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Abstract

This paper describes a novel distributed algorithm for use in remote-sensing, medical

image analysis, and surveillance applications. The algorithm combines spectral-screening

classification with the principal component transform (PCT), and human-centered

mapping.  It fuses a multi- or hyper-spectral image set into a single color composite

image that maximizes the impact of spectral variation on the human visual system. The

algorithm operates on distributed collections of shared-memory multiprocessors that are

connected through high-performance networking. Scenes taken from a standard 210

frame remote-sensing data set, collected with the Hyper-spectral Digital Imagery

Collection Experiment (HYDICE) airborne imaging spectrometer, are used to assess the

algorithms image quality, performance, and scaling. The algorithm is supported with a

predictive analytical model that allows its performance to be assessed for a wide variety

of typical variations in use. For example, changes to the number of spectra, image

resolution, processor speed, memory size, network bandwidth/latency, and granularity of

decomposition. The motivation in building a performance model is to assess the impact

of changes in technology and problem size associated with different applications,

allowing cost-performance tradeoffs to be assessed.

Keyword: Principal Component Transform, spectral Angle classification, distributed algorithm,

performance prediction
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1. Introduction

Hyper-spectral image fusion is the process of combining images from different

wavelengths to produce a unified color-composite image, removing the need for frame by

frame evaluation to extract important information.  Image fusion can be accomplished

using a wide variety of techniques that include pixel, feature, and decision level

algorithms [Hall 1992].  At the pixel level, raw pixels can be fused using image

arithmetic, band-ratio methods [Richards and Jia 1998], wavelet transforms [Li et al.

1995)], maximum contrast selection techniques [Peli et al. 1999], and/or the

principal/independent component transforms [Gonzalez and Woods1993, Mackiewicz

1993, Lee 1998].  At the feature level, raw images can be transformed into a

representation of objects, such as image segments, shapes, or object orientations [Hall

1992, 1997].  Finally, at the decision level, images can be processed individually and an

identity declaration used to fuse the results [Hall 1992, 1997].   Most of these fusion

techniques have been used on a small number of images where they are said to be

particularly effective [Richards and Jia 1998, Hall 1992]. The most notable exception is

the Principal Component Transform (PCT) which has been employed in a variety of

remote sensing applications. In our research we are particularly interested in fusing a

large number of spectra and therefore base our work on the  PCT.

The PCT is used to summarize and de-correlate a collection of multi- or hyper-spectral

images. It operates by removing redundancy and packing the residual information into a

smaller set of images, termed principal components [Mackiewicz 1993, Singh

1985&1993]. The first three principal components capture the primary spectral
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information and are typically used to create a color composite image through an

appropriate color-mapping scheme. Unfortunately, in its basic form the algorithm tends

to highlight variations that dominate numerically. This has the effect of enhancing the

importance of an object that occurs frequently in a scene, for example trees in a forest.

As a result, the variations associated with features that occur infrequently, for example a

mechanized vehicle in the forest, are lost.

This paper describes and evaluates a novel distributed spectral-screening PCT algorithm

that extends our previous work on shared-memory multiprocessors to the domain of

distributed systems [Achalakul et. al. 1999]. The new algorithm combines the Principal

Component Transform (PCT) with spectral angle classification [Kruse et al. 1993] and

human-centered color mapping [Boynton 1979, Peterson et al. 1993, Poirson and

Wandell, 1993]. Spectral angle classification has the effect of treating aspects of an

image that occur frequently with same importance as those that occur infrequently. For

example, all trees in a forest would be placed in an equivalence class and considered of

equal importance to the class of mechanized vehicles. The human-centered color

mapping attempts to match the spatial-spectral content of the output image with the

spatial-spectral processing capabilities of the human visual system. This has the effect

improving the visual presentation of the data by enhancing important color variations

with direct stimulation of the retina.

