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Abstract

This paper describes a novel distributed algorithm for use in reseotgng, medical
image analysis, and surveillance applications. The algorithm combpeetral-screening
classification with the principal component transform (PCT), and hweatered
mapping. It fuses a multi- or hyper-spectral image set ingingle color composite
image that maximizes the impact of spectral variation orhtimean visual system. The
algorithm operates on distributed collections of shared-memorypradéssors that are
connected through high-performance networking. Scenes taken fromndast 210
frame remote-sensing data set, collected with the HypetrapeDigital Imagery
Collection Experiment (HYDICE) airborne imaging spectromedee used to assess the
algorithms image quality, performance, and scaling. The algorishsupported with a
predictive analytical model that allows its performance t@assessed for a wide variety
of typical variations in use. For example, changes to the numberecfrgpimage
resolution, processor speed, memory size, network bandwidth/latencyraamudiagty of
decomposition. The motivation in building a performance model is to afsegnpact
of changes in technology and problem size associated with diffeygpitcations,

allowing cost-performance tradeoffs to be assessed.

Keyword: Principal Component Transform, spectral Angle sifisation, distributed algorithm,

performance prediction



1. Introduction

Hyper-spectral image fusion is the process of combining imagms fifferent
wavelengths to produce a unified color-composite image, removing thdéardegime by
frame evaluation to extract important information. Image fusion lw&a accomplished
using a wide variety of techniques that include pixel, feature, awisidn level
algorithms [Hall 1992]. At the pixel level, raw pixels can beetlisusing image
arithmetic, band-ratio methods [Richards and Jia 1998], wavelet trarssfiii et al.
1995)], maximum contrast selection techniques [Peli et al. 1999], anbtér t
principal/independent component transforms [Gonzalez and Woo0ds1993, Mackiewicz
1993, Lee 1998]. At the feature level, raw images can be tramsforinto a
representation of objects, such as image segments, shapes, orodbjaetions [Hall
1992, 1997]. Finally, at the decision level, images can be processedluradliyiand an
identity declaration used to fuse the results [Hall 1992, 1997]. bfotese fusion
techniques have been used on a small number of images where thegidate be
particularly effective [Richards and Jia 1998, Hall 1992]. The mosbl®txception is
the Principal Component Transform (PCT) which has been employedvariety of
remote sensing applications. In our research we are parhjcutderested in fusing a

large number of spectra and therefore base our work on the PCT.

The PCT is used to summarize and de-correlate a collection @f muhyper-spectral
images. It operates by removing redundancy and packing the resittualation into a
smaller set of images, termegrincipal components[Mackiewicz 1993, Singh

1985&1993]. The first three principal components capture the primarytrapec



information and are typically used to create a color compositgeantarough an
appropriate color-mapping scheme. Unfortunately, in its basic formalgueithm tends
to highlight variations that dominate numerically. This has thecefié enhancing the
importance of an object that occurs frequently in a scene, forgeames in a forest.
As a result, the variations associated with features that adtequently, for example a

mechanized vehicle in the forest, are lost.

This paper describes and evaluates a ndtlibuted spectral-screening PCT algorithm
that extends our previous work on shared-memory multiprocessors to thendoima
distributed systems [Achalakul et. al. 1999]. The new algorithm comieePBrincipal
Component Transform (PCT) with spectral angle classificationde et al. 1993] and
human-centered color mapping [Boynton 1979, Peterson et al. 1993, Poirson and
Wandell, 1993]. Spectral angle classification has the effecteaftitg aspects of an
image that occur frequently with same importance as thosedat infrequently. For
example, all trees in a forest would be placed in an equivaléase and considered of
equal importance to the class of mechanized vehicles. The humaredewtdor
mapping attempts to match the spatial-spectral content of the aotpge with the
spatial-spectral processing capabilities of the human visualnsy3teis has the effect
improving the visual presentation of the data by enhancing importdmt cariations

with direct stimulation of the retina.

To demonstrate the algorithm, it was applied to a 210-channel bgpetral image

collected with the Hyper-spectral Digital Imagery CollentiExperiment (HYDICE)



sensor, an airborne imaging spectrometer. These imagespwrdeso foliated scenes
taken from an altitude of 2000 to 7500 meters at wavelengths between 40dnZn5
micron. The scenes contain mechanized vehicles sitting in opds &slwell as under
camouflage. Figure 1 shows a single hyper-spectral image népresentative sample of
frames picked from the 210 spectral bands. Notice that at the Sthémenis an image
with significant contrast on the forestry and camouflaged vehiclesevwewsince this
image is hidden in a data set of 210 frames an automated method is requirealctdlext

information without frame-by-frame inspection.

