.

21f ¥ =& “"fix, B). then e ¥ is technical efficiency for InY and /% # = ITj-1%)’ , say. Even if this is not the
production function in mind, empiricists often use the measure r; to normalize u; to the unit interval.



Then minjo; approximates o— 1, and approximates G — u;> 0, the deviation from the inefficient frontier. The concept
of an upper bound for inefficiency was recently considered in Qian and Sickles (2008). Indeed, ‘using this bound as
the inefficient frontier, we may define inverted efficiency scores in the same spirit of Inverted DEA described in
Entani, Maeda, and Tanaka (2002)’.2 the corresponding fixed-effects estimates of the min-measure are

¥

g 1 —exp(—i;*)4

~ gk #k __Tr o
Using the same arguments as Schmidt and Sickles (1984), i is consistent fori = ¥ = Ui+ a5 T—00 and N—o.

When the production function is Cobb—Douglas and output is in logarithms, r;* has a natural interpretation: it is the
true percentage of the output of firm i relative to the efficient firm for a fixed set of input, so r* is the way we would
naturally measure efficiency for a Cobb—Douglas production function. In this case the proposed measure, r;** , does
not have this natural interpretation; however (as already mentioned), performance relative to the inefficient firm may
be relevant, because the marginal cost of the inefficient firm may equal price in competitive markets (markets where
N is large and @ is small). When output is not in logarithms or there is no particular production function in mind,
ri*'s interpretation is less clear, and it may be interpreted as a normalization to the unit interval of the measure u;*, as
it quantifies inefficiency relative to the most efficient firm. Interpreted this way, the nonlinear exponential
normalization of ri* may distort the scale of u*. The proposed measure ri** has a similar interpretation but relative
to the least efficient firm, and it too may distort the scale of u;*. Either way, the alternative measure, ri** , may
prove useful to empiricists, particularly if bias and confidence interval coverage are important (as we shall see).

Ultimately we subject these estimates to finite sample simulations and compare their performance under a variety of
assumptions on the distribution of inefficiency. (In all cases the distribution has bounded support from above and
below, so the min-measure has a population interpretation.) However, it is useful to consider the theoretical biases.

In particular, the biases of u; and @ gre directly comparable, even though they estimate different measures.* The
bias of the max-measure estimate is

Pmax = Et]) — u; = E[max &; — &; — (max a; — a;)]
J j
= E(max &; — max «;) — E(@; — o)
j i

= E(max &;) — max «;
i i

Since E(@;) =@; for each j. Notice that the bias is not firm-specific. The bias will be largest when there is much
uncertainty over the identity of the best firm (max;o;) in the population. Per Horrace and Schmidt (1996), this occurs
when T is small or when the variability of the ui is large. Uncertainty over the best firm is also worse when there are
many firms in the population (ai) close to being best (maX;oj). This is likely to occur when the distribution of ui is
skewed to the right: ‘mostly stars, few dogs’. In this paper, we use the beta distribution B(a,b) to model three cases
of the distribution of ui: B(2,8) ‘mostly stars, few dogs’; B(8,2) ‘mostly dogs, few stars’; and the symmetric
distribution B(2,2) ‘few stars, few dogs’ (see Figure 1). The discussion above suggests that ceteris paribus the bias,
bmax, is small in the case of ‘mostly dogs, few stars’. (It is interesting to note that most Monte Carlo studies of the
stochastic frontier model involve the

% Qian and Sickles (2008). Indeed, Qian and Sickles consider cross-sectional (T = 1) and random-effects estimation of u.
Hence the current paper and the Qian and Sickles papers are complements.

* It is not entirely clear how to compare the theoretical bias of the 177 2% " Also, per Kim et al. (2007), coverage rates
=4 ah . g g gt
for bootstrap confidence intervals on & 280 ™ converted to intervals on 7 1@nd 77" are better than coverage rates on

. . =4 = wn
7 land 771 girectly, so understanding the bias of the 204 i helns us better understand the coverage rates of the

preferred intervals



Figure 1. Skewness of various beta distributions

truncated normal distribution which can only be skewed in the opposite direction: ‘mostly stars, few dogs. See, for
example, Kim et al., 2007.)

