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Stateful DDoS Attacks and Targeted Filtering

Shigang Cheh  Yong Tang  Wenliang Dd

" Dept. of Computer & Information Science & Engineering, Umsity of Florida
{sgchen, yt}@cise.ufl.edu
' Dept. of Electrical Engineering and Computer Science, SigatJniversity
wedu@ecs.syr.edu

Abstract

The goal of a DDoS (distributed denial of service) attackisdmpletely tie up certain resources so that legitimate usemot able to access a
service. It has long been an open security problem of therateln this paper, we identify a class of stateful DDoScki$ethat defeat the existing
cookie-based solutions. To counter these attacks, we peoacew defense mechanism, calledjeted filtering which establishes filters at a
firewall and automatically converges the filters to the flogdinurces while leaving the rest of the Internet unblockee pvéve the correctness of
the proposed defense mechanism, evaluate its efficiency bysaand simulations, and establish its worst-case perfocmbounds in response to
stateful DDoS attacks. We have also implemented a Linux-basedtype with experimental results that demonstrate thectfieness of targeted
filtering.

Keywords: Distributed Denial of Service, Network Security, Stateftiiacks

I. INTRODUCTION

The open design of the Internet is fundamental to its phenah®eiccess, but the universal accessibility, anonymous
nature, and complexity also make the public networks stltgecarious network-based attacks. DDoS (Distributed
Denial of Service) is among the most-threatening Intereetisty problems. There are a variety of DDoS attacks
[1]. A few examples are the smurf attack [2], the SYN flooditiek [3], and the UDP flooding attack [4]. Besides
the one-packet kills, most DoS attacks flood the servers avitbverwhelming number of packets, which tie up the
limited resources and prevent the servers from performieg@ normal functions. To make the problem worse, it is
often difficult to distinguish the attacking traffic from thermal traffic. When the server drops the excessive incoming
packets, the legitimate packets are dropped as well.

Moore, Voelker, and Savage’s work demonstrated that DaSkgtwas widespread in the Internet. By using a novel
traffic-monitoring technique, called “backscatter anefysthey observed 12,805 attacks against over 5000 dtstinc
Internet hosts belonging to more than 2000 organizationsgla three-week period [5]. In February, 2000, Yahoo
web servers were temporarily brought down by a brute-forB®® attack, and during the following week, CNN,
Ebay, Amazon, and other popular web sites were attackelesktsites could be shut down, few could claim immune
to DoS attacks, which continues to be true today [4]. Anotirerrce of DDoS is through Internet worms, which can
direct tens of thousands of compromised machines to floodvarsdn addition, the worm scan activities can cause
widespread congestion, leadingde factoDoS attacks against network communication. In 2001, theeBedv2
worm was programmed to launch a DoS attack against the Whitssédaveb server from the twentieth through the
twenty-seventh of each month. In yet another example, the.B¥f@&er worm [6] of 2003 was scheduled to attack the
windowsupdate.com server for certain days of each month.

Much research against DDoS attacks has been carried outantrgears. Defense mechanisms are designed to be
implemented on routers [7], [8], [9], [10], [11], [12], sems [13], [14], or both servers and clients [15], [16], [17],
[18]. They will be surveyed shortly. Most of them requiredmtet-wide deployment, which has not been and may
never be achieved. On the other hand, the cookie-basedsaefeechanisms [13], [19], [14] require the modification
only to the local server, and therefore can be readily deggipwhich makes them particularly useful. The purpose of
using cookies is to prevent source-address spoofing, buathe have vulnerability. In this paper we point out that all
cookie-based approaches are subjestateful DDoS attacksvith the attackers residing on the routing paths from the
server to the forged addresses and thus able to intercepobtides. Furthermore, as a generalization, any anti-DoS
mechanism based on restricting the source address spacaittae forged [7], [8], [9] is subject to a similar problem.