To demonstrate the algorithm, it was applied to a 210-channel hyper-spectral image

collected with the Hyper-spectral Digital Imagery Collection Experiment (HYDICE)
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sensor, an airborne imaging spectrometer. These images correspond to foliated scenes

taken from an altitude of 2000 to 7500 meters at wavelengths between 400nm and 2.5

micron. The scenes contain mechanized vehicles sitting in open fields as well as under

camouflage. Figure 1 shows a single hyper-spectral image via a representative sample of

frames picked from the 210 spectral bands.  Notice that at the 524nm there is an image

with significant contrast on the forestry and camouflaged vehicles, however, since this

image is hidden in a data set of 210 frames an automated method is required to extract the

information without frame-by-frame inspection.

Figure 2 shows the resulting color composite image obtained through the spectral

screening PCT. Almost 80% of the variance is pushed into the first principal component

and after the first three components there is no significant variance.  Thus, it is possible to

use only these three bands to generate the final resulting image. Figure 2a demonstrates a

standard false color mapping in which the first principal component is mapped to red, the

second to green, and the third to blue.  Figure 2b shows the alternative human-centered

mapping, which maps the first principal component to achromatic, the second to red-

green opponency, and the third to blue-yellow opponency. The latter picture, when

viewed on a high-quality monitor, shows significantly improved contrast levels. The

forested areas show enhanced detail and the camouflaged vehicle in the lower left corner

is significantly enhanced against its background. Postprocessing steps can subsequently

be applied to detect edges in the image and use structural information to detect and

classify the vehicles.
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Figure 1: A set of sample frames from the original hyper-spectral image

a) 400 nm b) 452 nm

c) 524 nm d) 700 nm

e) 997 nm f) 1998 nm
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Figure 2: Color-Composite Image

Both spectral angle classification and PCT have high computational costs.  The spectral

angle classification requires the computation of a dotproduct for every pair of pixel

vectors in a hyper-spectral image, in the worst case O(n2) vector operations.  Moreover,

unlike Fourier, Walsh, or Hadamard transforms, the PCT transformation matrix is not

separable, and thus, no high performance uniprocessor algorithm exists [Pardalos et al.

1992]. These performance requirements discourage use of the techniques in real-time

applications.

To increase performance we are exploring concurrent algorithms employing low-cost,

commercial-off-the-shelf multi-processors connected using high-performance (gigabit)

networking. To assess the limitations of the approach an analytical model is presented

here that quantifies the expected performance and scalability. The model is validated,

a) False color mapping R= pc1,
G=pc2, B=pc3.

b) Human-Centered Color
mapping method.
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using linear-regression against experimental data that  characterizes the gross behavior of

the algorithm, in the style of Foster et. al. [Foster 1996]. Performance predictions are

made based on reasonable expectations of future technology and typical variations of

problem definition, e.g. increases in processor speed, number of processors, network

bandwidth, image set size, and image resolution.

2. Concurrent Algorithm

The concurrent algorithm decomposes the three-dimensional cube structure of a multi-

spectral image into sub-cubes, as shown in Figure 3, that can be operated on relatively

independently. Each sub-cube consists of a set of pixel vectors xij=[x1, x2, …, xn] similar

to the decompositions used in [Palmer et al. 1998]. The allocation of sub-cubes to

processors is managed through a variant of the manager/worker technique depicted in

Figure 4 [Chandy and Taylor 1992]. This strategy employs a sensor thread that represents

the interface to multi-spectral hardware, performs the above decomposition, and

distributes sub-cubes to a set of worker threads. Each worker performs relatively

independent components of the overall image transformation and associated color

mapping techniques. A manager thread coordinates the actions of the workers, gathers

partial results from them, assembles the final color composite image, and provides access

to display hardware. Although the results in this paper were produced from static multi-

spectral files, rather than sensor hardware, the structure of the algorithm can be operated

in real-time [Taylor 2000].
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Figure 3: Domain Decomposition.

