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Alternative technical efficiency measures: Skew, bias and scale 
Qu Feng, Nanyang Technological University 

William C. Horrace, Syracuse University 

Introduction 

There are several ways to estimate time-invariant technical efficiency in stochastic frontier models for panel data. 

Compared to maximum likelihood or generalized least-squares estimation (Battese and Coelli, 1988), fixed-effects 

estimation (Schmidt and Sickles, 1984) has the advantage of not requiring distributional assumptions on the error 

components. Without these distributional assumptions, efficiency levels cannot be identified directly. Hence a 

measure relative to the best firm in the sample is universally employed (Schmidt and Sickles, 1984). In this case 

only the efficiency distance to the best firms matters. The worst firm in the sample is ignored. For example, suppose 

there are 3 firms with efficiency levels 0.30, 0.90 and 0.99 respectively. It appears that firm 2 is quite efficient. If the 

efficiency level of the worst firm improves to 0.89 due to technological change, the distance between firm 2 and the 

best firm is unchanged. However, firm 2 is now almost as inefficient as the worst firm. This example shows that 

using the worst firm as a reference point provides a different perspective on technical efficiency. Actually, in 

competitive settings the worst firm is of particular importance because the marginal cost of this firm may determine 

price.
1
 This paper considers an alternative efficiency measure relative to the worst firm in the sample and compares 

this measure to the traditional relative efficiency measure on a variety of metrics. 

 

More generally, it may be interesting to use both the best firm and the worst firm as reference points. Therefore, a 

two-sided measure relative to both the best firm and the worst firm in the sample is also proposed. Different from 

efficiency measures relative to the best or to the worst firms alone, the two-sided measure linearly scales the 

efficiency level onto the unit interval with efficiency scores of 0 for the worst firm and 1 for the best firm. 

Consequently, the distance of the efficiency level between any firms becomes informative. 

 

This paper discusses fixed-effects estimates of the measure relative to the worst firm and the two-sided measure 

(relative to the best and the worst). We focus on estimation bias and inference. The level of the bias of relative 

efficiency estimates is related to the skewness of the underlying distribution of technical (in)efficiency. Since the 

‘max’ operator favors positive noise, the traditional estimate has larger bias when there are more efficient firms in 

the population. Qian and Sickles (2008) describe this scenario as ‘mostly stars, few dogs’. When there are ‘mostly 

stars’ our estimate (relative to the worst firm) is less biased than the traditional estimate. However, not surprisingly, 

the bias results are reversed when there are ‘mostly dogs’. When the distribution of (in)efficiency is symmetric, the 

bias results of the two estimators are identical. These results are borne out in our simulations based on three 

parameterizations of the beta distribution. The two-sided estimate balances these sources of bias (in a sense), as we 

shall see in the sequel. 

 

Inference on estimated technical efficiency is often important, and it proceeds with construction of confidence 

intervals. When distributional assumptions are made on the two error components (noise and inefficiency), the 

theory for confidence interval construction is straightforward (Horrace and Schmidt, 1996). The intervals are valid 

in both finite samples and asymptotically. In the case of fixed-effects estimation, confidence intervals for technical 

efficiency may be based on asymptotic normality, when the sample size is large (Horrace and Schmidt, 2000). 

However, when the time dimension of the data is small, the preferred method to construct confidence intervals 

without distributional assumptions is to perform the bootstrap. Kim et al. (2007) provide a detailed and intuitive 

survey on constructing varieties of bootstrap confidence intervals. They argue that the ‘max’ operator of the 

traditional estimate (relative to the best firm) produces bias, leading to low coverage rates when constructing simple 

bootstrap confidence intervals. Our proposed estimates suffer from the same source of bias.  

 

 

                                                           
1 Ł Correspondence to: William C. Horrace, Economics Department, 426 Eggers Hall, Syracuse University, Syracuse, NY 

 



 
 

 

However, the coverage rates of bootstrap confidence intervals are a function of the magnitude of the bias which is 

related to the skewness of the underlying distribution of (in)efficiency and to the estimate employed (i.e., relative to 

best, relative to worst, or two-sided). 

