
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports College of Engineering and Computer Science

9-1991

A Comparison of Load Balancing Algorithms for
Parallel Computations
N. Mansouri
Syracuse University, Department of Engineering and Computer Science, namansou@ecs.syr.edu

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: http://surface.syr.edu/eecs_techreports

Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Mansouri, N. and Fox, Geoffrey C., "A Comparison of Load Balancing Algorithms for Parallel Computations" (1991). Electrical
Engineering and Computer Science Technical Reports. Paper 129.
http://surface.syr.edu/eecs_techreports/129

SU-CIS-91-47

A Comparison of Load Balancing
Algorithms for Parallel Computations

Nashat Mansour and Geoffrey C. Fox

September, 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

A Comparison of Load Balancing Algorithms for Parallel Computations

Abstract

N as hat Mansour

Computer & Information Sc.
Syracuse University

Geoffrey C. Fox

Northeast Parallel Architectures Ctr.
Syracuse University

Three physical optimization methods are considered in this paper for load balancing parallel com­
putations. These are simulated annealing, genetic algorithms, and neural networks. Some design
choices and the inclusion of additional steps lead to new versions of the algorithms with different
solution qualities and execution times. The performances of these versions are critically evaluated
and compared for test cases with different topologies and sizes. Orthogonal recursive coordinate
bisection is also included in the comparison as a typical simple deterministic method. Simulation
results show that the algorithms have diverse properties. Hence, different algorithms can be applied
to different problems and requirements. For example, the annealing and genetic algorithms pro­
duce better solutions and do not show a bias towards particular problem structures. But, they are
slower than the neural network and recursive bisection. Preprocessing graph contraction is one of
the additional steps suggested for the physical methods. It produces a significant reduction in exe­
cution time, which is necessary for their applicability to large-scale problems.

Keywords: Data allocation, data partitioning, genetic algorithms, load balancing, loosely synchro­
nous algorithms, neural networks, physical optimization methods, recursive bisection, simulated
annealing, task allocation.

2

1. Introduction

Efficient utilization of the computational power of distributed-memory parallel computers is highly
dependent on how the composite calculation-communication workload is distributed among the
processors. An optimal load distribution depends on the application, the algorithm and the ma­
chine. In this work we concentrate on loosely synchronous algorithms [5] for MIMD distributed­
memory parallel computers, henceforth referred to as multicomputers, such as hypercubes. It
should be emphasized, however, that the methods described in this paper are general and not re­
stricted to loosely synchronous computations. The programming model is assumed to be single­
program-multiple-data, where parallelism is achieved by partitioning the underlying data set of the
problem and allocating the disjoint subproblems to the processors. A subproblem determines the
calculation load of a processor for a given algorithm. Further, the distribution of data usually ne­
cessitates interprocessor communication to exchange information. Optimal data distribution corre­
sponds to balancing the calculation load among the processors and minimizing/balancing
communication. Both requirements about calculation and communication constitute what is hence­
forth referred to as the load balancing problem, which is defined more clearly in Section 2.

The load balancing problem is NP-complete, and several heuristic methods have been proposed for
finding good sub-optimal solutions. Deterministic heuristics have been popular because of their
speed and predictable execution time. Examples are recursive bisection, mincut-based heuristics,
labeling algorithms, and scattered decomposition [1, 2, 3, 8, 15, 16, 17]. Such methods seem to fa­
vor certain problem configurations. On the other hand, physical computation has been advocated
for describing, simulating, and solving intractable problems [7]. It uses methods borrowed or de­
rived from physical and natural sciences. These methods usually include probabilistic components.
They yield near-optimal or good sub-optimal solutions and have more general applicability than
deterministic heuristics. However, they are usually slower. Three physical optimization methods
have been adapted to the load balancing problem. Simulated annealing [12], from statistical phys­
ics, has been applied to several cases [4, 5], and continues to be of interest because of the design
choices it involves. Neural networks [11], from neurobiology and using physics, have been pro­
posed and applied to illustrative load balancing examples [6]. Recently, a genetic algorithm [9, 10],
from population biology, has been adapted to load balancing and has been applied to a limited num­
ber of test cases [13].

In this work, the three physical optimization algorithms are reviewed and new versions are de­
scribed. The new versions are based on the following modifications: making some parameters
adaptive, modifying some steps to reduce execution time or improve robustness, employing differ­
ent objective functions, adding postprocessing tuning steps, using hybrid techniques, and including
preprocessing graph contraction. The goal of these modifications is to explore the applicability of
the resultant versions to realistic examples and their suitability for problems with different require­
ments.