Figure 4: Manager/Worker Communication Model



















=

nx

x

x

x
|
2

1

N=1

N=2

N=n

Original Image Cube

Sensor

Worker
       I

Worker
     n Color

Image

Sub-Cube
RGB

ManagerWorker
     II



10

The main abstract code of the algorithm is shown in Program 1 and is executed at every

processor on the network. For example, if there are 3, 8-way multiprocessors, the

program is executed 24 times. The sensor, manager, and workers are executed as

independent threads with a single thread per processor.

Program 1 Communication Structure.

Abstract code for the sensor is shown in Program 2. It repeatedly obtains multi-spectral

image cubes from the sensor (1), waits for an appropriate request for work from a worker

(2), decomposes the image cube to generate an unassigned sub-cube (3) and sends the

sub-cube to the requesting worker (4).

Program 2: Sensor Thread Operation

main() {
    mp = get_my_multiprocessor_id()
    if(mp == 0) {

numsubcubes = get_num_subcubes()
sensor(numsubcubes)
manager(numsubcubes)

    }
    foreach remaining available processor

worker()
}

sensor() {
    while(sensor device operating) {

cube = grab_cube() /* 1 */
    while(subcubes available) {

request = recv(aworker) /* 2 */
work = generate_subcube(cube) /* 3 */
send(aworker, work) /* 4 */

    }
    }
}
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Each worker thread executes the algorithm shown in Program 3 and maintains a set of

sub-cubes (1,4) to operate on. An initial request is sent to the sensor to obtain the first

sub-cube (2). After this initial request, the processing of each sub-cube is overlapped with

communication of the remaining the next sub-cube from the sensor (3). This represents

the primary communication step in the algorithm and corresponds to distributing 1/nth of

the image cube to each of n-multiprocessors.

Program 3: A Worker Thread

The spectral screening algorithm produces a set of unique spectra. Although each sub-

cube contributes to this set through an appropriate abstract operation (6), the set must be

accumulated across all sub-cubes. This accumulation is performed through

communication with the manager. Each worker sends a prospective subset of the spectra

to the manager (7) and overlaps this communication with computation of the next subset.

worker() {
    cubes = {} /* 1 */
    send(request,sensor) /* 2 */
    while(numsubcubes <= numcubes/numworkers) {

subcube = recv(sensor) /* 3 */
cubes = cubes U subcube /* 4 */
send(request,sensor) /* 5 */
ssubset = spectral_screening(subcube) /* 6 */
send(ssubset, manager) /* 7 */

    }
    sset = recv(manager) /* 8 */
    substats = statistics(sset) /* 9 */
    send(manager, substats) /* 10 */
    [A, m] = recv(manager) /* 11 */
    subcomponents = PCT(A, m, cubes) /* 12 */
    subimage = human_centered_mapping(subcomponents) /* 13 */
    send(subimage, manager) / * 14 */
}
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When all sub-cubes have been processed, the manger transmits the resulting unique set to

all workers (8). Typically, the amount of communication in this step is orders of

magnitude less than the size of an image cube.

When the spectral screening is completed globally, the algorithm proceeds to compute a

set of statistics (mean-vector and covariant-sum) that give a measure of the variation in

images at each spectra. Although, once again, the statistics can be largely computed on a

per sub-cube basis using an appropriate abstract operation (9), the manager is again

involved in assembling the statistics to form a transformation matrix A and mean-vector

m (10,11). The communication involved in this step is on the order of n2 where n is the

number of spectra, again typically significantly smaller than the size of the image cube.

With the matrix A and mean-vector m available, the PCT (12) and human-centered

mapping (13) can be computed on each sub-cube independently to produce a patch of the

final color image.  The patches are accumulated at the manager for display (14).  Thus,

the final communication is only m2, where m is the size of the image.

Program 4 shows the abstract code of the manager, which serves primarily to synchronize

and accumulate partial results from the workers.  It is given here for completeness,

although it involves no significant numerical technique other than the calculation of the

transformation matrix.  Note that the method by which a single point of synchronization

is typically avoided in a distributed algorithm is through replication and global

communication.  As will be seen later from the performance model, the organization of a
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large number of processors into a significantly smaller number of multiprocessors,

connected with Ethernet technology, does not make replication an attractive alternative.