 

Ultimately, the fixed-effects estimates provide information on the skewness of the underlying distribution of 

(in)efficiency. Given this skewness information there may be an empirical trade-off between bias and the efficiency 

measure employed. For example, if the data suggest there are ‘mostly stars, few dogs’, then the traditional estimate 

has large bias and our estimate (relative to the worst) has small bias. However, a measure relative to the best firm 

may be of interest. In this case, the empiricist must decide which is more important: bias or the empirical relevance 

of the measure. (This trade-off also has implications for bootstrap inference.) Of course, if a measure relative to the 

worst firm is needed, then there is no trade-off in this case. This trade-off underscores the fact that the proposed 

estimates are alternatives to the traditional estimate and that all three estimates are measuring different quantities 

(although they are all normalizations to the unit interval, as we shall see). There is no sense in which the estimates 

are substitutes; they are complements that simply add to the empiricist's toolbox. 

 

The paper is organized as follows. The next section discusses the efficiency measure relative to the worst firm, our 

proposed estimate of this measure, and performs simulations to compare the bias of the estimate to that of the 

tradition estimate under different (in)efficiency distributions. Section 3 introduces a two-sided efficiency measure 

that pegs relative efficiency not only to the most efficient firm in the sample but also to the least efficient firm. A 

simulation study of its bias is also conducted. In Section 4 bootstrap confidence intervals are discussed for the 

different measures, and a simulation study of coverage rates and interval widths is provided in the spirit of Kim et al. 

(2007). Our contribution is to demonstrate how these measures and their estimates perform in finite samples under 

different skewnesses of the distribution of technical inefficiency. Section 5 applies the estimators to a panel of 

Indonesian rice farms, and the salient features of all three measures are discussed and compared. The last section 

summarizes and concludes. 

2. Relative Efficiency Measures 

The stochastic frontier model for panel data is  

 

 
 

The error term contains two parts: time-invariant ui ≥ 0, a measure of technical inefficiency; and  . 

A large value of ui implies that the firm i is inefficient. Usually, technical efficiency is defined as ri = exp(−ui) 

under a log-linear specification of the Cobb–Douglas production function.
2
 Letting αi = α− ui, slope parameter β can 

be estimated consistently using fixed-effects estimation. Call this estimate . The usual estimate of αi is  

, where  i and x i are within-group averages. However, ui is unidentified without additional assumptions. The 

literature suggests an efficiency measure relative to the best firm  and its 

estimate , where the i are fixed-effects estimates of αi (Schmidt and Sickles, 1984). 

Correspondingly, when output is in logarithms, relative technical efficiency is defined as r
*

I ≡ exp (-u
*

i) with its 

fixed-effects estimate . We call  the max-measure or the traditional measure. 

 

In the stochastic frontier model (1), the efficient frontier is defined as the best firm using  

measures technical inefficiency as the deviation from this frontier. Similarly, we can define the inefficient frontier as 

the worst firm using maxjuj or minjαj, and measure technical efficiency as 

 

 
 

This is simply the deviation from the inefficient frontier. We call ui** the min-measure. Its corresponding technical 

efficiency score is  . Using exp(−x)≈ 1 − x for small x,  is an approximation of  on the unit 

interval. To fix ideas, we image that ui has some upper support bound ū, so that realizations of ui cannot be too large. 

                                                           
2 If  is technical efficiency for  ln Y and  , say. Even if this is not the 

production function in mind, empiricists often use the measure ri to normalize ui to the unit interval. 



 
 

Then minjαj approximates α− ū, and approximates ū − ui ≥ 0, the deviation from the inefficient frontier. The concept 

of an upper bound for inefficiency was recently considered in Qian and Sickles (2008). Indeed, ‘using this bound as 

the inefficient frontier, we may define inverted efficiency scores in the same spirit of Inverted DEA described in 

Entani, Maeda, and Tanaka (2002)’.
3
 the corresponding fixed-effects estimates of the min-measure are  

4
 

 

Using the same arguments as Schmidt and Sickles (1984),   is consistent for   as T→∞ and N→∞. 