3

In this paper, the performances of the different versions of the physical optimization algorithms are
evaluated and compared for test cases of diverse properties. To broaden the scope of evaluation,
the results of a recursive bisection method for the most realistic test case are included. The paper
is organized as follows. The next section defines the model of computation and the relevant objec­
tive functions. Sections 3 through 7 describe the four methods and their modifications. Section 8
presents experimental results. Section 9 includes evaluations and comparisons. Section 10 presents
conclusions.

2. Objective Functions

The computational model considered in this paper is that of loosely synchronous parallel algo­
rithms, which are applicable to many problems in science and engineering [5]. In this model, the

processors of the multicomputer iterate through a sequence of computation-communication steps.
They independently execute the same code on different subproblems. But in every iteration, the
processors communicate boundary information before proceeding with further computations. The
total parallel execution time is, therefore, determined by the slowest processor and is given by

(1)

where W(p) is the calculation load of processor p and C(p,q) is its communication requirements
with processor q. Equation (1) is the exact objective function that is required to be minimized for
load balancing loosely synchronous computations. This function is not smooth and is computation­
ally expensive. To bypass these drawbacks, an approximate objective function can be used, which
includes the sum of the mean square deviation of the calculation loads of the processors and the
total amount of communication costs. It is given by

OF_APPR = 'YLW2 (p) + p RL,L,C(p,q), (2)
p p q

where R is a machine-dependent time ratio of one-word of communication to one floating-point
calculation; C(p,q) is the Hamming distance between processors p and q multiplied by the number
of data elements to be exchanged; 'Y and~ are scaling factors expressing the importance of the cal­

culation term and the communication term, respectively. OF_ APPR is smoother than OF_ EXACI'

and is, therefore, more suitable for optimization methods. More importantly, the change in OF _AP­
PR due to a change in data distribution is much less expensive to compute than the corresponding

change in OF _EXACI' [13]. In this work. the minimization of OF _APPR is the goal ofmostofthe

versions of the physical optimization methods. However, all solutions produced, including those
of the recursive bisection method, are evaluated according to OF_ EXACI'. The discrepancy be­
tween one expression guiding the operation of the methods and another evaluating their results has

motivated the introduction of versions of the algorithms that utilize both expressions, as discussed
below.

4

3. Genetic Algorithms

In genetic algorithms a population of possible solutions (individuals) evolve over successive gen­
erations, starting from random data distributions. In every generation, individuals are selected for
reproduction according to their fitness, genetic operators are applied to the selected mates, and off­
springs replace their parents. In this process, fitness is gradually increased and near-optimal solu­
tions evolve by the propagation and the combination of high-performance fit building blocks [9,
10].

An outline of a genetic algorithm (GA) for load balancing [13] is given in Figure 1. The encoding
of a data distribution instance (individual) is given by a string of integers, where an integer refers
to a processor and its position in the string represents the allocated data element. The fitness of an
individual is the reciprocal of the value of the objective function. The reproduction scheme is based
on ranking, where the individuals are sorted by their fitness values and are assigned a number of
reproduction trials according to a predetermined scale of values. After ranking, pairs of parents are
randomly chosen from the list of reproduction trials. The genetic operators employed in the GA are
two-point crossover, two-phase mutation, and inversion. The operator rates are made adaptive to
the variation in the average degree of clustering of the data elements in the individuals, in a way to

counteract premature convergence. The genetic algorithm is hybridized by including a problem­
specific hill-climbing procedure that directs the genetic search to the more profitable peaks in the
adaptive topography. The procedure allows the transfer of boundary data elements from overload­
ed to underloaded processors in a data distribution instance. That is, hill-climbing only allows the
incremental changes that increase the fitness of an individual. In the later phase of the evolution,
the population loses diversity and approaches convergence. In this phase, standard random muta­
tion is replaced with boundary mutation, inversion is abandoned, and, more importantly, the
weights in OF_ APPR are gradually varied for fine-tuning the converging structures. Further, some
copies of identical individuals are gradually removed, thus reducing the population size. This phase
is referred to as the tuning phase. The complexity of GA is of the order of (DEG*P*POP*GEN),
where DEG is the average vertex degree in the problem's computation graph; Pis the size of this
graph (i.e. problem size); POP is the population size; GENis the number of generations. In our
implementation, POP has been chosen to be 0.2*P to 0.6*P, with the larger population correspond­
ing to the larger multicomputer.