We have explored this alternative and found that in practice, it is less efficient than the

more simple structure given here for practical problem sizes.

Program  4 A Manager Thread

Spectral Angle Classification is a technique that measures the similarity between the

spectral signatures of objects in a scene.  In a 2-band hyper-spectral space, the similarity

manager(numsubcubes) {
    sset = {}
    stats = [][]
    image = [][]
    foreach subcubes of numsubcubes {

ssubset = recv(aworker)
sset = sset U ssubset

    }
    foreach worker i

send(sset, i)
    foreach worker {

substats = recv(worker)
stats = merge(stats, substats)

    }
     [cov, m] = stats
    A = eigenvectors(cov)
    foreach worker i

send([A, m], i)
    foreach worker {

subimage = recv(worker)
image = merge(image, subimage)

    }
    display(image)
}
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between two signatures can be determined by calculating the angle between the two

associated pixel vectors X and Y as shown in Figure 5(a).  The spectral signatures can

then be separated from one another if there is a sufficient difference in their angles as

shown in Figure 5(b).

           (a)           (b)

Figure 5:  (a) Spectral angle for a two bands image. (b) Classifying spectral space.

Extending this concept from two bands to n-bands, the calculation of the spectral angle

can be performed by the following equation that operates on two n-dimensinal pixel

vectors.
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equation.  The unique signature set is initially empty.  Each pixel vector is compared to

all of the vectors in the unique set by calculating the associated spectral (2).  If all the

angles exceed the threshold (3), the pixel vector is added into a set (4); otherwise it is

discarded. On completion of the process, a unique set of spectral signatures is determined

in which the spectral angle between every pair of pixel vectors is greater than the

threshold, αthr.  This unique set is then used, instead of the entire collection of pixel

vectors in the hyper-spectral image, in the spectral de-correlation process.  By adding this

screening method, we are assured a variation that dominates numerically (backgound) in

the original hyper-spectral image, will not dominate the resulting image; small objects in

the scene will have an equal chance of being pushed into the foremost principal

components.

Principal Component Transform treats each source image as a matrix and forms the

associated covariance matrix, which characterizes variations in image contrast. The

covariance matrix is then used to form, through a linear transformation, a collection of

spectral_screening(subcube)
{
    S = {} /* 1*/
    for each vi in a subcube {

for all vj in S {
)/(cos),( 1 jijiji ••= −α /* 2 */

if(all (α(i, j)) > αthr ) /* 3 */
      S = S U {vi} /* 4 */

}
   }
}
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principal components that effectively summarize the variations across all spectra. The

output components carry enough spectral frequency information to reconstruct the

original multi-spectral images. The components are rank ordered by the magnitude of

their variances (eigenvalues); therefore, most of the spectral contrast is pushed forward to

the first few components. The linear transformation thereby permits identification of

information that might not be apparent in any single image, or simple linear combination

of images that are selected empirically.  The PCT algorithm can be divided into two parts

that calculate the transformation matrix A, and subsequently transform the data. Consider

the pixel vector of the form

The mean vector can be defined as

where  K is the number of pixels in an original image set.

The covariance matrix of the n-spectral band image can then be calculated as follows:

Because Cx is real and symmetric, finding a set of n orthonormal eigenvectors is always

possible [Noble 1969].  The transformation matrix, A can then be formed by lining the

sorted eigenvectors calculated from the covariance matrix in each row.  The fist row of
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matrix A is the eigenvector corresponding to the largest eigenvalue, and the last row is the

eigenvector corresponding to the smallest eigenvalue.  Program 6 shows the abstract code

for the PCT algorithm in which the multi-spectral image, I, is transformed into a set of

principal components, PC.