Similarly, the bias of the min-measure estimate is ~ bmin = E(min; &) — min; @;. . Here, bias is large in
magnitude when there is uncertainty over the worst firm in the population, which will be worse when there are many
firms in the population (a;) close to being worst (min; o;). This corresponds to the case where the distribution of u; is
‘mostly dogs, few stars’. While we cannot know which of the biases, byax O bmin, Will be larger in magnitude in any
empirical analysis, it would be easy to speculate based on one's knowledge of the relative frequencies of dogs and
stars that occur in the sample. Obviously when the relative frequency of dogs and stars is equal, one would speculate
that the biases be equal in magnitude. These types of results are borne out in simulations that follow.

Table I reports the simulation results on the biases bmay and bpin. Ignoring regressors in equation (1), simulations are
performed with v, ~ i.i.dN(0.a?) and vi distributed B(8,2) or B(2,2) or B(2,8). Each beta distribution
represents different efficiency scenarios as described above. As is standard in SF model simulations, we define

v = var(u ],-'-.;gl? +var(u)) and vary a;  sothaty=0.1,0.5and 0.9. The y is a ‘signal to noise ratio> measure,
so small y indicates a particularly noisy experiment. We focus on the cases where T is small and bias of the
estimates of the min- and max-measures will be largest, so we fix T = 10. We consider four values of N = 10, 20, 50
and 100.

The bias analysis in Table | contains no surprises. Bias for both estimates is increasing in N (for fixed T) and
decreasing in y as uncertainty over the best and worst firms in the population increases. Varying the skew of the
distribution of inefficiency also produces predictable results. The max-measure estimate outperforms our min-
measure estimate when the distribution of inefficiency is B(8,2), while the min-measure estimate outperforms the
max-measure estimate when the distribution of inefficiency is B(2,8). Compare the 0.077 of B(8,2) and 0.122 of

B(2,8) for measure u (first row of results) to the 0.125 of B(8,2) and 0.077 of B(2,8) for measure g~ (second
row). This near-perfect symmetry of the results across the two inefficiency distributions occurs everywhere in the
table for obvious reasons. When the inefficiency distribution is symmetric, B(2,2), the estimates perform equally,

with any differences in bias being caused by sampling variability of the simulations. Compare 0.097 for “" 1 t00.099
for “"in the first and second rows



Table I. Biases of estimates of the min- and max-measures

Bias

Measure T ¥ N BiR.2) B(272) B(18)
i (] 0.1 I 0.077 0.097 0.122
W 0.125 0099 0.077
™ (] 0.1 20 0.002 0129 0.160
T 0.162 0130 0.088
' (] 0.1 50 106 174 0212
™ 0.211 0174 0.106
' ] 0.1 100 0117 0.208 0.249
' 01.248 0.207 0.112
) ([ 0.3 I 0.021 0029 0.046
' 0043 0.029 0.022
) 1 0.3 0 0023 1046 0.064
Tl 0.062 042 0.022
' (] 0.3 30 0.029 0GR 0.004
W .04 065 0.028
i (] 0.3 100 0.029 0087 0120
' 0119 085 0.051
™y ] 0.9 | (0.002 (004 0.009
™ 0.007 (004 0.002
uw ([ 0.9 20 (.04 L.007 0.012
T 0011 (.00 0.004
) 1 0.9 50 0002 01 0.019
W' 0.019 013 0.003
i (] 0.0 100 0.003 0017 0.026
W 0.026 06 0.004

of results for B(2,2). The implications are clear: in an industry marked with mostly stars and few dogs, the ‘min’
operator in the min-measure estimate induces a smaller bias than the max operator of the max-measure estimate. Put
more generally, the min-estimator is less biased than the max-estimator when the industry under study has many
efficient firms. (In competitive markets this may be the relevant case.) In any empirical exercise, if bias concerns
outweigh the choice of the inefficiency measure employed “ vs-4™)- then the choice of estimator should be based
on prevailing efficiency market conditions in the industry under study. Knowledge of the distribution of inefficiency
(up to location) is contained in the distribution of the estimated ai and can be used to inform these empirical choices.