Two versions ofGA are explored in this paper. Version GAl, as described previously [13], employs
OF _APPR in both fitness evaluation and hill-climbing. It also uses problem-dependent user-de­
fined parameters to invoke the tuning stage. A second version, GA2, uses OF __EXACf for fitness
and OF _APPR for hill-climbing. It also includes nearly automatic invocation, based on OF _EX­
ACf, of the last stage which increases robustness at the expense of a small fraction of solution
quality and/or execution time for some problems.

5

Random generation of initial population, size POP;
Evaluate fitness of individuals;
repeat

Set 1 , J3 , operator rates;
Rank individuals & allocate reproduction trials;
fori = 1 to POP step 2

Randomly select 2 parents from list of reproduction trials;
Apply crossover, mutation, inversion;
Hill-climbing by offsprings;

endfor
Evaluate fitness of offsprings;
Preserve the fittest-so-far;

until (convergence)
Solution = Fittest.

Figure 1: A genetic algorithm for load balancing.

4. Simulated Annealing Algorithms

An outline of a Simulated Annealing Algorithm (SAA) for load balancing is given in Figure 2. The

initial data distribution is random and is associated with a high temperature and a high energy state.
The energy of the configuration is given by the objective function used and the goal of SAA is to

minimize this energy. The configuration is cooled down according to a schedule. At each temper­

ature, a number of perturbations to the configuration are performed until thermal equilibrium. A
perturbation is accomplished by a random transfer of a randomly chosen data element. The pertur­

bation that leads to lower or identical objective function value (downhill move), is always accept­

ed; that which increases it (uphill move) is allowed only with a temperature-dependent probability.

Thermal equilibrium is reached when a predetermined maximum number of perturbations has been

attempted or accepted. The maximum number of attempts allowed is the larger of the size of the

multicomputer and the average degree in the problem's computation graph; the maximum number

of accepted moves is the smaller of the two. These choices secure a sufficient number of moves for

thermal equilibrium while not spending too much time at high temperatures. The cooling schedule

determines the next temperature as a fraction, k, of the present one. In this implementation, this
fraction varies within the range 0.91 to 0.99 in such a way to speed up cooling whenever possible

and to slow it down whenever necessary. k increases if the number of accepted moves decreases,

and vice versa. The initial high temperature is that which makes the probability of accepting uphill
moves equal to 0.8. The freezing temperature corresponds to a small probability of 2-30 for the

minimum possible increase in the objective function. The complexity of the SAA algorithm is of

the order of (DEG*max{DEG,N}*P*A), where A is the number of annealing steps; N is the num­
ber of multicomputer processors; DEG and P are as defined before. For adaptive schedules, A is

problem-dependent, although of the order of log(initial T I freezing T).

6

Two versions of SAA are explored below. The first version, SAl, uses OF _APPR for the energy
until freezing. The second version, SA2, is identical to SAl until the number of accepted perturba­
tions is small. Then, at low temperatures, OF _EXACI' is used for the energy. Also, random pertur­
bation is replaced by neighbor perturbation. That is, only the reallocation of boundary data

elements to neighboring processors is attempted, so that time is not wasted in random reallocations.
The computation of OF _EXACI' makes SA2 much slower than SAl.

Determine initial temp. T(O);
Initial configuration = Random data allocation;
!*Annealing- SAl and SA2 *I
while (T> THRESHOLD I and #accepts>THRESHOW2) do

T= T(i);
repeat

Perturb(configuration);
E= OF_APPR;
if (dE < = 0) then Accept; Update configuration;
else rnd =random number (0,1);

if (rnd < exp(-dE IT) then Accept and Update;
else Reject;

until (Equilibrium).·
Determine k;
T(i+l) = k * T(i).·t* cooling schedule *I

end-while
!* Annealing at low temperatures - SA2 only *!
repeat

Anneal with Neighbor-Perturb(configuration) & OF_ EXACI' forE;
until (freezing or convergence)

Figure 2: A simulated annealing algorithm for load balancing.

5. Bold Neural Network Algorithms

The Bold Neural Network (BNN) [6] is based on Hopfield and Tank's network [11]. It is built from
P* lg2N neurons, where P and N are the sizes of the problem domain and the multicomputer, re­

spectively. Each neuron has a neural variable, v(e,i,t) = 0 or 1, associated with it. The neuron's label
(e, i) corresponds to data element e and bit i of the node label in the multicomputer (hypercube).