Figure 2 shows the resulting color composite image obtained thrtheglspectral
screening PCT. Almost 80% of the variance is pushed into thefiratipal component
and after the first three components there is no significant variance. Thus, gildets
use only these three bands to generate the final resulting.irREgire 2a demonstrates a
standard false color mapping in which the first principal composemiapped to red, the
second to green, and the third to blue. Figure 2b shows the alterimathan-centered
mapping, which maps the first principal component to achromatic, ttendédo red-
green opponency, and the third to blue-yellow opponency. The latter pictbhesy w
viewed on a high-quality monitor, shows significantly improved contieatls. The
forested areas show enhanced detail and the camouflaged velitotelower left corner
is significantly enhanced against its background. Postprocesspwy e subsequently
be applied to detect edges in the image and use structural ationnto detect and

classify the vehicles.
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Figure 1: A set of sample framesfrom theoriginal hyper-spectral image



a) False color mapping R= pc1, b) Human-Centered Color
G=pc2, B=pc3. mapping method.

Figure 2: Color-Composite | mage

Both spectral angle classification and PCT have high computatiosts. cThe spectral
angle classification requires the computation of a dotproduct fary guver of pixel
vectors in a hyper-spectral image, in the worst casé) @&ttor operations. Moreover,
unlike Fourier, Walsh, or Hadamard transforms, the PCT transfamatiatrix is not
separable, and thus, no high performance uniprocessor algorithm [Bdedgalos et al.
1992]. These performance requirements discourage use of the techniqeastime

applications.

To increase performance we are exploring concurrent algorigtmydoying low-cost,
commercial-off-the-shelf multi-processors connected using hidglospgance (gigabit)
networking. To assess the limitations of the approach an andlytadel is presented

here that quantifies the expected performance and scalabitiy.miodel is validated,



using linear-regression against experimental data that chézastéhe gross behavior of
the algorithm, in the style of Foster et. al. [Foster 1996]. Redoce predictions are
made based on reasonable expectations of future technology and tgpieibns of
problem definition, e.g. increases in processor speed, number of necesstwork

bandwidth, image set size, and image resolution.

2. Concurrent Algorithm

The concurrent algorithm decomposes the three-dimensional cubtirgtro€ a multi-
spectral image into sub-cubes, as shown in Figure 3, that can béedpemarelatively
independently. Each sub-cube consists of a set of pixel vegteps xxy, ..., X,] similar

to the decompositions used in [Palmer et al. 1998]. The allocation ofubelk-¢o
processors is managed through a variant of the manager/workergieehaepicted in
Figure 4 [Chandy and Taylor 1992]. This strategy employs a sdnsadtthat represents
the interface to multi-spectral hardware, performs the aboweonagosition, and
distributes sub-cubes to a set of worker threads. Each workéormer relatively
independent components of the overall image transformation and assocaite
mapping techniques. A manager thread coordinates the actions of thersygathers
partial results from them, assembles the final color compasdge, and provides access
to display hardware. Although the results in this paper were produmedstatic multi-
spectral files, rather than sensor hardware, the structube algorithm can be operated

in real-time [Taylor 2000].
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The main abstract code of the algorithm is shown in Program 1 anadsited at every
processor on the network. For example, if there are 3, 8-way mubgsors, the
program is executed 24 times. The sensor, manager, and workerxearged as

independent threads with a single thread per processor.

main() {

mp = get_my_multiprocessor_id()

if(mp == 0) {
numsubcubes = get_num_subcubes()
sensor(numsubcubes)
manager(numsubcubes)

}

foreach remaining available processor
worker()

Program 1 Communication Structure.