3. Two-Sided Measure
We now consider a two-sided measure that incorporates both the max operator and the min operator. The motivation
of the two-sided measure is the issue of scale. By scale we mean the way in which estimators are normalized
(transformed) to the unit interval. For the max-measure we have the normalization *- which rescales (distorts)
efficiency differences with the exponential function.® Due to the nonlinearity of the exponential function, technical
efficiency differences between firms in the low range of ™ are smaller than those in the high range, for a given
difference in , and are, therefore, not comparable. Hence efficiency differences in the low range of % are less

informative. This creates a distortion in the efficiency differences for 7 when it serves as a normalization for —%; - ,
The normalization of the min-measure,”" , also nonlinearly rescales (distorts) efficiency differences.

An alternative (or complementary) efficiency measure that does not distort efficiency differences yet
normalizes efficiency scores on the unit interval is the two-sided

o; — min a;
i

max «; — Min & ;
i i

&=

> This idea of distortion is based on the idea that ¥/ 7., for small '.‘:'Obviously if output is in logarithms, then r*, is
not simply a normalization; it is the true percentage of the output of firm i relative to the efficient firm for a fixed set of

inputs. However, the normalization could magnify the bias associated with estimating i f output is not in logarithms.



With estimate

- . -
@; — min @;
i
Max & ; — min &
raatial M- i
i i

e
Compared to ' i, technical efficiency differences (& — €5 are not distorted:

. & — @;
&—¢= i

max &; — min &;

F g i I
Since @ is a consistent estimator in T for a— u;, then the difference ¢ ~ €7 is consistent for — u;— (—u;). Since the
denominator is constant for each pair of firms, efficiency differences have the same scale across the sample.

To demonstrate the distortion induced by?.’ or 77 relative to € we again consider a beta distribution for
technical inefficiency. By considering different levels of skew, we are considering different levels of efficiency
differences between ranked sample realizations at the high and low ends of the rank statistic. For example, any
ranked sample from the B(8,2) or B(2,8) distributions will have larger differences at one end of the rank statistic and
smaller differences at the other (on average). The B(2,2) distribution will have symmetrical differences at either end
of the ranked sample, because the probability mass is symmetric about the mean. There are many ways that we
could illustrate these differences and the distortions created by normalization to the unit interval. One way would be
to use the distribution of u; to calculate the theoretical distributions of the transformations®i - 7i  , and e;. Then the
distortions could be compared simply by comparing plots of the distributions. However, rather than calculate these
distributions (not a trivial task), we simulate and estimate them using kernel techniques.

We simulate each beta distribution with 100,000 draws of ui. With this many draws the maximal draw is
arbitrarily close to 1 and the minimal draw is arbitrarily close to 0, so ‘uncertainty’ over the population maximum
and minimum is essentially zero, and any ‘bias’ caused by this uncertainty is mitigated. Our purpose is to get a fairly
accurate picture of the distribution and not to understand the effects of sampling variability on efficiency estimation,

which we investigated in the last section. We estimate the distributions #:: o and e; using the Gaussian kernel
and an arbitrarily selected bandwidth of 0.1. The estimated distributions are in shown Figure 2(a)— (c) for

t; ~ B(8, 2), u; ~ B(2, 8), and w; ~ B(2, 2). respectively. Obviously, the density estimates
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Figure 2. Efficiency distribution estimates: (a) Mostly dogs B(8,2). (b) Mostly stars B(2,8). (c) Few stars and
dogs B(2,2); note that the curves u and e are indistinguishable

are only approximate at the boundaries (there is no boundary bias correction). However, this is fine for the purposes
of scale comparisons. Beginning with Figure 2(a), we see that when the distribution of u; (thick dashed line) is
‘mostly dogs’, the estimated distribution of the max-measure estimate, 7 is fairly close to that of u;, while that of