We then propose a new defense mechanism, ctdlgeted filtering that blocks out stateful DoS attacks. Targeted
filtering is complementary to the cookie-based defenselmranechanisms that restrict the forged address space. It
is locally deployed at a firewall protecting a server behiltle basic idea is to use the attack packets themselves to
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drive a master blocking list to converge towards the forgediress space and block out packets from there, which
allows the rest of the Internet to access the server. We mlesfgst algorithm for updating the master blocking list
in order to support on-line operations. We analyze the ptmseof the system and establish the worst-case bounds
on the convergence time, i.e., how long it takes the firewmblock out the attack traffic after the attack starts.
The effectiveness and the performance of targeted filteahegstudied by extensive simulations that cover various
combinations of system configurations and attack configamrst We also implemented a targeted-filtering prototype
in the Linux kernel space and performed experiments.

The rest of the paper is organized as follows. Section lleysthe related work. Section 11l describes the stateful
DDosS attacks. Section IV presents our new targeted-filjedizfense mechanism. Section V discusses the simulation
results. Section VI describes a prototype and presentsiexgetal results. Section VII draws the conclusion.

IIl. RELATED WORK

DoS attacks have received considerable attention in thearels community. Much work has been done on the
SYN flooding attack [13], where a server’s listen queue ist Kalb by faked connection requests (SYN requests),
which causes the rejection of legitimate requests. The 8¥bkie solution allows new connections to be established
even when the listen queue is full [13]. Without using théelisqueue, the server encodes the state information of
a half-opened connection in the sequence-number feeldkig of the SYN/ACK response, and later recovers the
information from the ACK packet. The drawback is that nofT@lP options (maximum segment size, window scale
factor, etc.) can be encoded in the cookie. The recent wotkibgind Lee embedded cookies in the http redirection
messages; this approach does not require any modificatithre SFCP implementation on the web servers [14]. The
SYN cache solution minimizes the amount of state infornmafar a half-opened connection at the server side [20].
It alleviates but not eliminates the SYN flooding problem.eTdlient-puzzle solution requires the clients to solve
cryptographic puzzles before making TCP connections [18], [17], [18]. To achieve high-level security, it incurs
significant computation overhead to the clients, which carubdesirable for certain applications, especially when
mobile devices are involved.

Attackers use forged source addresses to conceal theititiden Much work against DoS is on anti-address-
spoofing. Ferguson and Senie propogegtess filtering[7], which requires the routers of stub networks to inspect
outbound packets and discard those packets whose soumasselsido not belong to the stub networks. Park and Lee
pioneered with the concept afute-based distributed packet filterifig]. The idea is for a router to drop a packet if
the packet is received from a link that is not on any routintih feom the packet’s source to the packet’s destination.
The paper demonstrated that a partial deployment (on 18%erfriet AS’s) can effectively prevent spoofed IP packets
from reaching their victims. Wang, Zhang and Shin preseatsithple and effective mechanism, call®dN-dogto
identify SYN flooding sources [9]. It is a software agent aflstd at leaf routers connecting to stub networks. The
agent detects SYN flooding from the attached networks by toong the differences between outbound SYN packets
and inbound SYN/ACK packets. The major problem of the ab@@aches is that their effectiveness of preventing
DoS comes only after the filters or the software are wideljaeg across the Internet. An Internet-wide deployment
can be difficult to achieve due to political, financial, andnémistrative reasons, or different technology preferaence

In recent years there has been a flourish of research woliR tacebackbased on packet audit or route inference,
whose goal is to find the origins of packets that have spodadadce addresses [21], [22], [23], [24], [25], [10], [26],
[27], [28]. IP traceback is a reactive approach, which dagsprevent spoofed packets from harming their victims.
Sung and Xu used IP traceback to identify the network links darry attack traffic and then preferentially filter out
packets that are inscribed with the marks of those links.[Y&hr, Perrig, and Song propospdth identifier (Pi) a
novel approach that assigns the same mark to packets fraytre same path and different marks to packets traversing
different paths. Because the attack packets from the saareesalways carry the same mark, the victim is able to
filter out those packets based on the mark. The effectivenfefese approaches also require wide deployment in
order for most legitimate traffic to be marked differentlgrfr the attack traffic.