Note that the label of a hypercube node is given by I. (v (i) · i) , where the summation is over i
= 0 to (lg2N-l). The neural variables represent the amount of local information about the solution
at time t. The network starts with random neural values and converges to the fixed point, where the
solution is given by the global map of the converged neural values in the whole network. The BNN
repeats this procedure lg2N times, each time determining one bit i in the network and, hence, the

7

subcube to which each data element belongs. That is, each iteration corresponds to a bisection of
the subproblems from the preceding iteration. After the last iteration, the problem will be parti­
tioned into N subproblems. It is noteworthy that the neural representation used for BNN provides
a natural way for removing ambiguities, such as placing the same element in two subdomains.
Hence, it dispenses with the redundant synaptic connections that would have been required to en­

force the problem constraints.

The fixed point of the network is associated with the minimum of the enetgy, OF _APPR. To deter­
mine the network equations, the neural variables are replaced by spin variables, s(e,i,t) = -1 or +1,
and the energy expression is rewritten in terms of spin variables. Then, a standard mean field ap­
proximation technique from physics is used to derive the BNN formula [6]

s(e,i,t+l) =tanh {-a s(e,i,t) + f3L, C(s,s')- D'Y L,s(e',i,t)}, (3)
s' i-1 e'

where a is a scaling factor; D is the size of the current subproblem (to be further bisected) to which
data element e belongs; e' in the third term refers to elements only in the current subproblem. The
BNN formula can be interpreted in the light of magnetic properties of materials. At a critical tem­
perature (Curie point), spontaneous magnetization domains of nearly-equal number of spins are
formed in solids in such a way that spins within each domain are lined up, but have opposite direc­
tion to those in the other domain. In equation (3), the second term can be interpreted as the ferro­
magnetic interaction that aligns the neighboring spins. The third term can be interpreted as the
long-range paramagnetic force responsible for the global up/down spin balance. The first term is
inserted in the BNN equation as a noise term that tries to flip the current spin and, thus, helps the
system avoid local minima. The scaling factors have the following effects. a determines how sta­
ble a solution can be after a number of iterations, J3 determines the speed of the formation of the
domain structure, and y controls the spin balance in the configuration. In our implementation,

a= J3= 2 and y is gradually increased from 2 to 20 for every bisection level. J3 plays the role of
inverse temperature, and its value is chosen to ensure that the system is near the critical point, as
explained before. With these values, it has been shown that the number of iterations required for
the network convergence is a small number times the square root of the problem size [6].

The BNN algorithm is summarized in Figure 3. Its complexity is of the order of (DEG*(P **3/

2)* I g 2 N). This algorithm is henceforth called NN 1. NN2 is a second version which includes a local
optimization step for adjusting the boundaries of the data distribution produced by NNl. In this
step, boundary data elements are transferred to neighboring processors only if OF _EXACf de­
creases. In most cases, the execution time of NN1 is much smaller than that of NN2. However,
NN2 can, sometimes, improve the quality of NN1 's solutions significantly and is included here for
comparison with the genetic and annealing algorithms.

8

fori= 0 to (lg2N -1) do
Generate random spins s(e,i,t) over whole domain;
repeat

Determine y;
for all spins in the domain

pick a spin randomly;
Compute s(e,i,t+l); I* equation (3) *I

end-for
until (convergence)
Determine bit i in the neurons;

end-for

Figure 3: Bold neural network algorithm for load balancing.

6. Recursive Bisection

The bisection method considered here is orthogonal recursive coordinate bisection (ORCB) [16].
It is simpler than the physical methods and is included in the comparison to give some indication
of their performance.

ORCB's operation is deterministic and not guided by an objective function. Instead, it utilizes the
physical coordinates of the data elements to recursively bisect a problem into two subproblems
with equal sizes. In each bisection step, a direction (x or y) is chosen as a separator and directions
alternate in successive steps. Data elements are sorted by coordinates in the selected separator di­
rection and each half of the elements is assigned to a subproblem. The recursive process continues
until the number of subproblems equals the number of processors in the multicomputer. Then, the
resultant subproblems are mapped to the processors. For mapping, we use a simulated annealing
algorithm that minimizes OF _EXACf. The complexity of the ORCB is of the order of
P*lg2N(lg2P- lg2N).