=&

the min-measure, ' *, is not. In this case the scale distortion of the max-measure is small relative to that of the min-
measure. Also, the two-sided measure, e;, is comparable to the max-measure in terms of scale distortion. The two-
sided measure over-scales in the center of the distribution while the max-measure overscales in the right tail of the
distribution. This makes sense as the two-sided measure is (in some sense) a ‘middle ground’ between the max-

measure and the min-measure. The min-measure, '@, clearly over-scales in the left tail of the distribution. Of
course, things are reversed in the ‘mostly stars’ case of % ~ B(2. 8} contained in Figure 2(b). Here the min-
measure outperforms the max-measure in terms of scale preservation. Again, the two-sided measure also preserves
scale fairly well and is comparable to the min-measure. In panel (c) we see that the distribution of the two-sided
measure, €;, is nearly indistinguishable from the distribution of u;, while the max- and min-measures exhibit large-
scale distortions. (Again, the reader is reminded that these are merely kernel density estimates with no end-point
correction.) This is not surprising, given the way the two-sided measure is constructed, but the point should be clear
on its usefulness when scale preservation of efficiency scores is important. Regardless of the skewness of the
inefficiency distribution, the two-sided measure reliably preserves scale (or differences in the rank



statistic), while the performance of the max- and min-measures is a function of the distributional
skewness.

For completeness we now examine the bias of the two-sided measure with a brief simulation study. The
simulated bias results for the estimator € in Table 11 use the same parameterizations as the bias results of Table I.
Unlike the % and " estimates, the bias results for € are firm specific, so average biases across firms are
reported. A few results are noteworthy. First, the direction of the bias is a function of the skewness of the efficiency
distribution. Foru ~ B{#, 2} (mostly dogs) the bias is positive, foru ~ Bi2, 8} (mostly stars) the bias is negative, and
fori ~ B(2. 2} (few stars or dogs) the bias is close to zero. This may suggest that for efficiency distributions with
centralized mass or symmetric efficiency distributions, the two-sided estimator is the appropriate choice.® Indeed, in
the symmetric case, the average bias for the two-sided measure is always smaller in absolute value than the biases in
the one-sided measures in Table I. (For these different measures bias comparisons of estimates are not entirely
meaningless, because all three measures are essentially unitless percentages.) Second, bias is (not surprisingly)
increasing in N and decreasing in y for all levels of skewness.

Table II. Average bias of the two-sided estimate,

Average bias

Measure T ¥ N B(3.2) B(2.2) B(28)

£ 10 0.l 10 (.0555 —0.0028 —0.0554
10 0.1 20 0.0725 {0.0002 —0.0743
I 0.1 50 01012 0.0:012 — 00983
10 0.1 100 01124 0.0013 —0.1148

2 10 0.5 10 00616 0.0002 —0.0153
10 0.5 20 L0220 — (.00 —0.024]
10 0.5 50 00314 00014 —0.0
10 0.5 |0 0.0381 0.013 —0.0374

e 10 0.0 10 0.0027 — 0000 —0.0025
10 0.9 20 (L0235 0.0008 —0.0029
10 0.0 50 (L0055 — 0000 —0.0051
10 0.9 |0 L006E (00004 —0.0069

4. CONFIDENCE INTERVALS

Per Schmidt and Sickles (1984), £ converges to £ for large N or T, while i converges to @: for large T only.
Therefore, when T is small (the usual panel case) asymptotic approximations for confidence intervals on functions of
“;are inappropriate, and a bootstrap method should be employed. See Kim et al. (2007) for a detailed survey of
methods for bootstrap confidence intervals on technical efficiency and a comprehensive simulation of the coverage
rates and confidence interval widths of a variety of bootstrap techniques. Our purpose here is twofold. First, we
would like to replicate the salient features of the Kim, Kim and Schmidt (KKS) confidence interval simulations,
while experimenting with the skewness of the technical inefficiency distributions using our three parameterizations
of the beta distribution. Second (and simultaneously), we extend the simulations to include our min-measure and the
two-sided measure. Again, all the estimates considered are for different measures and cannot be considered direct
substitutes, but it is useful to empiricists to know which measures are better in a statistical sense when information
on the skew of the efficiency distribution is known or can be approximated from the fixed-effects estimates. For
simplicity the underlying data generation mechanism for our confidence intervals is identical to that of our bias
analysis of Section 2. Our overall finding is that the bias associated with max and min operators erodes the coverage
rates of the bootstrap confidence intervals, so the relationship between coverage rates and distributional skewness is
similar to that between bias and skewness.