Mahajan et al. proposed aggregate-based congestion cG@G) to rate-limit the identified attack traffic [12]. A
congested router starts with local rate limit, and progvesspushes the rate limit to some neighbor routers andhéurt
out, forming a dynamic rate-limit tree. Routers in the treg@rm filtering based on their shares of the rate limit. Chen
and Song designed a classparimeter-based defenseechanisms, which allows Internet service providers (£8P)
protect the communication between its customers againStadacks [29].

Keromytis, Misra, and Rubenstein proposed a novel ardhitecalledSecure Overlay Servic€SOS) [30], which
proactively prevents DoS attacks. It is designed for enmargservices. A certificate for accessing a protected server
must be issued to each authorized client. Client requestfirat authenticated and then routed via a Chord overlay
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Fig. 1. Stateful DoS, with the attacker intercepting thelkdeo

network [31] to one of the servlets, which forward the redsi¢s the target site. The defense against DoS relies on
client authentication and the secrecy of the servlets'tiona. Mayday [32] by Andersen is a generalization of SOS.
It studies a variety of choices for authentication, routiawgd filtering.

Ill. STATEFUL DDOS ATTACKS

A successful DoS attack achieves two objectives: overpogéne victim and concealing the attacker’s identity. To
overpower the victim, the attacker needs a strategy thalt sesaurce consumption at the attacker side causes much
larger resource consumption at the victim side. For exanapdenall packet generated by the attacker causes a buffer
space to be held for an extended period of tifhat the victim. While the attacker can generate a large number o
packets during’, the buffer space at the victim is going to overflow, which ertides the SYN flooding attack and
the connection table overflow attack. To conceal the attacldentity, forged source addresses must be used in the
packets sent from the attacker.

The problem of address-spoofing can be partially solved lmkieoexchange [19], [13], [14], which forces an
attacker (or a compromised host) to use its real addresslar ¢o receive and return a cryptographic cookie before
accessing any resource. The cookie approach fails undatedl8tDDoS attack. As shown in Figure 1, an attacker
keeps state information about each forged connection st@unel sniffs the network traffic for the responding cookie
from the server, which allows it to complete the exchange ¢lkieugh forged source addresses are used. In order to
perform a stateful DoS attack, an attacker (or zombie) hasside on the routing path from the server to those forged
addresses, which limits the address space that can be fo&metifically, the attacker can forge source addresses
belonging to the same LAN or downstream LANs. The combinehtess space that can be forged by all attackers and
their zombies in a stateful DDoS attack is called #giack address spaand denoted ad. The attackers may also
simply use their real addresses or those of Zombies to laDWS attacks. This is a special case wittbeing the
attackers’ addresses.

All cookie-based approaches (such as SYN cookie [13] amdrbttirect cookie [14]) that only modify the server
side are subject to the stateful DDoS attacks. The cliefg-address restriction approaches (such as ingress filterin
[7] and route-based packet filtering [8]) are subject to ailainproblem where the attackers are still able to forge
source addresses from a restricted address space. We desgndefense mechanism to handle both.

IV. TARGETEDFILTERING

Assume an existing defense mechanism has been implemeriestrict the attack address spateFor example,
either a cookie-based approach is implemented on the sgideor an address restriction approach is implemented
on the client side. This section preseta#rgeted filtering which is deployed on a firewall to mitigate stateful DDoS
attacks by automatically identifying and blocking the otieequests from¥, while letting the requests from the rest
of the Internet go through. The system architecture is shovrigure 2.

We will first describe the key element of targeted filterindpiet is the maintenance of a master blocking list. We
will then derive the upper bound on how fast our defense systn block out the attack packets, which is followed
by optimization and algorithmic issues.
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A. Master Blocking List

When a server is under a DDoS attack, an anti-DoS requesttisosthre firewall, including the description of the
service under attack and a rate limit for the client requélgie anti-DoS request may be generated by the management
console, by the server, or by the firewall itself based ongmr&figured policies. The firewall samples the incoming
requests (e.g., SYN packets in case of SYN flooding attaskjaets the source addresses, inserts themn@aster
blocking list(MBL), and blocks the requests from those addresses. Natdhh firewall should only sample among
the requests that have passed MBL. Once a source addredg Bl imall requests from that address are blocked and
thus not sampled. Therefore, any address may be inserte@8toavly once. The expansion of MBL continues until
the rate of requests is reduced under the desired limit.