Program 6: Principal Component Transform

Human-Centered Color Mapping assigns the first three Principal Components, which

have the maximum variance, to a standard representation of the human color space and

statistics(sset)
{

m = 0;
for  all pixel i in sset

m = m + i;
m = m / k; // where k = number of vectors in sset
cov = 0;
for all pixel i in uset {

TT
iii mmIIC −= ;

cov = cov + Ci;
}
substats = [cov, m]

}

eigenvectors(stats)
{

eigvector, eigvalue  = find_eigvector(stats);
eigvector  =  sort(eigvector, eigvalue)
A = [eig1 | eig2 | … | eign]

}

PCT(A, m, cubes)
{

for all pixel vector Vi in cubes
PCi = A(Vi – m);

}
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subsequently converts this representation to RGB values than can be used to drive a color

display. A large number of color spaces have been proposed in the literature of color

vision [Boynton 1979].  In this paper, we choose to work with the

luminance/chrominance model, or YOZ model, favored by Peterson et al. 1993.  The

response of the three cones in the human visual system can be transformed into a

Luminance band (Y) and two color-opponent bands: red-green (O), and blue-yellow (Z).

The information bandwidth of the human color channels is unequal.  The spatial

frequency bandwidth of the Luminance channel is much greater than the color opponent

channels [Poirson and Wandell, 1993].  This suggest that mapping the first Principal

Component into the luminance channel and the second and third Principal Components

into chromatic channels of the visual system will provide an efficient utilization of the

human visual bandwidth.

The YOZ color space is derived from the standard chromacity coordinates termed XYZ,

developed by Commission Internationale de l’ Eclairage (CIE) in 1931 using the

following empirically derived transform given in Peterson et al. 1993:

The luminance channel Y is just the CIE Y-channel and the blue-yellow opponent

channel Z is just the CIE Z-channel.  The red-green opponent channel (O) is given by the

equation, O = 0.47X – 0.37Y – 0.10Z.


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To obtain the appropriate mapping from YOZ to RGB, we follow the work Boynton. The

color space-mapping matrix, k, is derived from the measured spectral power distribution

of the display (i.e. intensity at each wavelength) and an empirical color matching function

as follows [Boynton 1979]:

The color matching function T is an n-by-3 matrix where each column is determined by

having human observers match their color primaries to spectral test lights at different

wavelength.  Matrix P is a 3-by-n matrix representing the measured spectral power

distribution of the primaries. In our experiments, we have used the YOZ color matching

functions for matrix T and the spectral power distribution of a typical RGB monitor for

matrix P.  The normalization of matrix k is shown below:

Differential YOZ input values are used because a negative O value indicates green color.

The final equation for YOZ to RGB mapping can thus be stated as follows:

1][ −= PTk
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3. Predictive Model

Recall that the motivation in building a performance model is to assess the impact of

changes in technology and problem size associated with different applications, allowing

cost-performance tradeoffs to be assessed.  Many performance-modeling techniques have

been presented in the literature for analyzing the performance of concurrent algorithms.

Some of the most interesting include statistical, simulation, analytical, and benchmarking

models.  Each model has its own advantages and suits a specific type of application

[Fahringer 1996].  In our work we are primarily concerned with predicting the

performance scaling characteristics on a variety of architectures. We therefore choose to

analyze the Concurrent Spectral-Screening PCT algorithm by forming an analytical

model based on weighting factors that are calibrated experimentally [Foster 1996, Rieffel

1998].  This method uses a linear equation to describe the gross behavior of the algorithm

executed on a multi-processor.  It allows parallel speedup on a given machine to be

predicted and provides the ability to assess crucial concurrent performance bottlenecks.

It is also possible to estimate the number of processors needed to complete the task, given

some particular time restriction.

Speedup and Efficiency.  The basic notations used in performance measurement are

speedup (sp) and efficiency (e) [Pardalos 1992, Foster 1996].    Speedup is defined as the

ratio of the time required by the concurrent algorithm to complete the task using one

processor to the time required when P processors are used.  If P is the number of

processors, Ts is the time used to solve the problem sequentially, and To represents the

sum of the overhead of each processor, speedup can be defined as
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Concurrent Analytical Model. The total time for concurrent execution in each

processor, Tconc is the sum of computation time, communication costs and idle time in

each processor.