Abstract code for the sensor is shown in Program 2. It repeatedinshulti-spectral
image cubes from the sensor (1), waits for an appropriate tefguegork from a worker
(2), decomposes the image cube to generate an unassigned sub-cutx $8hds the

sub-cube to the requesting worker (4).

sensor() {
while(sensor device operating) {
cube = grab_cube() [*1*
while(subcubes available) {
request = recv(aworker) [*2*
work = generate_subcube(cube) [*3*
send(aworker, work) [* 4%
}
}
}

Program 2: Sensor Thread Operation

10



Each worker thread executes the algorithm shown in Program 3 anthima a set of
sub-cubes (1,4) to operate on. An initial request is sent to the densbtain the first
sub-cube (2). After this initial request, the processing of each sub-cubelappeed with
communication of the remaining the next sub-cube from the sensorhi8)represents
the primary communication step in the algorithm and corresponds tibuiistg 1/r" of

the image cube to each of n-multiprocessors.

worker() {
cubes = {} [* 1+
send(request,sensor) [* 2 *
while(numsubcubes <= numcubes/numworkers) {
subcube = recv(sensor) [* 3 *
cubes = cubes U subcube [* 4%
send(request,sensor) [*5*/
ssubset spectral_screening(subcube) [*6 */
send(ssubset, manager) [*7*
}
sset = recv(manager) [*8*
substats statistics(sset) [*9*
send(manager, substats) [* 10 */
[A, m] = recv(manager) 11 %
subcomponents BCT(A, m, cubes) [* 12 */
subimage human_centered_mapping(subcomponents) [* 13 */
send(subimage, manager) [*14 %
}

Program 3: A Worker Thread

The spectral screening algorithm produces a set of unique sp&ithaugh each sub-
cube contributes to this set through an appropriate abstract opdftitime set must be
accumulated across all sub-cubes. This accumulation is performezlglthr
communication with the manager. Each worker sends a prospectivé suiise spectra

to the manager (7) and overlaps this communication with computatibe okt subset.

11



When all sub-cubes have been processed, the manger transmitsittiregrasique set to
all workers (8). Typically, the amount of communication in this sgeprders of

magnitude less than the size of an image cube.

When the spectral screening is completed globally, the digofiroceeds to compute a
set of statistics (mean-vector and covariant-sum) that giveasume of the variation in
images at each spectra. Although, once again, the statistiteedargely computed on a
per sub-cube basis using an appropriate abstract operation (9),attegen is again
involved in assembling the statistics to form a transformatiomixnatand mean-vector
m (10,11). The communication involved in this step is on the ordefwhere n is the

number of spectra, again typically significantly smaller than the size afidngei cube.

With the matrix A and mean-vector m available, the PCT (12) and rmaeraered
mapping (13) can be computed on each sub-cube independently to prodwtect pas
final color image. The patches are accumulated at the maf@gdisplay (14). Thus,

the final communication is only fnwhere m is the size of the image.

Program 4 shows the abstract code of the manager, which serves primayihchronize
and accumulate partial results from the workers. It is givee f@r completeness,
although it involves no significant numerical technique other than tleellaabn of the
transformation matrix. Note that the method by which a singlet @disynchronization
is typically avoided in a distributed algorithm is through repiacatand global

communication. As will be seen later from the performance mduakelorganization of a

12



large number of processors into a significantly smaller numbemuwtiprocessors,
connected with Ethernet technology, does not make replication actiaéralternative.
We have explored this alternative and found that in practice, ésgsdfficient than the

more simple structure given here for practical problem sizes.

manager(numsubcubes) {

sset = {}
stats =[][]
image = [][]

foreach subcubes of numsubcubes {
ssubset = recv(aworker)
sset = sset U ssubset
}
foreach worker i
send(sset, i)
foreach worker {
substats = recv(worker)
stats = merge(stats, substats)
}
[cov,m] = stats
A =eigenvectors(cov)
foreach worker i
send([A, m], i)
foreach worker {
subimage = recv(worker)
image = merge(image, subimage)
}
display(image)

Program 4 A Manager Thread

Spectral Angle Classification is a technique that measures the similarity between the

spectral signatures of objects in a scene. In a 2-band hypérasgpace, the similarity

13



between two signatures can be determined by calculating tjle bBetween the two
associated pixel vectors X and Y as shown in Figure 5(a). Tharajpsignatures can
then be separated from one another if there is a sufficientatffe in their angles as

shown in Figure 5(b).

A X (x1, x2) 4 ° Classl
° o
o O
Band 2 Band 2
Y (1. y2) O Class 2
© O
o} O
> >
Band 1 Band 1
(a) (b)

Figure5: (a) Spectral anglefor atwo bandsimage. (b) Classifying spectral space.

Extending this concept from two bands to n-bands, the calculation opéicgad angle
can be performed by the following equation that operates on twenerdinal pixel

vectors.