When the production function is Cobb–Douglas and output is in logarithms, ri* has a natural interpretation: it is the 

true percentage of the output of firm i relative to the efficient firm for a fixed set of input, so ri* is the way we would 

naturally measure efficiency for a Cobb–Douglas production function. In this case the proposed measure, ri** , does 

not have this natural interpretation; however (as already mentioned), performance relative to the inefficient firm may 

be relevant, because the marginal cost of the inefficient firm may equal price in competitive markets (markets where 

N is large and ū is small). When output is not in logarithms or there is no particular production function in mind, 

ri*'s interpretation is less clear, and it may be interpreted as a normalization to the unit interval of the measure ui*, as 

it quantifies inefficiency relative to the most efficient firm. Interpreted this way, the nonlinear exponential 

normalization of ri* may distort the scale of ui*. The proposed measure ri** has a similar interpretation but relative 

to the least efficient firm, and it too may distort the scale of ui*. Either way, the alternative measure, ri**  , may 

prove useful to empiricists, particularly if bias and confidence interval coverage are important (as we shall see). 

 

Ultimately we subject these estimates to finite sample simulations and compare their performance under a variety of 

assumptions on the distribution of inefficiency. (In all cases the distribution has bounded support from above and 

below, so the min-measure has a population interpretation.) However, it is useful to consider the theoretical biases. 

In particular, the biases of   are directly comparable, even though they estimate different measures.
4
 The 

bias of the max-measure estimate is  

 

 
 

Since   for each j. Notice that the bias is not firm-specific. The bias will be largest when there is much 

uncertainty over the identity of the best firm (maxjαj) in the population. Per Horrace and Schmidt (1996), this occurs 

when T is small or when the variability of the ui is large. Uncertainty over the best firm is also worse when there are 

many firms in the population (αi) close to being best (maxjαj). This is likely to occur when the distribution of ui is 

skewed to the right: ‘mostly stars, few dogs’. In this paper, we use the beta distribution B(a,b) to model three cases 

of the distribution of ui: B(2,8) ‘mostly stars, few dogs’; B(8,2) ‘mostly dogs, few stars’; and the symmetric 

distribution B(2,2) ‘few stars, few dogs’ (see Figure 1). The discussion above suggests that ceteris paribus the bias, 

bmax, is small in the case of ‘mostly dogs, few stars’. (It is interesting to note that most Monte Carlo studies of the 

stochastic frontier model involve the  

                                                           
3 Qian and Sickles (2008). Indeed, Qian and Sickles consider cross-sectional (T = 1) and random-effects estimation of u. 
Hence the current paper and the Qian and Sickles papers are complements. 
4 It is not entirely clear how to compare the theoretical bias of the  Also, per Kim et al. (2007), coverage rates 

for bootstrap confidence intervals on converted to intervals on  are better than coverage rates on 

 directly, so understanding the bias of the  helps us better understand the coverage rates of the 

preferred intervals 



 
 

 

truncated normal distribution which can only be skewed in the opposite direction: ‘mostly stars, few dogs. See, for 

example, Kim et al., 2007.) 

Similarly, the bias of the min-measure estimate is . Here, bias is large in 

magnitude when there is uncertainty over the worst firm in the population, which will be worse when there are many 

firms in the population (αi) close to being worst (minj αj). This corresponds to the case where the distribution of ui is 

‘mostly dogs, few stars’. While we cannot know which of the biases, bmax or bmin, will be larger in magnitude in any 

empirical analysis, it would be easy to speculate based on one's knowledge of the relative frequencies of dogs and 

stars that occur in the sample. Obviously when the relative frequency of dogs and stars is equal, one would speculate 

that the biases be equal in magnitude. These types of results are borne out in simulations that follow. 