6 . . . . . .
Alternatively, the two-sided measure may be a convenient way to normalize and report efficiency scores, ui.



The KKS simulation study considers both direct bootstrap confidence intervals from the distribution of ¥’

and indirect bootstrap confidence intervals from the distribution of %, which are transformed to confidence
intervals on ’i . When the indirect and direct confidence intervals are the same, the interval is said to be
transformation-respecting (Efron and Tibshirani, 1993, p. 175). The empirical advantage of transformation-
respecting confidence intervals are obvious: the choice of estimator to report (transformed or not transformed) does
not affect the coverage probabilities of the intervals. Of all the bootstrap intervals considered by KKS, only the
percentile bootstrap (percentile) is transformation respecting. However, the bias-corrected with acceleration (BC,)
intervals are approximately transformation-respecting (KKS, p. 169). They find that the bias-corrected percentile
(BC percentile) intervals are generally not transformation-respecting but conclude that they have better coverage
rates than the other bootstrap confidence intervals that they consider. They also find that, when the intervals are not
transformation-respecting, the indirect method for interval construction on 7" has better coverage rates than direct
methods. Therefore, in what follows we only consider these three confidence interval construction techniques and
only for the indirect method. Our bootstrap confidence interval construction procedures are exactly those of KKS, so
we do not detail their procedures here. The reader is referred to the KKS study for details on indirectly constructing
percentile, bias-corrected percentile and bias-corrected with acceleration intervals. While our coverage rate results
are slightly different from those of KKS, our overall findings are the same: for the indirect method, the bootstrap BC
percentile intervals (Simar and Wilson, 1998) are generally better in terms of coverage rates than either the
percentile or the BC, intervals.”

Coverage results for the percentile and the two bias-corrected bootstraps for #i and for " using
the indirect method are reported in Table I11. Here the nominal coverage rate is 0.90. Generally speaking, the BC
percentile coverage rates appear to be best for all scenarios considered. (This is the general finding of the KKS
study.) When the distribution of inefficiency is symmetric, B(2,2), the coverage rates and interval widths for the /s
and for " measures are identical up to sampling variability for all the bootstrap techniques. This corresponds to the
case where the biases of the two measures are the same (few stars, few dogs). This is particularly clear when the
signal to noise ratio (sampling variability) is large (small). Not surprisingly the coverage rates are always decreasing
in N, as uncertainty over the best or worst firms in the sample is increasing (as is bias). Coverage rates are uniformly
better for i when inefficiency is distributed B(8,2) and better for 7" when inefficiency is distributed B(2,8). For
example, when N =100, ¥ = 0.1, and B(8,2) the BC percentile coverage rate for ¥ and ' "are 0.826 and 0.760 in
Table I11. However, when inefficiency is distributed B(2,8) the respective coverage rate are 0.750 and 0.821. Again
these results are driven by the relative level of bias of the two estimates under the different inefficiency regimes
(mostly stars or mostly dogs). In terms of the different interval construction techniques, it appears that both bias-
corrected techniques have coverage rates of about 0.7-0.8 regardless of the skew of the distribution, the size of N, or
the signal to noise ratio (except in the noisiest cases). The uncorrected percentile bootstrap intervals do surprisingly
well relative to the bias-corrected intervals except in the noisiest cases (large N and small ¥'). For example, for N =
100, ¥ = 0.1, and B(2,2) the percentile coverages for *7 and '"are 0.359 and 0.349, respectively. However, even then
the bias-corrected intervals are not very impressive. For example, the BC, intervals are 0.624 and 0.611,
respectively, in this case. The worst coverage probability is the uncorrected percentile bootstrap in the noisiest case
(N =100, ¥= 0.1) for 7" and B(8,2). In this case, the coverage rate is only 0.254.