I
(@}
(@)
(7]

a(x,y) = costd 2" Y E
X[+ ¥

Program 5 shows the abstract code for the spectral screening pfemeagiven spectral
angle thresholdgy,, a set of unique spectral signatures is formed by calculgteg

spectral angle between all the pixel vectors in a hyperigppentage using the above

14



equation. The unique signature set is initially empty. Each peabr is compared to
all of the vectors in the unique set by calculating the assdcggectral (2). If all the
angles exceed the threshold (3), the pixel vector is added intio(4)setherwise it is
discarded. On completion of the process, a unique set of spectiausemis determined
in which the spectral angle between every pair of pixel vectorgreater than the
threshold,a,. This unique set is then used, instead of the entire collection ef pix
vectors in the hyper-spectral image, in the spectral de-coorelarocess. By adding this
screening method, we are assured a variation that dominates calmgbackgound) in
the original hyper-spectral image, will not dominate the regplimage; small objects in
the scene will have an equal chance of being pushed into the ofdreprincipal

components.

spectral_screening(subcube)
{
S={} [* 1%/
for each yin a subcube {
for all v in S {

aG, j)=cos*+ j /i [i]) I* 2%
if(all (ai, j)) > awnr) I* 3%
S=SU{y} [* 4%

Principal Component Transform treats each source image as a matrix and forms the
associated covariance matrix, which characterizes variaiiorimmage contrast. The

covariance matrix is then used to form, through a linear tramsfiton, a collection of

15



principal components that effectively summarize the variationssacall spectra. The
output components carry enough spectral frequency information to recgnste
original multi-spectral images. The components are rank orderdtiebynagnitude of
their variances (eigenvalues); therefore, most of the specmaiast is pushed forward to
the first few components. The linear transformation thereby ipendentification of
information that might not be apparent in any single image ngplsilinear combination
of images that are selected empiricalllhe PCT algorithm can be divided into two parts
that calculate the transformation matrix A, and subsequently cramshe data. Consider

the pixel vector of the form

The mean vector can be defined as
1 K
m, = K Z X,
where K is the number of pixels in an original image set.
The covariance matrix of the n-spectral band image can then be calculatedves. foll
1 K
C:x :EZXKXE— _meI

BecauseC, is real and symmetric, finding a set of n orthonormal eigenvectoalways
possible [Noble 1969]. The transformation matédxcan then be formed by lining the

sorted eigenvectors calculated from the covariance matrix im re&@e. The fist row of

16



matrix A is the eigenvector corresponding to the largest eigenvalue, and the lasthiew is
eigenvector corresponding to the smallest eigenvalue. Program 6 shabstiiaet code
for the PCT algorithm in which the multi-spectral imageis transformed into a set of

principal components;C.

statistics(sset)
{
m =0;
for all pixel i in sset
m=m+i;
m=m/Kk; /I where k = number of vectors in sset
cov = 0;
for all pixel i in uset {
C =11 -mm;
cov=cov + G
}
substats = [cov, m]
}
eigenvectors(stats)
{
eigvector, eigvalue = find_eigvector(stats);
eigvector = sort(eigvector, eigvalue)
} A=[eig; | eig | ... | eig]

PCT(A, m, cubes)

for all pixel vector Vin cubes
PG = A(Vi—m);

Program 6: Principal Component Transform

Human-Centered Color Mapping assigns the first three Principal Components, which

have the maximum variance, to a standard representation of the haloaspace and

17



subsequently converts this representation to RGB values than caedo® uksive a color
display. A large number of color spaces have been proposed indfaulie of color
vision [Boynton 1979]. In this paper, we choose to work with the
luminance/chrominance model, or YOZ model, favored by Peterson £€9%8. The
response of the three cones in the human visual system can bermmaasfinto a
Luminance band (Y) and two color-opponent bands: red-green (O), and dme-¢&).

The information bandwidth of the human color channels is unequal. Thalspati
frequency bandwidth of the Luminance channel is much greater thaoltteopponent
channels [Poirson and Wandell, 1993]. This suggest that mapping th&risipal
Component into the luminance channel and the second and third Principal Coraponent
into chromatic channels of the visual system will provide aniefftcutilization of the

human visual bandwidth.