7. Versions Involving Hybrids and Preprocessing

Two versions of the physical optimization methods are described in this section. Both aim for re­
ducing the execution time, especially of GA and SA. The objective of studying these versions is to
further explore the practical applicability of these load balancing methods.

The first version is based on two observations. The first observation is that methods such as NNl
or ORCB yield solutions of lower quality than those of SA and GA, but are considerably faster.
The second observation is that SA and GA take longer time to evolve solutions of the same quality
as those of NNl. Therefore, hybrid methods which start with NNl, or other methods with similar
speed, and continue with GA or SA can be faster than pure GA or SA. In this work NNl-GA and
NNl-SA are explored. SA picks up at a low temperature which gives uphill moves with probability

9

15%. GA creates its initial population by randomizing the boundary regions of the solution provid­
edbyNNl.

The second version utilizes a graph contraction step prior to load balancing. In this preprocessing
step, edges in the problem's computation graph are contracted and vertices are merged together to
form a multigraph whose super-vertices are weighted by the sum of the merged data elements and
whose edges are weighted by the sum of the communication requirements. The level of contraction

can be determined such that the size of the resultant multigraph is K times the size of the multi­
computer. Following the allocation of the contracted multigraph to the processors, the original
problem graph can be restored and more SA or GA iterations can be carried out for improving the
quality of the solution. Contraction can also speed up BNN in the same way, although K cannot be
small as will be seen below. Methods involving contraction are henceforth referred to as CONT­
M, where M is a load balancing method.

Graph contraction, with parameter K, leads to a great reduction in the search space of data distri­
bution from N**P to N**(K*N), where K*N is the size of the contracted graph and can be consid­
erably smaller than the original size, P. The assignment of the contracted graph to the processors
becomes a fast step. Subsequent SA iterations on the restored original graph, therefore, start with
a reasonable solution at a low temperature. For GA's, the smaller contracted graph allows a smaller
population size, POP, which can be kept the same in the subsequent generations after the restora­
tion of the original graph.

Graph contraction itself is not of concern here. It can be done by any fast procedure. For example,
at each contraction level, edges can be selected randomly and the two vertices at both ends are then
merged. In our simulations, NN1 is used for contraction.

8. Simulation Results

The performance of the load balancing algorithms is presented in this section. Test cases of differ­
ent geometric shapes, dimensions, sizes and granularities are employed for hypercube multicom­
puters. The performance measures are the hypercube's efficiency and execution time. Efficiency is
defined as the ratio of the sequential time to the product of the parallel time, OF_ EXACI', and the
hypercube size, N.

The test cases used are shown in Figure 4. GRID 1 and GRID2 yield computation graphs with a
typical vertex degree of 4. GRID 1 is uniform with irregular geometry. GRID2 has large variation
in the density of its points. FEM 1 and FEM2 are finite-element meshes with vertex degrees ranging
from 8 to 12. FEM1 is 2-dimensional and nonuniform. FEM2 is 3-dimensional. FEM3 is the most
realistic of the five examples; it represents a part of an airplane. It is 3-dimensional with typical
vertex degree 16. We have concentrated on FEM3 and GRID 1 because of their interesting and dis­
tinct properties.

10

Tables 1 through 5 show results for the algorithms described above. Each result is the average of
ten runs. Each entry in the best efficiency column is the best result obtained from all runs carried
out. The time given is for a SPARC 1 + workstation. For clarity, the efficiency figures are shown as

percentages of the best efficiency which itself is kept as an absolute number. Since the optimum is

not known, the best efficiency column serves as an indicator of how good the individual average

figures are. To further illustrate the performance of the physical methods and to broaden the scope

of comparison, Table 6 presents results for other examples. Each result in Table 6 is the average of

five runs. ORCB 's results are given only for FEM3 and GRID 1 whose coordinates were available.

The ORCB time given covers only the partitioning step. The time for the second step is not includ­

ed because the annealing algorithm was optimized for mapping quality and not for time.

9. Discussion

This section starts with a discussion of the individual Tables, 1 to 6, leading into overall evaluations
of the results. The measures considered for assessing and comparing the performance of the algo­

rithms are solution quality (i.e. hypercube efficiency) and execution time. In addition, bias, sensi­

tivity to design parameters, and parallelizability are qualitatively discussed in this section.