For completeness the bootstrap confidence intervals for the two-sided measure, ei, are provided in Table
IV. Notice that the coverage rates for this measure are fairly stable across the different technical inefficiency
distributions. For example, in the least noisy setting (N = 10, ¥ = 0.9) the coverage rates for the BCa intervals are
0.847, 0.854 and 0.851 for B(8,2), B(2,2) and B(2,8), respectively. The interval widths are also about the same.
Again, this is due to the fact that scale distortion is minimal for the two-sided measure across the different levels of
skew. Also, the uncorrected percentile bootstrap has generally higher coverage rates than the bias-corrected
intervals, and in the least noisy cases it comes very close to achieving the nominal coverage rate of 0.90. While the
measures in this study are all different, it is interesting to note that, when inefficiency is distributed B(2,2), the
coverage probabilities on the two-sided measure (Table IV) are uniformly higher than those of the one-sided
measures (Table 111). This illustrates the effects of scale distortions of the exponential transformations of the ! and
™ when the distribution is symmetric. This is depicted in Figure 2(c).

7 A referee also pointed out that the distributions of interest for construction of the bootstrap confidence intervals are
invariant to the true values of the model parameters , « and B.



5. RICE FARM APPLICATION

The quintessential example of large N and small T in the stochastic frontier literature is the Indonesian rice farm

dataset with N

6. This particular dataset has been analyzed a number of times, starting with Erwidodo

171and T =

(1990) and, most recently, with Kim et al. (2007). See Horrace and Schmidt (1996, 2000) for a detailed description.
In our example we ignore the issue of bias caused by unidentifiable time-invariant inputs in fixed-effects estimation

(Feng and Horrace, 2007). The form of the production function and the parameter estimates are precisely those

contained in Horrace and Schmidt (2000), but what is important to know is that output is
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in logarithms of kilograms of rice. Our purpose is to highlight the different efficiency measures considered. The
distribution of the @i in Figure 3 is produced using the ksdensity(x) command in MATLAB and a Gaussian kernel.
It has a normalized positive skewness of 0.4740. Therefore, the distribution of the TN (up to location) is its mirror
image and has a skewness of -0.4740. However, the distribution in Figure 3 is actually quite symmetric (except for a
small wiggle in the right tail). Table V presents efficiency estimates for seven of the rice farms. These are the ranked
by i and correspond to the two best farms, the 75 percentile farm, the median farm, the 25 percentile farm and the
two worst farms. Each entry in the last three columns contains the estimate and the indirect 90% bias-corrected
percentile confidence interval based on 999 bootstrap replications.

In any empirical exercise a discussion of potential bias is difficult. However, given our simulation results
and the fact that the distribution of the &: is nearly symmetric (or " have slight negative skewness), perhaps the
two-sided measure (or traditional measure) will have a less biased estimate than that of the measure relative to the
least efficient farm 7" . Even though the measures are different, they are all unitless, so their biases will be unitless
and, perhaps, comparisons are not entirely unreasonable. However, for this particular dataset the efficiency measures
are quite imprecise, judging from the confidence intervals. This is particularly telling, when one considers the poor
coverage rates of the bootstrap confidence intervals that arose in our (and KKS’s) simulation study. The implication
is that the confidence intervals in Table V may only achieve 70-80% coverage rates, even after bias correction.

We now discuss scale considerations. The difference in the i of the two best farms is 0.070 logpoints. For
the measure i we see that the second-best farm has technical efficiency 6.8 percentage points below the best farm
(1.000-0.932), a good approximation for the log-point difference in the @:.. Ceteris paribus, efficiency differences
suggest that the second-best farm will produce 6.8% fewer kilograms of rice (0.070 fewer log-points of rice) than
the best farm. For /" we see that the second-best farm is 27 percentage points below the best, so its approximation
for the log-point difference in the &;is poor at this end of the order statistic (where ¥ — # is large).