Table I reports the simulation results on the biases bmax and bmin. Ignoring regressors in equation (1), simulations are 

performed with  and vit distributed B(8,2) or B(2,2) or B(2,8). Each beta distribution 

represents different efficiency scenarios as described above. As is standard in SF model simulations, we define                      

and vary so that γ = 0.1, 0.5 and 0.9. The γ is a ‘signal to noise ratio’ measure, 

so small γ indicates a particularly noisy experiment. We focus on the cases where T is small and bias of the 

estimates of the min- and max-measures will be largest, so we fix T = 10. We consider four values of N = 10, 20, 50 

and 100. 

The bias analysis in Table I contains no surprises. Bias for both estimates is increasing in N (for fixed T) and 

decreasing in γ as uncertainty over the best and worst firms in the population increases. Varying the skew of the 

distribution of inefficiency also produces predictable results. The max-measure estimate outperforms our min-

measure estimate when the distribution of inefficiency is B(8,2), while the min-measure estimate outperforms the 

max-measure estimate when the distribution of inefficiency is B(2,8). Compare the 0.077 of B(8,2) and 0.122 of 

B(2,8) for measure  (first row of results) to the 0.125 of B(8,2) and 0.077 of B(2,8) for measure  (second 

row). This near-perfect symmetry of the results across the two inefficiency distributions occurs everywhere in the 

table for obvious reasons. When the inefficiency distribution is symmetric, B(2,2), the estimates perform equally, 

with any differences in bias being caused by sampling variability of the simulations. Compare 0.097 for   to 0.099 

for  in the first and second rows  

 

 



 
 

 

of results for B(2,2). The implications are clear: in an industry marked with mostly stars and few dogs, the ‘min’ 

operator in the min-measure estimate induces a smaller bias than the max operator of the max-measure estimate. Put 

more generally, the min-estimator is less biased than the max-estimator when the industry under study has many 

efficient firms. (In competitive markets this may be the relevant case.) In any empirical exercise, if bias concerns 

outweigh the choice of the inefficiency measure employed  then the choice of estimator should be based 

on prevailing efficiency market conditions in the industry under study. Knowledge of the distribution of inefficiency 

(up to location) is contained in the distribution of the estimated αi and can be used to inform these empirical choices. 

3. Two-Sided Measure 

We now consider a two-sided measure that incorporates both the max operator and the min operator. The motivation 

of the two-sided measure is the issue of scale. By scale we mean the way in which estimators are normalized 

(transformed) to the unit interval. For the max-measure we have the normalization  which rescales (distorts) 

efficiency differences with the exponential function.
5
 Due to the nonlinearity of the exponential function, technical 

efficiency differences between firms in the low range of  are smaller than those in the high range, for a given 

difference in , and are, therefore, not comparable. Hence efficiency differences in the low range of  are less 

informative. This creates a distortion in the efficiency differences for  when it serves as a normalization for  . 

The normalization of the min-measure,  , also nonlinearly rescales (distorts) efficiency differences. 

 

An alternative (or complementary) efficiency measure that does not distort efficiency differences yet 

normalizes efficiency scores on the unit interval is the two-sided 

 

 
 

                                                           
5 

This idea of distortion is based on the idea that , for small Obviously if output is in logarithms, then r*I is 
not simply a normalization; it is the true percentage of the output of firm i relative to the efficient firm for a fixed set of 

inputs. However, the normalization could magnify the bias associated with estimating If output is not in logarithms. 



 
 

With estimate 

 

 

Compared to , technical efficiency differences  are not distorted: 

 

 

Since  is a consistent estimator in T for α− ui, then the difference   is consistent for − ui − (−uj). Since the 

denominator is constant for each pair of firms, efficiency differences have the same scale across the sample. 