The average computation required in each processor, Tcomp is equal to the time used to

solve the problem sequentially, Ts, divided by number processors in the system, P.

idlecommcompconc TTTT ++=

P

T
T s

comp =
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Idle time occurs in only the fastest computers. The total execution time, Tt can then be

defined as the sum of computation and communication time of the slowest processor and

the time used to compute sequential steps in the algorithm, Tsq.

and the efficiency of the algorithm can thus be modeled as follows:

Communication Model. To a first order, communication costs can be divided into two

parts: the time used to transfer messages into the interconnection network, and the time

used for messages to travel through the network.  The former cost depends on the speed

of communication hardware and software of each processor.  The latter cost depends on

how processors are connected.  In our experiments, we are primarily interested in low-

cost, high-performance local area networks based on switched-Ethernet, 100BaseT and

Gigabit. The communication time Tcomm can be modeled as followed

where To is the message overhead and Tp is the transport time.

The message overhead includes communication latency and the time used for

synchronization.  The transport time includes the time used to format and transfer
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messages.  The transport time is the product of message size (in bytes) and network

throughput, Tw (transport time per byte).

In our experiments, modern high-performance network switches were used to connect

multiprocessors. With this technology, several multiprocessors can send and receive

messages without compromising the network throughput.  Thus, assuming the total data

of size N is to be divided evenly among P Processors, the communication can be

described in the following equation:

Computation Model.  To develop the computation model, we need to be able to

determine the computational complexity of each step in a concurrent algorithm.  The

complexity of a step is taken to be the time used to complete the step as a function of the

problem size [Cormen 1990] and is expressed using weighting factors C1 through C8 that

represent the relative importance of each step.  Recall that the computation time, Tcomp is

defined as

In the concurrent algorithm, the original hyper- or multi-spectral image cube is

decomposed into a set of sub-cubes where each sub-cube is distributed to a worker. The

sequential time, Ts, can then be, defined as follows:

p

N
TTT wocomm +=

P

T
T s

comp =
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Where k is the number of sub-cubes and Tb is the time use to compute one sub-cube.

Let m be width and height of each sub-cube in the hyper-spectral image, n be the number

of spectral band, s be the number of unique spectra per sub-cube, and p be the number of

processors. Considering each component of the algorithm in turn:

1. Spectral Screening: The computation associated with this step involves a calculation

taken over all pixel vectors concurrently, m2 at each worker. Each computation (the

arccosine of dotproduct of pixel vectors pair) involves the calculation between a new

vector (of size n) and all vectors in the unique set (s).  Thus the time required, T1, is:

2. Merge Unique Sets: This step is computed sequentially at the manager.  The

computation involves an angle calculation associated with each pixel vector (of size

n) in p-1 sets, where each set contains s pixel vectors.  The time required, T2, is:

3. Mean vector: This step involves taking an average of the pixel values in a unique

spectral set at the manager.  The number of operations is related to the number of

unique spectra (s) and the number of frame (n).  The time required, T3, is:

 snCT 33 =

snmCT 2
11 =

snpCT )1(22 −=

bs kTT =



25

4. Covariance sum: The computation associated with the covariance sum is performed

over the pixels in a unique set of size s at the worker.   Each computation on a pixel

involves matrix multiplication (complexity of n2).  The time required, T4, is:

snCT 2
44 =

5. Covariance Matrix: This computation involves forming the matrix sum of the

matrices returned from the previous steps at the manager.  There are p matrices of

size nxn. The time required, T5, is:

pnCT 2
55 =

6. Transformation matrix: The time used in this step is dominated by the time used to

calculate eigenvectors at the manager. The time required, T6, is:

3
66 nCT =

7. Transformation of the Data: The computation in this step is performed over the

pixels in an image of size m2.  Each computation on a pixel involves matrix

multiplication with the complexity of n2, at the worker.  The time required, T7, is:

22
77 mnCT =

8. Color mapping: This step of the algorithm involves linear transformation of the first

three principal components in achromatic, red-green, and blue-yellow opponency at

the worker. The time required, T8, is directly proportional to the size of sub-cube:

The total time to compute one sub-cube, Tb, is thus T1 + T3 + T4 + T7 + T8. The total

time for sequential computation Tsq, is T2 + T5 + T6.  The total execution time for an n-

band image cube of size mxmxp, can then be defined as:

2
88 mCT =
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The performance model can thus be described as:

The parallel efficiency can also be predicted with:

Model parameters: The analytical model developed in the previous section describes the

performance of the concurrent algorithm in terms of the number of spectra, the image

size, and network bandwidth.  To calibrate the model and assess the relative importance

of each phase of the algorithm, it is necessary to assign values to the weighting factors C1

through C8. In addition, we add two values, To to represent the synchronization overhead,

and C9 to represent any additional computation required to format data for a

communication device.
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In our experiment, two different network technologies are used: 100BaseT and gigabit

networking. On the gigabit network, the time used to transfer one byte through the

network Tw was measured at 0.002 microsecond.  On a 100 baseT network the Tw was

measured at 0.008 microsecond.

A naïve method to calibrate C1 through C8, C9, and To is to run ten experiments, obtain

the total time for each in terms of known values for n, m s, k, p, and Tw, and solve the

resulting equations simultaneously. Unfortunately, this approach was found to be

inadequate because the behavior cannot be accurately represented by a linear

combination of the variables.  Instead, we utilize linear regression [Hogg 1989] and apply

the least-square fitting method with the data acquired from experiments to designate

values for the weighting factors.  The least-square tries to fit a curve as closely as

possible to a set of points on a plane.  Our model is a linear equation of the form,

nnxaxaxaay ++++= ...22110 .   To apply the least square fitting method, the following

equation is used:

yMMMv TT 1)( −=
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and where m=9 represents the number of weighting factors and n=25 is the number of

experiments executed to resolve these factors.

The associated experiments were performed on three Intel multiprocessors, each running

Windows NT.  Each multiprocessor has 8 processors running at 550Mhz each.  The

experiments varied the size of the source image, the number of processors, the number of

spectral bands, the network connection, and the granularity of the decomposition. After

approximately 25 experiments no significant variations in the value of the weighting

factors were obtained and the final values are listed below.

To  = 8.8756, C1  = 7.2833e-009, C2  = -6.2733e-005, C3  = -5.2628e-007,

C4  = 4.1329e-008, C5  = -4.8906e-005, C6  = 1.6035e-005, C7  = -1.6350e-005

C8  = 8.0959e-006, C9  = 15.8635

4. Performance Result

In this section we study the algorithms scaling properties for all of the primary variations

of interest, comparing measured and predicted performance results. The results are a

small but representative sampling of a much more broad range of experiments that we

have conducted to validate the model.

Variations in Problem Size.  There are two application specific properties associated

with problem size: the number of spectra n and the image resolution m. The performance

of the concurrent algorithm was measured on the gigabit network with 24 processors
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arranged in three multiprocessors, as described in the previous section.  Figures 6a and 6b

plot the measured and predicted execution time as a function of the number of processor

p, where possible, experiments were based on the HYDICE data set, with 320x1280

resolution and up to 210 spectra. Each plot shows the impact of variations in the number

of spectra, image resolution is varied between the plots.

Figure 6: Varying Problem Size
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For large problems, e.g. 2048x2048x420, the algorithm performs within 20% of linear

speedup using 64 processors, the efficiency drops below 0.75 at 96 processors, and below

0.9 at 48 processors. For medium sized problems, e.g. 320x1280x210 spectra, the

algorithm performs within 20% of linear at 16 processors, the efficiency drops below

0.75 at 16 processors, and below 0.9 at 8 processors. For small problem sizes, e.g.

320x1280x27, the algorithm performs within 15% of linear speedup using 8 processors,

the efficiency drops below 0.75 at 8 processors, and below 0.9 at 4 processors.