The YOZ color space is derived from the standard chromacity coteditermed XYZ,
developed by Commission Internationale de I’ Eclairage (CIEN981 using the

following empirically derived transform given in Peterson et al. 1993:

0 047 0O
[YOZ=[XYZ4 -037 0
D -010 17

The luminance channel Y is just the CIE Y-channel and the bluewebpponent
channel Z is just the CIE Z-channel. The red-green opponent ch@jrisldiven by the

equation, O = 0.47X - 0.37Y — 0.10Z.

18



To obtain the appropriate mapping from YOZ to RGB, we follow the \Barynton. The
color space-mapping matrix, k, is derived from the measured appotwver distribution
of the display (i.e. intensity at each wavelength) and an empirical maltwhing function

as follows [Boynton 1979]:

k=[TP]*

The color matching function T is an n-by-3 matrix where eactingolis determined by
having human observers match their color primaries to specttalights at different
wavelength. Matrix P is a 3-by-n matrix representing theasared spectral power
distribution of the primaries. In our experiments, we have used @& &blor matching
functions for matrix T and the spectral power distribution of a BigRGB monitor for

matrix P. The normalization of matrix k is shown below:

(04387 04972 006410
K = 50.4972 ~01403 - 0.079%
501355 00116 0.4972F

Differential YOZ input values are used because a negativdu@ ualicates green color.

The final equation for YOZ to RGB mapping can thus be stated as follows:

[RGH = (128+ (k_ final* (YOZ -128))/ 256

19



3. Predictive M odel

Recall that the motivation in building a performance model is $sesssthe impact of
changes in technology and problem size associated with diffggphtations, allowing
cost-performance tradeoffs to be assessed. Many performaraaing techniques have
been presented in the literature for analyzing the performancenaiurrent algorithms.
Some of the most interesting include statistical, simulationyacel, and benchmarking
models. Each model has its own advantages and suits a spgo#fioft application
[Fahringer 1996]. In our work we are primarily concerned with pradictthe
performance scaling characteristics on a variety of axtoites. We therefore choose to
analyze the Concurrent Spectral-Screening PCT algorithm byirfigr an analytical
model based on weighting factors that are calibrated experimejtialiter 1996, Rieffel
1998]. This method uses a linear equation to describe the gross behak@algfarithm
executed on a multi-processor. It allows parallel speedup on a gigehine to be
predicted and provides the ability to assess crucial concurrefotpance bottlenecks.
It is also possible to estimate the number of processors needed to coh®ptaskt given

some particular time restriction.

Speedup and Efficiency. The basic notations used in performance measurement are
speedup (spandefficiency (e)Pardalos 1992, Foster 1996]Speedup is defined as the
ratio of the time required by the concurrent algorithm to completetask using one
processor to the time required wheénprocessors are used. M is the number of
processorsTsis the time used to solve the problem sequentially, Tane@presents the

sum of the overhead of each processor, speedup can be defined as

20



P” Ts +To

or

T.P
T, +T,

Sp=

The ideal speedup (or maximum speedup obtainable) iFhe parallel efficiency can
also be calculated by measuring the processor utilization ingo& problem. The
efficiency, e, is defined as the ratio of useful work to thel tetak, or the ratio of the

sequential time to the product of the parallel time and number of processors:

e:ﬂ):
P

Concurrent Analytical Model. The total time for concurrent execution in each
processor, donc IS the sum of computation time, communication costs and idle time in

each processor.

Teone = Teomp  Teomm T Tidte

conc ~ 'comp comm

The average computation required in each proce3ses, is equal to the time used to

solve the problem sequentiallls, divided by number processors in the systém,

S
P

comp ~

21



Idle time occurs in only the fastest computers. The totalutixectime, T; can then be
defined as the sum of computation and communication time of the slpreesssor and

the time used to compute sequential steps in the algofTtiym,

T =Tomot Teomm T T.

comp comm sq

and the efficiency of the algorithm can thus be modeled as follows:

e= ﬂ) — TS — _comp _ Tcomp — 1
P TconcP Tconc Tcomp + Tcomm 1+ Tcomm/Tcomp

Communication Model. To a first order, communication costs can be divided into two
parts: the time used to transfer messages into the intercameetiwork, and the time
used for messages to travel through the network. The formedepshds on the speed
of communication hardware and software of each processor. Theclagtedepends on
how processors are connected. In our experiments, we are priméeiigsted in low-
cost, high-performance local area networks based on switchedaEth100BaseT and
Gigabit. The communication tim&,mmcan be modeled as followed

Teomm=To +T,

comm

whereT, is the message overhead dRds the transport time.