     To demonstrate the distortion induced by   relative to  we again consider a beta distribution for 

technical inefficiency. By considering different levels of skew, we are considering different levels of efficiency 

differences between ranked sample realizations at the high and low ends of the rank statistic. For example, any 

ranked sample from the B(8,2) or B(2,8) distributions will have larger differences at one end of the rank statistic and 

smaller differences at the other (on average). The B(2,2) distribution will have symmetrical differences at either end 

of the ranked sample, because the probability mass is symmetric about the mean. There are many ways that we 

could illustrate these differences and the distortions created by normalization to the unit interval. One way would be 

to use the distribution of ui to calculate the theoretical distributions of the transformations  ,  and ei. Then the 

distortions could be compared simply by comparing plots of the distributions. However, rather than calculate these 

distributions (not a trivial task), we simulate and estimate them using kernel techniques. 

     We simulate each beta distribution with 100,000 draws of ui. With this many draws the maximal draw is 

arbitrarily close to 1 and the minimal draw is arbitrarily close to 0, so ‘uncertainty’ over the population maximum 

and minimum is essentially zero, and any ‘bias’ caused by this uncertainty is mitigated. Our purpose is to get a fairly 

accurate picture of the distribution and not to understand the effects of sampling variability on efficiency estimation, 

which we investigated in the last section. We estimate the distributions  and ei using the Gaussian kernel 

and an arbitrarily selected bandwidth of 0.1. The estimated distributions are in shown Figure 2(a)– (c) for 

 respectively. Obviously, the density estimates 

 

 

 

 



 
 

 
 

Figure 2. Efficiency distribution estimates: (a) Mostly dogs B(8,2). (b) Mostly stars B(2,8). (c) Few stars and 

dogs B(2,2); note that the curves u and e are indistinguishable 

 

are only approximate at the boundaries (there is no boundary bias correction). However, this is fine for the purposes 

of scale comparisons. Beginning with Figure 2(a), we see that when the distribution of ui (thick dashed line) is 

‘mostly dogs’, the estimated distribution of the max-measure estimate, , is fairly close to that of ui, while that of 

the min-measure, , is not. In this case the scale distortion of the max-measure is small relative to that of the min-

measure. Also, the two-sided measure, ei, is comparable to the max-measure in terms of scale distortion. The two-

sided measure over-scales in the center of the distribution while the max-measure overscales in the right tail of the 

distribution. This makes sense as the two-sided measure is (in some sense) a ‘middle ground’ between the max-

measure and the min-measure. The min-measure,  , clearly over-scales in the left tail of the distribution. Of 

course, things are reversed in the ‘mostly stars’ case of  , contained in Figure 2(b). Here the min-

measure outperforms the max-measure in terms of scale preservation. Again, the two-sided measure also preserves 

scale fairly well and is comparable to the min-measure. In panel (c) we see that the distribution of the two-sided 

measure, ei, is nearly indistinguishable from the distribution of ui, while the max- and min-measures exhibit large-

scale distortions. (Again, the reader is reminded that these are merely kernel density estimates with no end-point 

correction.) This is not surprising, given the way the two-sided measure is constructed, but the point should be clear 

on its usefulness when scale preservation of efficiency scores is important. Regardless of the skewness of the 

inefficiency distribution, the two-sided measure reliably preserves scale (or differences in the rank 



 
 

statistic), while the performance of the max- and min-measures is a function of the distributional 

skewness. 

     For completeness we now examine the bias of the two-sided measure with a brief simulation study. The 

simulated bias results for the estimator  in Table II use the same parameterizations as the bias results of Table I. 

Unlike the  estimates, the bias results for  are firm specific, so average biases across firms are 

reported. A few results are noteworthy. First, the direction of the bias is a function of the skewness of the efficiency 

distribution. For  (mostly dogs) the bias is positive, for  (mostly stars) the bias is negative, and 

for  (few stars or dogs) the bias is close to zero. This may suggest that for efficiency distributions with 

centralized mass or symmetric efficiency distributions, the two-sided estimator is the appropriate choice.
6
 Indeed, in 

the symmetric case, the average bias for the two-sided measure is always smaller in absolute value than the biases in 

the one-sided measures in Table I. (For these different measures bias comparisons of estimates are not entirely 

meaningless, because all three measures are essentially unitless percentages.) Second, bias is (not surprisingly) 

increasing in N and decreasing in y for all levels of skewness. 