Table 1 shows the results of the versions of the physical methods that use the approximate objective

function, OF _APPR. Table 2 shows the results of the versions that use OF _EXACT explicitly in

their second phase (SA2 and NN2) or only partially (GA2). The results of ORCB are also included.

From the two tables, the following observations can be made. When OF _APPR only is used, GAl

yields the best solutions, but at a high cost in terms of execution time. For GRIDl, all the solutions
are good. For the more interesting test case, FEM3, the quality of the solutions of the physical

methods is substantially better than that of ORCB. Nevertheless, the pronounced difference be­

tween the solutions of GA 1, SA 1 and NN 1 themselves warrants the exploration of SA2 and NN2.

Table 2 shows a clear improvement in the efficiency values with a substantial increase in time for

SA2 and NN2. GA2 is more favorable than GAl. Due to its higher sensitivity to design parameters,

GAl is not pursued further. For FEM3, SA2 yields the best efficiency and is the slowest NN2 pro­
duces smaller efficiency values than those of SA2 and GA2, but is the fastest of the three. It should

be emphasized here that the difference in solution quality and execution time of SA2 and GA2 for

load balancing loosely-synchronous computations is mostly a result of the way OF _EXACT is

used, explicitly by SA2 and only partially by GA2. This difference is not sufficient to evaluate the

basic methods themselves for load balancing other classes of computations. However, the differ­

ence in the results given in Tables 1 and 2 highlights the "importance of the formulation of the ob­
jective function for both solution quality and time.

The long time taken, especially by GA2 and SA2 in Table 2, justifies the exploration of the other
versions, as in Tables 3,4 and 5. Table 3 gives the results for the hybrid methods, which start with

11

NNl and continue with SAl, SA2, or GA2. It can be seen that starting from partial information

about the solution leads to a reduction in time for SAl and SA2 without degrading the final solu­

tion. The reduction in GA2 's time is more pronounced, at a small price in terms of solution quality.
In comparison with Table2, SA2 is still the slowest, with the best efficiency; the quality of NN 1-

GA2 's solutions is only a little better than that of NN2 while still being slower. The ability of SA2

and GA2 to start from partial information about the solution is, nevertheless, an advantage over ab
initio methods such as NN2 or ORCB. However, the times taken by NN1-SA2 and NN1-GA2 are

still long and their decrease, as illustrated next, is of interest.

Tables 4 and 5 show results based on graph contraction whose time is assumed to be relatively
small. These tables show a remarkable reduction in time for all algorithms, the reduction for GA2
and SA 1 being the greatest. Table 4 includes results for different values of K, which is the ratio of
the size of the contracted graph to the number of processors. The efficiency values for CONT-GA2,

CONT-SA2 and CONT-SAl are consistent with those in Table 2 and K can be as small as 2, leading

to the greatest decrease in time without degrading the solution quality. However, for lower quality
contraction, we suspect that K should be 4 or greater. For CONT-NNl and CONT-NN2, K should

be greater than or equal to 16 to maintain reasonable efficiency values. In this case, K should be

greater because NNl only allocates the contracted graph and does not share the flexibility of oper­
ating on the restored original graph. CONT-SA2 still yields the best efficiency values followed by

GA2, but the time difference has become more pronounced in favor of CONT-GA2. Further, unlike

the case of the uncontracted graph, CONT-SAl is, for most cases, comparable to CONT-NN2 in

terms of time and efficiency values.

Table 6 includes results for other examples, with K=16 for CONT-NN2 and K=2 for CONT-SAl,
CONT-SA2 and CONT-GA2. These results clearly support the assessments made above, based on

Tables 2, 4 and 5. In the remaining paragraphs, overall evaluations are presented.

The solutions evolved by GA2, SA2 and NN2 are good sub-optimal solutions. The results for the

various topologies and sizes indicate that the annealing and genetic algorithms are not biased to­

wards any particular problem topology. Recursive coordinate bisection, as expected, favors 2-di­

mensional uniform problems. The neural network seems to perform better for 2-dimensional

uniform geometrical shapes, such as GRID 1, than for 3-dimensional irregular structures, such as

FEM2.

The annealing and genetic algorithms share the property of unpredictable convergence and, thus,

execution time. Nevertheless, their execution times increase with the size of the problem and the

multicomputer. The complexity expressions, mentioned above, serve only as indicators of the fac­

tors that determine a loose bound for the execution time. Although the bold neural network in­
volves a probabilistic component, it has deterministic convergence.