0.5

- N .
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Figure 3. Distnibution of o; for 171 nice farms. Skewness = 0.4740



Table V. Rice farm efficicncy estimates

i Percentile r T &
5.556 Best 1000 0.635 1.0
[0.912, 1.000] [0.493, 0L66T) [0.929, 10000
5486 Qth 0.932 0608 0.930
[0.837, 1.000] [0.463, 0.658) [DL836, 1.000]
5.072 T5th 0.616 0.407 0519
[0.423, (LES0) [OL000, 0.566) [0.156, 0CTRO)
4.970 S0th 0.554 0.340 0.413
[0.448, 0LT37) [0.078, 0.450) [0.197, 0.566]
4859 25th 0.498 0.266 0.308

[0.439, (E08) L3 Z:..'-'éi'.'l [0.070, 0.4346]

4 586 15t 0379 036 0.036
10306, 0L4TT] [0.000, 0215] 10000, 0.790]

4550 Worst 0.366 0.000 0.0
[0.275, 0.531] [0.000, 0.189] [0.000, 0.157]

Note: Bracketed valoes are %% bias-corrected percentile intervals.

Things are reversed at the other end of the order statistic. The log-point difference in the <: _for the two worst firms
is approximated well by 1" and poorly by e By definition, the two-sided measure, €;, will always approximate
these differences well, particularly at the ends of the order statistic. All three measures approximate the log-point
differences less precisely in the middle of the order statistic, but it is clear what the two-sided measure is doing: it is
a middle ground between the two exponential measures. For the median farm *i = 0.344. /7" = 0,340 and e; = 0.413.
Hence, for reporting purposes, the two-sided measure is a simple log-point normalization that facilitates discussion
of relative efficiency over the entire range of the order statistic and that approximates well the percentage change of
output (7 "and ") at both ends of the order statistic.

6. CONCLUSIONS
The goal of this research is to consider the performance of various technical efficiency measures under different
skewness of the distribution of technical inefficiency. We find that the traditional one-sided estimate relative to the
sample maximum, =", performs best in terms of bias and confidence interval coverage rates when the distribution of
inefficiency consists of ‘few stars, mostly dogs’. In highly competitive markets where inefficient firms are rare,
estimators of the traditional measure may not be reliable (large bias and poor interval coverage). On the other hand,
estimators of the traditional measure may be reliable in markets where competitive forces are weak, and this may be
the empirically relevant case for efficiency measurement in general. That is, estimating technical efficiency may
only be meaningful in markets or industries where it might already exist to a great extent (like utility industries,
where capital barriers to entry limit competitive forces). The proposed min-measure, %", has small bias and better
confidence interval coverage when the inefficiency distribution has ‘mostly stars, few dogs’, which may correspond
to highly competitive industries. The majority of economic theory would suggest that this corresponds to the more
frequently encountered case. Of course, in competitive markets, technical efficiency estimation may be difficult
from the start, but that does not diminish the potential importance of the min-measure. For example, the marginal
cost of the least efficient firm in the sample may equal the market price, so a measure relative to the least efficient
firm in the industry may be useful. Estimates of the two-sided measure, e;, are particularly appealing when the
distribution of inefficiency is symmetric and when issues of scale are important. That is, when the magnitude of the
differences of the =" must be preserved, the two-sided measure normalizes scores to the unit intervals without the
nonlinear scale distortion induced by the exponent operator. We reiterate that all the measures are different, so
comparisons between the measures are sometimes difficult to interpret. However, this study adds a few new
measures to the empiricist’s toolbox that may prove useful in the future. Our example suggests that the inefficiency
distribution of Indonesian rice farms is fairly symmetric; this suggests that the two-sided estimator may be preferred
in terms of bias and confidence interval coverage of the measure. Symmetry aside, the two-sided measure
necessarily preserves the scale of the & | better than the traditional measure in this (or any) particular example.
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