The message overhead includes communication latency and the tirde farse

synchronization. The transport time includes the time used to foamttransfer

22



messages. The transport time is the product of message rsibgt€s) and network

throughput,T,, (transport time per byte).

In our experiments, modern high-performance network switches us=é to connect
multiprocessors. With this technology, several multiprocessors aash &ed receive
messages without compromising the network throughput. Thus, assumimgaihéata
of size N is to be divided evenly amonB Processors, the communication can be

described in the following equation:

Computation Model. To develop the computation model, we need to be able to
determine the computational complexity of each step in a concualgotithm. The
complexity of a step is taken to be the time used to complestdpeas a function of the
problem size [Cormen 1990] and is expressed using weighting fagtoinsough G that

represent the relative importance of each step. Recallhdaiomputation timelcompis

defined as
T
Tcomp = FS

In the concurrent algorithm, the original hyper- or multi-spEctiimage cube is
decomposed into a set of sub-cubes where each sub-cube is distibatewrker. The

sequential timeTs, can then be, defined as follows:

23



Where k is the number of sub-cubes dpas the time use to compute one sub-cube.

Let m be width and height of each sub-cube in the hyper-spectral im&gethe number
of spectral bands be the number of unique spectra per sub-cubepdredthe number of

processors. Considering each component of the algorithm in turn:

1. Spectral Screening: The computation associated with this step involves a calculation
taken over all pixel vectors concurrently? mt each worker. Each computation (the
arccosine of dotproduct of pixel vectors pair) involves the calouldietween a new

vector (of size n) and all vectors in the unique set (S). Thus the time requiresd, T

T, =C,m*sn

2. Merge Unique Sets. This step is computed sequentially at the manager. The
computation involves an angle calculation associated with eachveigelr (of size

n) in p-1 sets, where each set contains s pixel vectors. The time requined, T
T,=C,(p—Dsn
3. Mean vector: This step involves taking an average of the pixel values in a unique
spectral set at the manager. The number of operations isdrétatbe number of

unique spectra (s) and the number of frame (n). The time requied; T

T, =C,sn

24



4. Covariance sum: The computation associated with the covariance sum is performed
over the pixels in a unique set of size s at the worker. Eacputation on a pixel
involves matrix multiplication (complexity o The time required, T is:

T,=C,n’s

5. Covariance Matrix: This computation involves forming the matrix sum of the
matrices returned from the previous steps at the manager.e @hemp matrices of
size nxn. The time requiredsg,Tis:

T, =C.n’p

6. Transformation matrix: The time used in this step is dominated by the time used to

calculate eigenvectors at the manager. The time requiget: T
T, =C,n°

7. Transformation of the Data: The computation in this step is performed over the
pixels in an image of size In Each computation on a pixel involves matrix
multiplication with the complexity off at the worker. The time required;, Ts:

T, =C,n°’m?

8. Color mapping: This step of the algorithm involves linear transformation of tre fi

three principal components in achromatic, red-green, and blue-yellow omyoaen

the worker. The time requiredg,Tis directly proportional to the size of sub-cube:

T, =C,m’

The total time to compute one sub-cubg,i§thus T + T3 + T4 + T; + Ts. The total
time for sequential computationglis T, + Ts + Tg. The total execution time for an n-

band image cube of simexmxp can then be defined as:
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The performance model can thus be described as:

Tt — E(Clmzsn+ C28n+ C3n28+ C4n2m2 + C5m2) +
p

knm?n

Ci(p—D)sn+C,n°p+Cyn® +C, T, ——+T,
Y
The parallel efficiency can also be predicted with:

1
e:—:
1+T,. /T

comm comp

N T, +C,T, kn’n/ p

2

MOoEoOO
moooo,

(C,m’n+C,sn+C,n’s+C,n’m* +C,m

o=

Model parameters: The analytical model developed in the previous section describes the
performance of the concurrent algorithm in terms of the numbepettra, the image
size, and network bandwidth. To calibrate the model and assessatinge rehportance

of each phase of the algorithm, it is necessary to assigas/& the weighting factors C
through G. In addition, we add two values, ® represent the synchronization overhead,
and G to represent any additional computation required to format dataafor

communication device.
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In our experiment, two different network technologies are used: 100Bas® gigabit
networking. On the gigabit network, the time used to transfer one thyough the
network T, was measured at 0.002 microsecond. On a 100 baseT networf teesT

measured at 0.008 microsecond.