MBL cannot exceed a maximum number of entries, denotetl d§ the maximum number of entries have been
reached, an additional addresgo be blocked will be merged with the existing entrigs by the followingbasic
algorithm: Find two entries inM U {z} that share the longest common prefix and replace the twoesrttsi the
common prefix (which represents a network).

Although the above algorithm works very well in our simubeits, it take@(‘—f‘) time in the worst case to converge
on A and stop the attack, whefé| is the size of the attack address space atglthe sampling rate. In order to
improve the worst-case performance, we desigavised algorithm: Let ¢ be a constant greater than one. Find two
entries inM U {z} that share the longest common prefix, denote@® afkemove zero or more least-significant bits
from P until the size ofP is at least the combined size of the two entries multiplied.bireplace the two entries by
P.

With targeted filtering, the attacking traffic itself driv#8BL to converge to those network addresses that stateful
DDosS utilizes. If a DDoS attack is launched from a large nundbeompromised machines using their real addresses,
targeted filtering defeats the attack in the same way: MBlveages to these addresses and blocks them out.

It is possible that the IP addresses of some normal userdbevithistakenly placed in MBL. We will address this
issue shortly.

B. Convergence Time

We analyze theonvergence timef targeted filtering, which is the time it takes to stabilM8L and block out all

attack addresses. In particular, we show that the conveegiime isO( EAWE’fi—‘;‘)‘jl)), which is proportional to the
ac

size A of MBL, inverse proportional to the sampling rateand proportional to the summation of the logarithm over
the sizes of all network addresses A.

The size of a network address (prefix) is denotethAsSuppose: hasi bits. Then|a| = 232, If a belongs to the
attack address spack after an entry in MBL (or multiple entries combined) growg bnough to covet, all requests
from a will be blocked and will not be sampled.

Lemma 1:Leta (€ A) be a network address from which the attackers can forge sskee After\(log,, |a| + 1)
different addresses fromare inserted into MBL, there must exist one entry in MBL thalyfcontainsa.

Proof: Because there are onlyentries in MBL, after\(log,. |a|+1) different addresses inare inserted into MBL,
there must exist one entry of MBL in which at leggig,. |a| + 1) addresses from are merged. The size of the entry
grows at least by a factor ef(> 1) after each merge. Therefore, it becomes no lessdfigh |41+ —1 = |4|. Both
this entry andu are network addresses. Due to the construction of addrese $p IPv4, if two network addresses



share at least one address, one of them must fully contaiatttee. Since the MBL entry has the same size as
bigger, it must fully contair. O

Lemma 2:Leta (€ A) be anetwork address from which the attackers can forge ssieseThe number of addresses
from a that are inserted to MBL can not excekdog, |a| + 1).

Proof: By Lemma 1, aftet\(log, |a| + 1) addresses from are inserted to MBL, there exists one entry in MBL
that fully containsz. This entry blocks all requests from and thus no subsequent request fromill be sampled O
Let o (< 1) be theserver's utilization defined as the arrival rate of legitimate requests dividgedhle server’s
capacity*
Theorem 1:Supposed consists of a single network address. The convergence fitie @evised algorithm is no
more than A(log, |A| + 1)
(1—-a)r

Proof: For the attack to persist, the rate of attack requests gatisiough MBL must be no less th&ah— «) of the
server's capacity. Hence, the rate of attack requests Isaimgpled is no less thdam — a)r. Once a request is sampled,
all other requests from the same address are blocked. Halhsampled requests have different source addresses.
Suppose afteT” units of time MBL coversA and thus stops the attack. Durifigthere are at least, = (1 — a)rT
addresses from that are inserted into MBL. Becaugeconsists of a single network address, by Lemma2nust
not be greater thai(log, |A| + 1). Hence,

T < A(log, |A] + 1)
- (1—a)r
O

Theorem 2:SupposeA consists of multiple network addresses. Letbe the common prefix of all network
addresses inl. The convergence time of the revised algorithm is no more tha

min{)\(logc |P|+ 1) 5 Alog,. |a] + 1)

(1—a)r “aca (1—a)r }
Proof: If the attackers could forge any addressinby Theorem 1, the convergence time would be no more than
A“‘E%%’Sfm. Now since the attackers can only forge addresses figiwhich is a subset of, it follows that the

worst-case convergence time will not exc fﬂf)‘rﬂ) .