In general, the performance drop from linear speedup decreases as the problem size

increases.  The dominant issue is problem size. For small problems, there is not sufficient

computation to gain an impact from a large number of processors – there is simply not

enough work to keep the processors busy. As a result, the performance gain begins to

drop off as the number of processors increase.  Note that Step 6 of the algorithm which

involves sequential code to compute the eigenvectors of the covariance matrix, is not a

significant factor in overall performance (5%). Hence, there were no extensive efforts to

optimize this step through concurrent execution. The complexity of the eigenvector

calculation is related to the number of spectra n used in the problem.  Although the

eigenvector algorithm has a complexity of O(n3), the time used does not dominant with

typical problem sizes. This is because the performance of Steps 1, 3, 4, and 7 are also

related to the number of spectral bands; these steps dominate Step 6 as the number of

spectra increases.
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At small problem sizes, since there is not a large enough computation to warrant large

numbers of processors, an alternative approach to concurrency would be more beneficial

for real-time applications: to multi-process in time rather than space. This alternative is

the current focus of our research efforts in extending the work in this paper.

The experiments demonstrate that the accuracy of the predictive model is within 10% for

large problem sizes.  For a small problem sizes the predicted time can be as much as 25%

off of the measured time, but the general trend is correct.  The error in the model is likely

to be an artifact of the regression method coupled with additional operations, such as

buffer management, that are not yet accurately reflected in the model.

Variations in Processor Speed.  Figure 7 plots the measured and predicted performance

of the algorithm for the medium sized HYDICE data set with 275MHz, 550MHz

processors and 1.1GHz processors.  With a small number of processors, the performance

gained is almost double when the processor speed is doubled.  When a large number of

processors are used, the performance gain is reduced from linear by 10% at 128

processors.  This is due to the computation/communication ratio.  The communication

time was measured at 5% of the computation time at 1 processor.  The overhead increases

to 15% when 128 processors are used.
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Figure 7: Varying Processor Speed
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Figure 8: Varying Network Performance
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dominates.  With a problem size of 320x1280 at 1 processor, the standard deviation is 7%

off of the mean.  With 24 processors, the standard deviation calculated at 3% off of the

mean.  This shows that the granularity of decomposition has more effect when a smaller

number of processors are used.  In this experiment, the performance difference is up to

4% when the decomposition was more than n=48 sub-cubes.  This indicates that, for this

problem size, using more than 24 computers will not buy substantial performance

improvement.   The general effect is more pronounced in larger image sets.  With the

problem size of 2048x2048 at 1 processor the standard deviation is 8% off of the mean

and 7% at 24 processors.  This indicates that with this problem size, the image cube can

be further divided into finer granularity.

Figure 9: Varying Granularity Decomposition
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a system to be designed that trades off system cost for performance on a particular

application. Using the model a wide range of practical design questions can be answered,

for example:

•  For a given fixed cost, what performance can be expected from the algorithm?

•  How fast will the algorithm operate if the processor speed doubles?

•  What network speed will realize my cost – performance objectives?

•  What granularity will maximize the performance on a particular system

configuration?

5. Conclusion

This paper has described a Concurrent spectral-screening PCT algorithm and its

associated analytical model for performance prediction. The algorithm has been applied

to a typical remote sensing application for camouflage detection.  The analytical model

was validated against a large set of experimental data.  Given a problem size and a time

constraint, the model can be used to estimate the number of processors needed to achieve

the required performance.  In the near future, COTS-multiprocessors with 16 processors

or more, where each processor runs at 1000 MHz, will be available.   Using a network of

8 of these machines (128 processors), the remote sensing problem size of 210 frames of

1024 by 1024 pixels can be solved 414.05 seconds.  We are currently developing a real-

time multi-spectral camera system for use in low-altitude Ariel photography.  This

system provides a stream in 12 spectra.  With the emerging technology we could expect

one 16-ways multiprocessors machine to process an image cube with 12 frames in



36

approximately 0.1 sec at 1024x1024 resolution.  We expect a network of such machines

to enable real-time image fusion for surveillance applications.
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