A naive method to calibrate;@hrough G Co, and T is to run ten experiments, obtain
the total time for each in terms of known values for n, m s, k, p, andnd solve the
resulting equations simultaneously. Unfortunately, this approach wasdfto be
inadequate because the behavior cannot be accurately represented lingar
combination of the variables. Instead, we utilize linear regressioggdH989] and apply
the least-square fitting method with the data acquired from ewxeets to designate
values for the weighting factors. The least-square trieBtta curve as closely as
possible to a set of points on a plane. Our model is a linear eguztithe form,
y=a,+aXx +a,x, +...+a,x,. To apply the least square fitting method, the following
equation is used:

v=(MTM)*MTy

where

O O x X x{”D (8, O
0 o 0
y:%zmM:ﬁ X % szvz%‘zm
0: 0 o . . .0 0:0
oo O , 0 00O
Va0 B x, X X8 @&n0
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and where m=9 represents the number of weighting factors and n=2& muinber of

experiments executed to resolve these factors.

The associated experiments were performed on three Intel mudigs@s, each running
Windows NT. Each multiprocessor has 8 processors running at 550Mhz &aeh.
experiments varied the size of the source image, the numberoafsps, the number of
spectral bands, the network connection, and the granularity of the decbompdSfter
approximately 25 experiments no significant variations in the vafuiheo weighting

factors were obtained and the final values are listed below.

T, =8.8756, ¢ =7.2833e-009, £=-6.2733e-005, £=-5.2628e-007,
Cs =4.1329e-008, £=-4.8906e-005, £=1.6035e-005, £ = -1.6350e-005

Cs =8.0959e-006, £= 15.8635

4. Performance Result
In this section we study the algorithms scaling propertieslf@f the primary variations
of interest, comparing measured and predicted performance resuétsiesults are a
small but representative sampling of a much more broad ranggpefiments that we

have conducted to validate the model.

Variations in Problem Size. There are two application specific properties associated

with problem size: theaumber of spectra and theamage resolution mThe performance

of the concurrent algorithm was measured on the gigabit netwdlk 24i processors
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arranged in three multiprocessors, as described in the previous sectiores leigand 6b
plot the measured and predicted execution time as a function of theenofrprocessor
p, where possible, experiments were based on the HYDICE data iffet320x1280
resolution and up to 210 spectra. Each plot shows the impact of variatithresnumber

of spectra, image resolution is varied between the plots.
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b) Problem size: 2048x2048

Figure 6: Varying Problem Size
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For large problems, e.g. 2048x2048x420, the algorithm performs within 20%eair i
speedup using 64 processors, the efficiency drops below 0.75 at 96 proaassdsiow

0.9 at 48 processors. For medium sized problems, e.g. 320x1280x210 spectra, the
algorithm performs within 20% of linear at 16 processors, the effayi drops below

0.75 at 16 processors, and below 0.9 at 8 processors. For small problemesize
320x1280x27, the algorithm performs within 15% of linear speedup using 8 pooses

the efficiency drops below 0.75 at 8 processors, and below 0.9 at 4 processors.

In general, the performance drop from linear speedup decreasée @soblem size
increases. The dominant issue is problem size. For small prolitearesjs not sufficient
computation to gain an impact from a large number of processorse-isheimply not
enough work to keep the processors busy. As a result, the performandegegas to
drop off as the number of processors increase. Note that Stethé algorithm which
involves sequential code to compute the eigenvectors of the covariatrog manot a
significant factor in overall performance (5%). Hence, tlveeee no extensive efforts to
optimize this step through concurrent execution. The complexity ofethenvector
calculation is related to the number of spectrased in the problem. Although the
eigenvector algorithm has a complexity of é(rthe time used does not dominant with
typical problem sizes. This is because the performance of $teps4, and 7 are also
related to the number of spectral bands; these steps dominate &tefné number of

spectra increases.
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At small problem sizes, since there is not a large enough cotmputa warrant large
numbers of processors, an alternative approach to concurrency would déeneficial
for real-time applications: tonulti-process in time rather than spadéhis alternative is

the current focus of our research efforts in extending the work in this paper.