Next we prove the convergence time is no more thﬁ%. For each network prefix € A, by Lemma
ac

2, the number of addresses franthat are inserted to MBL can not excegflog, |a| + 1). Hence, the total number
of addresses from that are inserted to MBL can not exce@lAA(logC la] +1).
ac

For the attack to persist, the rate of attack requests gatziough MBL must be no less théh— «) of the server’s
capacity. Hence, the rate of attack requests being sanmpiegléss thafl — «)r. Once a request is sampled, all other
requests from the same address are blocked. Hence, allahmgouests have different source addresses. Suppose
afterT" units of time MBL coversA and thus stops the attack. Durifigthere are at leagti — «)rT addresses from
A that are inserted into MBL. Hence, we have

(1-a)rT < EA/\(logC la] + 1)
aec
T< x A(log, |a| +1)
a€A (1 — O[)T

O
Our simulations show that the average convergence time ¢hrsnaller than the upper bound given by Theorem
2. Even with a smalt such as 1.25, MBL converges quickly t while the percentage of legitimate clients being
mistakenly blocked is negligibly small (less than 1%).

Lo < 1is required by Theorems 1 and 2 but not by the approach of taiditering. During temporary legitimate-traffic overloadrgeted
filtering can be triggered to block out a portion of legitimatfic temporarily.



C. Optimization

The revised algorithm may expand an entry too large so thdreades adjacent tb are also blocked. To alleviate
the problem, an optimization can be done as follows: oncentty eeaches certain size(e.g., Class B network),
further merges involving this entry do not require a minigedwth factor ofc, namely, the basic algorithm will be
used for merging with any other entry.

If A does not contain any network address bigger thait is obvious that the previous theorems still hold.
Otherwise, we must use the following theorem.

Theorem 3:The convergence time of the revised algorithm with optitidzais no more than

A(log, |=| + 1)
€A (1—a)r

where all network addresses ihwhose sizes are larger tharare divided into subnets whose sizes are not greater
thans.

Theorem 3 can be trivially proved, in a way similar to the grooTheorem 2. Another obvious optimization is to
check whether one entry contains the other before the twmarged. If so, we simply remove the smaller one.

D. Periodic Updates of MBL

The MBL may take addresses from legitimate requests thagidrajp be sampled. Consequently some legitimate
clients are blocked. To prevent legitimate clients fronmigddlocked indefinitely, if one entry in MBL is not matched
by any arrival request for a sufficiently long period of tim@ ¢(he number of matched requests is under a small
threshold), the entry is removed.

Assume the attack traffic from has a higher density (number of requests per address) tedagtimate traffic
from the entire Internet. We can use periodic update of MBtethice the chance of legitimate clients being inserted
into MBL. In this approach, the sampled addresses are nagedento MBL immediately. Instead, they are placed in
a temporary blocking list. Any requests that match eitherlMiBthe temporary blocking list will be dropped. When
the temporary blocking list is full, a new sample will repdaan existing entry that has blocked the least number of
requests. If there is a tie, the older entry is replaced. &lith selection bias, the temporary blocking list is in favor
of retaining the attack addresses frahdue to the higher request density.

The firewall periodically merges the temporary blocking isMBL and then empties the list for more addresses,
until the rate of unblocked requests is under the desireidl lim

E. AnO((A+ b)log(A + b)) Algorithm for Updating MBL

We present an algorithm that merges the temporary blockshgvith MBL in time O((\ + b) log(X + b)). Itis an
efficient implementation of the revised algorithm.