12

The sensitivity of the physical methods to their design parameters is greatly reduced by making
some important parameters adaptive. These parameters are the cooling schedule in SAA, the oper­
ator frequencies in GA, andy in BNN. In this work, they vary within a range of commonly accept­
able values. BNN is the most robust among the three methods. Interestingly, SAA and GA have
analogous sensitivities to their design parameters. Both the cooling schedule for SAA and the fre­
quencies of the genetic operators for GA control the convergence speed and have been made adap­
tive in our implementation. The number of attempted perturbations at a particular temperature for
SAA and the population size in each generation for GA determine how many points in the solution
space can be sampled. Both parameters have been empirically determined. However, GA is the
least robust.

Parallel implementation, especially for GA and SAA, is important for their practical use. Current
SAA parallelization techniques involve conflicts in the concurrent decisions made on different el­
ements in the subproblems [17]. Conflicts are due to the presence of global terms in the computa­
tion of the change in objective function resulting from perturbations. The effect of these conflicts
on the solution quality and execution time requires further studies. Parallel BNN would also in­
volve conflicts because of the global paramagnetic term in equation (3). GA enjoys easier parallel­
izability based on distributed population models [14]. Parallelization can even reduce the
sensitivity of GA to its design parameters.

10. Conclusions and Further Research

Versions of a Genetic Algorithm, a Simulated Annealing Algorithm and a Bold Neural Network
for load balancing have been described. Their performances have been evaluated and compared for
examples of various geometric shapes, dimensions and sizes. The solutions produced by these

physical optimization methods are good sub-optimal solutions and are, for general problems, con­
siderably better than those for Orthogonal Recursive Coordinate Bisection. However, the diverse
properties of the methods and their versions suggest that the choice of one of them depends on the
particular application. SA2 produces the best solution quality, followed by GA2, NN2, SAl, NNl
and ORCB in the order of decreasing quality. The order of decreasing execution time is the same
with the order of NN2 and SAl swapped in most cases.

The annealing and genetic algorithms have the ability of starting from partial information about the
solution. This property results in a reduction in the overall execution time; the reduction is the big­
gest for GA. BNN and ORCB do not share this property. The applicability of the physical methods
to realistic applications has been explored by adding a preprocessing graph contraction step. The
results show that this step is advantageous for large problems because it leads to a significant re­
duction in execution time without sacrificing the solution quality. It has been found that SAA and
GA make better use of graph contraction than does BNN. Concerning bias to particular problem
structures, ORCB is clearly biased to 2-D uniform topologies; BNN exhibits some tendency to be

13

biased; SAA and GA do not show a bias. Concerning the robustness of the physical methods, BNN

comes first, followed by SAA; GA is the least robust. Further research will explore the performanc­

es of parallel implementations, which are important for large-scale applications [14].

Acknowledgment

This work was supported by the Joint Tactical Fusion Program Office. We wish to thank Wojtek
Funnanski for useful discussion about the neural net, Lainie Hyde for her comments on the first
draft, Joel Saltz and Ravi Ponnusamy for providing the FEM3 data, and Yeh-Ching Chung for

FEM 1&2 data.

References

[1] M. Berger and S. Bokhari. A Partitioning Strategy for Nonuniform Problems on Multiproces­
sors. IEEE Trans. Comp., Vol C-36,No. 5, May 1987,570-580.

[2] Y-C. Chung and S. Ranka. Mapping Finite Element Graphs on Hypercubes. Syracuse Univer­
sity, SU-CIS-90-19.

[3] F. Ercal. Heuristic Approaches to Task Allocation For Parallel Computing. Doctoral Disserta­
tion, Ohio State University, 1988.

[4] J. Flower, S. Otto, and M. Salama. A Preprocessor for Finite Element Problems. Cal tech
C3P #292c, 1986.

[5] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors. Prentice Hall, 1988.

[6] G. C. Fox and W. Funnanski. Load Balancing Loosely Synchronous Problems with a Neural
Network. Proc 3rdConf Hypercube Concurrent Computers, and Applications, 1988,241-278.

[7] G. C. Fox. Physical Computation. Int. Conf Parallel Computing: Achievements, Problems and
Prospects, Italy, June 1990.

[8] G. C. Fox. A Graphical Approach to Load Balancing and Sparse Matrix Vector Multiplication
on the Hypercube. Caltech C3P #327b, 1986.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison
-Wesley, 1989.

[10] J. H. Holland. Adaptation in Natural andAnificial Systems. Univ. of Michigan Press, 1975.