 

 
 

 

 

4. CONFIDENCE INTERVALS 

Per Schmidt and Sickles (1984),  converges to for large N or T, while  converges to  for large T only. 

Therefore, when T is small (the usual panel case) asymptotic approximations for confidence intervals on functions of 

are inappropriate, and a bootstrap method should be employed. See Kim et al. (2007) for a detailed survey of 

methods for bootstrap confidence intervals on technical efficiency and a comprehensive simulation of the coverage 

rates and confidence interval widths of a variety of bootstrap techniques. Our purpose here is twofold. First, we 

would like to replicate the salient features of the Kim, Kim and Schmidt (KKS) confidence interval simulations, 

while experimenting with the skewness of the technical inefficiency distributions using our three parameterizations 

of the beta distribution. Second (and simultaneously), we extend the simulations to include our min-measure and the 

two-sided measure. Again, all the estimates considered are for different measures and cannot be considered direct 

substitutes, but it is useful to empiricists to know which measures are better in a statistical sense when information 

on the skew of the efficiency distribution is known or can be approximated from the fixed-effects estimates. For 

simplicity the underlying data generation mechanism for our confidence intervals is identical to that of our bias 

analysis of Section 2. Our overall finding is that the bias associated with max and min operators erodes the coverage 

rates of the bootstrap confidence intervals, so the relationship between coverage rates and distributional skewness is 

similar to that between bias and skewness. 

 

 

 

 

                                                           
6
 Alternatively, the two-sided measure may be a convenient way to normalize and report efficiency scores, ui. 



 
 

The KKS simulation study considers both direct bootstrap confidence intervals from the distribution of  

and indirect bootstrap confidence intervals from the distribution of , which are transformed to confidence 

intervals on  . When the indirect and direct confidence intervals are the same, the interval is said to be 

transformation-respecting (Efron and Tibshirani, 1993, p. 175). The empirical advantage of transformation-

respecting confidence intervals are obvious: the choice of estimator to report (transformed or not transformed) does 

not affect the coverage probabilities of the intervals. Of all the bootstrap intervals considered by KKS, only the 

percentile bootstrap (percentile) is transformation respecting. However, the bias-corrected with acceleration (BCa) 

intervals are approximately transformation-respecting (KKS, p. 169). They find that the bias-corrected percentile 

(BC percentile) intervals are generally not transformation-respecting but conclude that they have better coverage 

rates than the other bootstrap confidence intervals that they consider. They also find that, when the intervals are not 

transformation-respecting, the indirect method for interval construction on has better coverage rates than direct 

methods. Therefore, in what follows we only consider these three confidence interval construction techniques and 

only for the indirect method. Our bootstrap confidence interval construction procedures are exactly those of KKS, so 

we do not detail their procedures here. The reader is referred to the KKS study for details on indirectly constructing 

percentile, bias-corrected percentile and bias-corrected with acceleration intervals. While our coverage rate results 

are slightly different from those of KKS, our overall findings are the same: for the indirect method, the bootstrap BC 

percentile intervals (Simar and Wilson, 1998) are generally better in terms of coverage rates than either the 

percentile or the BCa intervals.
7
 

 Coverage results for the percentile and the two bias-corrected bootstraps for  and for   using 

the indirect method are reported in Table III. Here the nominal coverage rate is 0.90. Generally speaking, the BC 

percentile coverage rates appear to be best for all scenarios considered. (This is the general finding of the KKS 

study.) When the distribution of inefficiency is symmetric, B(2,2), the coverage rates and interval widths for the  

and for  measures are identical up to sampling variability for all the bootstrap techniques. This corresponds to the 

case where the biases of the two measures are the same (few stars, few dogs). This is particularly clear when the 

signal to noise ratio (sampling variability) is large (small). Not surprisingly the coverage rates are always decreasing 

in N, as uncertainty over the best or worst firms in the sample is increasing (as is bias). Coverage rates are uniformly 

better for  when inefficiency is distributed B(8,2) and better for  when inefficiency is distributed B(2,8). For 

example, when N = 100,  = 0.1, and B(8,2) the BC percentile coverage rate for and are 0.826 and 0.760 in 