Let M be the master blocking list anl be the temporary blocking list. Let be the number of entries i/, b
the number of entries i3, andc a constant greater than onig?| = 232~ for an address prefi® with [ bits. The
following algorithm merged3 into M.

UpdateMBL@M1, B)

(1) M’ sor{M, B)

(2) compute common prefixes between adjacent entrigdg’in
(3) Com « the set of longest common prefixes

(4) for eachP € Com do

(5) let £, andE; be the two entries sharing

(6) if £1 (or E5) is a prefix of £, (or E7) then
@) removeFs (or F1)

(8) else

(©) while (|P| < (|| + |Ea|) x o)

(20) remove the least-significant bit &f
(11) replacels; andEs by P

(12) M — M’

The time complexity of Step 1 i©((\ + b) log(A + b)). The complexity of Step 2 i©(A + b). Step 3 can be done
by sorting the common prefixes with a complexity@f( + b) log(A+b)). The complexity of Lines 5-11 is constant.
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Fig. 3. Defend against DDoS by targeted filtering

Without losing generality, suppodg, is removed at Line 7E,; becomes adjacent tB,'s other neighboring entry in
M’ and inherits the common prefix @5 with that entry. After Line 11 inherits the common prefixes @&; and
E» with their other adjacent entries id’. The inherited common prefixes may be too long, but the futdeeution
of Lines 9-10 will enlarge those common prefixes to calggror P entirely. The complexity of Lines 4-11 i9(b).
The total complexity of the algorithm is tha¥((A + b) log(A + b)).

We will use this algorithm in our simulations and demonsttéiat the overhead of executing the algorithm is very
small.

V. SIMULATIONS

We use simulations to study how well the targeted-filteringchanism performs against stateful DDoS attacks.
Unless explicitly specified otherwise, the simulation paegers take the following default values. The normal work-
load of a server is 2,000 requests per second on average ittt fluctuation over each second. The server's
capacity is 6,000 requests per secqrittriggers the firewall to perform targeted filtering whéwtworkload exceeds
the capacity. The maximum number of entries in MBL (master blocking list,000, and it is updated once every
10 seconds with the firewall randomly selecting 3,000 urk#daequests and inserting their source addresses to the
temporary blocking list, which is then merged with MBL. Thearre 100 attack sources who coordinate a DDoS attack
on the server. Each source sends 400 requests per seconerageavAn attack source represents all attach hosts on
the same LAN, which have the same forged address space.

A. Performance of Targeted Filtering

Figure 3 shows the results of four simulation runs. In the firs (the curve of “100 Class-C attack srcs”), the attack
sources perform a stateful DDoS attack, and each is ablede faddresses from a Class C network. In the second
run (“100 Class-B attack srcs”), each source is able to fadgresses from a class B network. Note that an attack
source represents all (tens or even hundreds) Zombie mostdtie network it forges addresses. In the third run (“100
real-addr attackers”), the attackers use their real addsedn the fourth run (“mixed attack srcs”), 33 attack searc
are able to forge addresses from Class C networks, 33 fooge @lass B networks, and 33 use the real addresses.
As shown in the left-hand graph, the number of requests duaffer the attack began. After the firewall activated
targeted filtering, the attack packets themselves drove tdBilock them out. As more and more faked requests were
blocked, the service was restored for legitimate users. Md@bilized when the rate of requests passing the firewall
no longer exceeded the server’'s capacity. The right-haaphgshows that the percentage of legitimate requests that
were successfully processed by the server dropped shdtphtlae attack began, but it recovered quickly to almost
100% after the firewall filtered most faked requests.

2Suppose each connection lasts for 10 seconds with 10 kbmsghput on average. The server’s total throughput will lbeiad 600 Mbps.
31n a normal overload, targeted filtering will also bring theriload under 6,000 requests per second. A temporarily-elbtégitimate user will
be removed from the master blocking list once he stops accetfsrserver for a period of time.