[11] J. J. Hopfield and D. W. Tank. Computing with Neural Circuits: A Model. Science 233, 1986,
625-639.

[12] S. Kirkpatrick, C. D. Gelatt, and M.P. Vecchi. Optimization by Simulated Annealing. Science
220,1983,671-680.

[13] N. Mansour and G. C. Fox. A Hybrid Genetic Algorithm for Task Allocation. Int. Conf.

14

Genetic Algorithms, July 1991, 466-473.

[14] N. Mansour and G. C. Fox. Parallel Physical Optimization Methods for Load Balancing
Parallel Computations. In preparation.

[15] H. Simon. Partitioning of Unstructured Mesh Problems for Parallel Processing. Proc. Conf
Parallel Methods on Large Scale Structural Analysis and Physics Applications, Permagon
Press, 1991.

[16] D. Walker. Characterizing the Parallel Performance of a Large-scale, Particle-In-Cell Plasma
Simulation Code. Concurrency Practice and Experience, December 1990,257-288.

[17] R. D. Williams. Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh
Calculations. Submitted to Concurrency Practice and Experience, 1990.

15

·-···-···-···-·· ·-···-···-···-·· ·-···-···-···-·· ·-···-···-···-·· ·-···-···-·· ·-···· ···-·· ::-• m~~~IUU
.. ···-···-··
~~~g~mE~y:::: 
·-···-···-···-·· ·-···-···-···-·· 

GRIDI {301-point) 

FEMl (160-point) 

FEM2 (198-point) 

Figure 4: Test Cases. 

I II I I Ul I 
I II I I 1 II I II I 

~ I 1 I I I I I 
1 1 I 

ffi I I I!· 
I I I I I I 

I I T I I ~ I I I I I I II I I I rht-LI lll!~l)jlltll l_j_ I I 
0 I II I 

GRID2 (551-point) 

FEM3 (545-point) 



Test Best GAl SAl NNl ORCB 
case Eff %Eff time %Eff time %Eff tim€ %Eff time 

FEM3 
0.338 89 40.2 80 5.26 77 0.58 52 0.06 

N=l6 
GRIDl 0.85 95 2.11 89 0.66 88 0.17 88 0.03 
N=8 

Table 1: Results of versions using OF _APPR. 

Test Best GA2 SA2 NN2 ORCB 
case Eff %Eff time %Eff time %Eff time %EfT time 

FEM3 
0.338 92 32.81 95 36.54 89 3.64 52 0.06 

N=l6 
GRIDl 0.85 96 2.41 94 1.03 93 0.21 88 0.03 
N=8 

Table 2: Results of versions involving OF _EXACT. 

Test Best NN1-GA2 NNl-SAl NN1-SA2 
case Eff %Eff time %Eff time %EfT time 

FEM3 
0.338 90 15.96 82 4.82 96 28.38 

N= 16 
GRIDl 0.85 94 0.91 90 0.60 95 0.91 
N=8 

Table 3: Results ofNNl-M hybrid versions. 

Results of CONT-M versions for FEM3 & N=16. 

Best CONT-GA2 CONT-SAl CONT-~A2 CONT-NN1 CONT-NN2 
Eff %Eff time %Eff time %Eff time %Eff time %EfT time 

K=2 0.85 93 0.18 91 0.21 96 0.36 
K=l6 0.85 74 0.03 92 0.10 

Table 5: Results of CONT-M versions for GRID I & N=S. 

Test Best CONT-GA2 CONT-SAl CONT-SA2 CONT-NN1 CONT-JI'lN2 ORCB 
case EfT %EfT time %Eff time %Eff tim€ %Eff time %EfT bme %Eff tim€ 

FEM3 
0.452 92 2.92 88 1.61 96 7.15 76 0.05 90 1.50 53 0.04 

N=8 
FEMl 

0.569 93 
N=8 

0.27 86 0.06 93 0.24 83 0.09 85 0.10 

FEM2 
0.578 92 0.26 86 0.06 97 0.43 81 0.05 89 0.10 N=8 

FEM2 
0.432 92 0.81 80 0.18 96 0.85 78 0.12 83 0.13 N= 16 

GRID2 0.787 92 1.42 77 0.28 94 1.94 73 0.20 85 0.30 
N= 16 

Table 6: Results of CONT-M versions, K=2 for GA & SA, K=l6 for NN. 

17 