Table III. However, when inefficiency is distributed B(2,8) the respective coverage rate are 0.750 and 0.821. Again 

these results are driven by the relative level of bias of the two estimates under the different inefficiency regimes 

(mostly stars or mostly dogs). In terms of the different interval construction techniques, it appears that both bias-

corrected techniques have coverage rates of about 0.7–0.8 regardless of the skew of the distribution, the size of N, or 

the signal to noise ratio (except in the noisiest cases). The uncorrected percentile bootstrap intervals do surprisingly 

well relative to the bias-corrected intervals except in the noisiest cases (large N and small  ). For example, for N = 

100,  = 0.1, and B(2,2) the percentile coverages for  and are 0.359 and 0.349, respectively. However, even then 

the bias-corrected intervals are not very impressive. For example, the BCa intervals are 0.624 and 0.611, 

respectively, in this case. The worst coverage probability is the uncorrected percentile bootstrap in the noisiest case 

(N = 100,  =  0.1) for  and B(8,2). In this case, the coverage rate is only 0.254. 

 For completeness the bootstrap confidence intervals for the two-sided measure, ei, are provided in Table 

IV. Notice that the coverage rates for this measure are fairly stable across the different technical inefficiency 

distributions. For example, in the least noisy setting (N = 10,  = 0.9) the coverage rates for the BCa intervals are 

0.847, 0.854 and 0.851 for B(8,2), B(2,2) and B(2,8), respectively. The interval widths are also about the same. 

Again, this is due to the fact that scale distortion is minimal for the two-sided measure across the different levels of 

skew. Also, the uncorrected percentile bootstrap has generally higher coverage rates than the bias-corrected 

intervals, and in the least noisy cases it comes very close to achieving the nominal coverage rate of 0.90. While the 

measures in this study are all different, it is interesting to note that, when inefficiency is distributed B(2,2), the 

coverage probabilities on the two-sided measure (Table IV) are uniformly higher than those of the one-sided 

measures (Table III). This illustrates the effects of scale distortions of the exponential transformations of the  and 

 when the distribution is symmetric. This is depicted in Figure 2(c).  

 

 

                                                           
7 A referee also pointed out that the distributions of interest for construction of the bootstrap confidence intervals are 

invariant to the true values of the model parameters ,  and  



 
 

5. RICE FARM APPLICATION 

The quintessential example of large N and small T in the stochastic frontier literature is the Indonesian rice farm 

dataset with N = 171 and T = 6. This particular dataset has been analyzed a number of times, starting with Erwidodo 

(1990) and, most recently, with Kim et al. (2007). See Horrace and Schmidt (1996, 2000) for a detailed description. 

In our example we ignore the issue of bias caused by unidentifiable time-invariant inputs in fixed-effects estimation 

(Feng and Horrace, 2007). The form of the production function and the parameter estimates are precisely those 

contained in Horrace and Schmidt (2000), but what is important to know is that output is 

 

 
 



 
 

 

 

 

 



 
 

in logarithms of kilograms of rice. Our purpose is to highlight the different efficiency measures considered. The 

distribution of the  in Figure 3 is produced using the ksdensity(x) command in MATLAB and a Gaussian kernel. 

It has a normalized positive skewness of 0.4740. Therefore, the distribution of the  (up to location) is its mirror 

image and has a skewness of -0.4740. However, the distribution in Figure 3 is actually quite symmetric (except for a 

small wiggle in the right tail). Table V presents efficiency estimates for seven of the rice farms. These are the ranked 

by  and correspond to the two best farms, the 75 percentile farm, the median farm, the 25 percentile farm and the 

two worst farms. Each entry in the last three columns contains the estimate and the indirect 90% bias-corrected 

percentile confidence interval based on 999 bootstrap replications. 