The experiments demonstrate that the accuracy of the prediatigel is within 10% for
large problem sizes. For a small problem sizes the prediotedcn be as much as 25%
off of the measured time, but the general trend is correct.efirbein the model is likely
to be an artifact of the regression method coupled with additional mpex;asuch as

buffer management, that are not yet accurately reflected in the model.

Variationsin Processor Speed. Figure 7 plots the measured and predicted performance
of the algorithm for the medium sized HYDICE data set with 273MB50MHz
processors and 1.1GHz processors. With a small number of procéissgrerformance
gained is almost double when the processor speed is doubled. Whga auarber of
processors are used, the performance gain is reduced from liged0% at 128
processors. This is due to the computation/communication ratio. The wooaton
time was measured at 5% of the computation time at 1 processor. The overheagkescr

to 15% when 128 processors are used.
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Figure7: Varying Processor Speed

Variations in Network Performance. Figure 8 plots the measured and predicted
performance of the algorithm on the medium sized HYDICE datang two different
networking technologies: 100BaseT and Gigabit Ethernet. In geaet&f6 performance
improvement is gained when a gigabit network is used instead of K& BaNotice that
the model is more accurate for the 100BaseT experiments. JHergely due to
unpredictable contention in the gigabit networking. Although the avetageghput
was measured at 350 Megabit/sec, the actual speeds realizeghenmesnts varies
considerably. Using 100BaseT connection, the processors have no probjeng kege

with the network speed so the actual performance is closer to the average throughput
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Figure 8: Varying Network Performance

Variations in Granularity. The granularity of problem decomposition is the ratio of
computation to communication. Increasing the granularity should rebdacaeverhead of
communication, but conversely limit scalability [Chandy and Taylor 1982]this
algorithm the size of a sub-cube allocated to each worker foregsow provides a
mechanism to control granularity. Figure 9 examines performanog tsur different
decompositions. The results show that dividing an image cube into a cabbidarger
number of sub-cubes than the number of processors (e.g. 3 times ther mfmbe
processors) improves performance. The performance improvememdgrem the ability

of the algorithm to overlap computation and communication, thus reducing
communication overhead and increasing overall throughput. When the gitgriglémo

fine, the computation on each sub-cube becomes too small, and communicat@adve
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dominates. With a problem size of 320x1280 at 1 processor, the standard devié#ton is
off of the mean. With 24 processors, the standard deviation calcuta®éd aff of the
mean. This shows that the granularity of decomposition has mex effien a smaller
number of processors are used. In this experiment, the performdiecendie is up to
4% when the decomposition was more than n=48 sub-cubes. This intheafder this
problem size, using more than 24 computers will not buy substantiabriperice
improvement. The general effect is more pronounced in largereirsety. With the
problem size of 2048x2048 at 1 processor the standard deviation is 8% lodf iwfein
and 7% at 24 processors. This indicates that with this problemtlse&zenage cube can

be further divided into finer granularity.
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Figure9: Varying Granularity Decomposition

Although quantifying the performance of the algorithm, the primasylt from this set
of experiments is that the presented model can be used to provideader analytical

method for assessing the impact of changes in technology and p&ibkenThis allows
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a system to be designed that trades off system cost ftorpence on a particular
application. Using the model a wide range of practical desigstigne can be answered,
for example:
» For a given fixed cost, what performance can be expected from the algorithm?
* How fast will the algorithm operate if the processor speed doubles?
* What network speed will realize my cost — performance objectives?
* What granularity will maximize the performance on a particular system

configuration?

5. Conclusion

This paper has described a Concurrent spectral-screening Rfofiteh and its
associated analytical model for performance prediction. Thaitdgn has been applied
to a typical remote sensing application for camouflage detecfitre analytical model
was validated against a large set of experimental data. Gigesbkem size and a time
constraint, the model can be used to estimate the number of prgoessded to achieve
the required performance. In the near future, COTS-multiprocesgtr 16 processors
or more, where each processor runs at 1000 MHz, will be availdb&ng a network of
8 of these machines (128 processors), the remote sensing probdeaf 80 frames of
1024 by 1024 pixels can be solved 414.05 seconds. We are currently develmgahg a
time multi-spectral camera system for use in low-altitud&elAphotography. This
system provides a stream in 12 spectra. With the emergihgdiegy we could expect

one 16-ways multiprocessors machine to process an image cube2vithmes in
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approximately 0.1 sec at 1024x1024 resolution. We expect a network of sctimes

to enable real-time image fusion for surveillance applications.
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