 In any empirical exercise a discussion of potential bias is difficult. However, given our simulation results 

and the fact that the distribution of the  is nearly symmetric (or  have slight negative skewness), perhaps the 

two-sided measure (or traditional measure) will have a less biased estimate than that of the measure relative to the 

least efficient farm  . Even though the measures are different, they are all unitless, so their biases will be unitless 

and, perhaps, comparisons are not entirely unreasonable. However, for this particular dataset the efficiency measures 

are quite imprecise, judging from the confidence intervals. This is particularly telling, when one considers the poor 

coverage rates of the bootstrap confidence intervals that arose in our (and KKS’s) simulation study. The implication 

is that the confidence intervals in Table V may only achieve 70–80% coverage rates, even after bias correction. 

 We now discuss scale considerations. The difference in the _˛i of the two best farms is 0.070 logpoints. For 

the measure we see that the second-best farm has technical efficiency 6.8 percentage points below the best farm 

(1.000–0.932), a good approximation for the log-point difference in the . Ceteris paribus, efficiency differences 

suggest that the second-best farm will produce 6.8% fewer kilograms of rice (0.070 fewer log-points of rice) than 

the best farm. For we see that the second-best farm is 27 percentage points below the best, so its approximation 

for the log-point difference in the is poor at this end of the order statistic (where is large). 

  

            
 



 
 

 
 

Things are reversed at the other end of the order statistic. The log-point difference in the  ˛for the two worst firms 

is approximated well by and poorly by  . By definition, the two-sided measure, ei, will always approximate 

these differences well, particularly at the ends of the order statistic. All three measures approximate the log-point 

differences less precisely in the middle of the order statistic, but it is clear what the two-sided measure is doing: it is 

a middle ground between the two exponential measures. For the median farm  = 0.340 and ei = 0.413. 

Hence, for reporting purposes, the two-sided measure is a simple log-point normalization that facilitates discussion 

of relative efficiency over the entire range of the order statistic and that approximates well the percentage change of 

output ( and ) at both ends of the order statistic. 

 

6. CONCLUSIONS 

The goal of this research is to consider the performance of various technical efficiency measures under different 

skewness of the distribution of technical inefficiency. We find that the traditional one-sided estimate relative to the 

sample maximum, , performs best in terms of bias and confidence interval coverage rates when the distribution of 

inefficiency consists of ‘few stars, mostly dogs’. In highly competitive markets where inefficient firms are rare, 

estimators of the traditional measure may not be reliable (large bias and poor interval coverage). On the other hand, 

estimators of the traditional measure may be reliable in markets where competitive forces are weak, and this may be 

the empirically relevant case for efficiency measurement in general. That is, estimating technical efficiency may 

only be meaningful in markets or industries where it might already exist to a great extent (like utility industries, 

where capital barriers to entry limit competitive forces). The proposed min-measure, , has small bias and better 

confidence interval coverage when the inefficiency distribution has ‘mostly stars, few dogs’, which may correspond 

to highly competitive industries. The majority of economic theory would suggest that this corresponds to the more 

frequently encountered case. Of course, in competitive markets, technical efficiency estimation may be difficult 

from the start, but that does not diminish the potential importance of the min-measure. For example, the marginal 

cost of the least efficient firm in the sample may equal the market price, so a measure relative to the least efficient 

firm in the industry may be useful. Estimates of the two-sided measure, ei, are particularly appealing when the 

distribution of inefficiency is symmetric and when issues of scale are important. That is, when the magnitude of the 

differences of the  must be preserved, the two-sided measure normalizes scores to the unit intervals without the 

nonlinear scale distortion induced by the exponent operator. We reiterate that all the measures are different, so 

comparisons between the measures are sometimes difficult to interpret. However, this study adds a few new 

measures to the empiricist’s toolbox that may prove useful in the future. Our example suggests that the inefficiency 

distribution of Indonesian rice farms is fairly symmetric; this suggests that the two-sided estimator may be preferred 

in terms of bias and confidence interval coverage of the measure. Symmetry aside, the two-sided measure 

necessarily preserves the scale of the  , better than the traditional measure in this (or any) particular example. 
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