B. Convergence Time with Respect to Firewall Configuration

The convergence time measures how long it takes for MBL toilia, i.e., from when the attack starts to when
the traffic is reduced within the server's capacity. For egemthe convergence time for “100 Class-C Attack srcs”
in Figure 3 is 50 seconds (from 50 to 100 on the time axis). énfttlowing we study how the firewall configuration
affects the convergence time. Since the case of real-atidikats is trivial, our explanation will focus on the other
three cases.

The number of addresses inserted into MBL per update pegoalgthe size of the temporary blocking list, denoted
asb. The upper graph of Figure 4 shows that the average convegdame decreases &sncreases. The decrement
is non-linear. The curve demonstrates that, for the be$oweance/overhead tradedfh should not be too large —
around 3,000 achieves a favorable tradeoff. The middlelgsapws that the convergence time increases linearly as
the update period increases. The lower graph shows thabtiveiggence time increases as the size of MBL increases.
That is because, in a larger MBL, the addresses are closactoaher. Hence more address merges are needed to
create network prefixes that are large enough to cover thekadiddress space, which implies more updates and thus
longer convergence time. Another observation is that theease in the convergence time is considerably faster when
there are Class-B attack sources, but the exact number sé-Blaources does not matter much.

The update period is an ideal system parameter that can bd tarcontrol the convergence time because of their
linear relation. While fixing the other system parameterscarm adjust the update period during run time to achieve
a desirable convergence time. For example, we may cut theteperiod by half each time when the system does not
converge after a threshold time period.

For all simulations presented in Figure 4, the success faliegigimate requests (i.e., the percentage that is not
blocked) was above 99.5% after MBL stabilizes. The detaiésalilts on success ratio seem not to reveal additional
information and therefore are omitted.

C. Impact of the Size of MBL

We found that the success rate suffered only when the sizeBif Was very small, as demonstrated by Figure 5.
The left-hand graph shows that when the size of MBL is less 1800, the success rate can be very bad. The dips
between size 500 and size 1,000 can be explained as folloaealRhat during the last update MBL is merged with
3,000 new addresses from the temporary blocking list. Ifjpgens that most flooding sources have already been
blocked by previous updates, then most of those 3,000 sskBese in the legitimate address space. When the size of
MBL is small, each merge of two legitimate addresses mayteméarge network prefix blocking a major portion of
legitimate traffic, which reduces the success rate. Thiblpro is greatly alleviated when the size of MBL becomes
large (the small dip at size 1,500). Therefore, in order tsuem high success rate, the size of MBL should not be
less than 1,000. From the right-hand graph, we learn thaivbege convergence time follows a staircase curve with
respect to the size of MBL. This is the natural result of this¢cete” updates of MBL, with 3,000 new addresses each
update. When the size of MBL is around 500, 1,500, or 2,500,002 update becomes necessary. Note that the
staircase is not shown in the bottom graph of Figure 4 duedosen granularity of the simulation.

D. Convergence Time with Respect to Attack Traffic Chatiesis

We now study how the attack traffic characteristics affeetdbnvergence time. The left-hand graph of Figure 6
shows that the convergence time increases when the attesdued forged requests at a faster rate. As the attack rate
is higher, more forged requests will be sampled. The attddkesses will occupy a larger portion of the temporary
blocking list in each update, which decreases the gaps kettteem. Hence, more merges (thus more updates and
longer convergence time) are needed to create network esdfixge enough to cover the attack address space. On
the other hand, when the attack rate becomes sufficiente I@.g.,> 1, 400) such that the attack addresses already
occupy most of the temporary blocking list, then furtheré@asing the attack rate will not significantly increase the
convergence time. The right-hand graph shows that the cgemee time increases as the number of attack sources
increases for the same reason explained above.

E. Mixed Attack Sources

Figure 7 presents the simulation results for a mix of Cla&3S-&tack sources. Generally speaking, a larger number
of Class C sources causes a larger convergence time. Theaddade the addresses from Class C networks are closer to
each other and will be merged first in MBL. Before Class C neka@re completely blocked out, the addresses from

4The execution time per update@ (A + b) log(\ + b)). See Appendix A.
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TABLE |

EXECUTION TIME (IN MILLISECONDS) PERMBL UPDATE

b size of | 100 Class-C| 100 Class-B| mixed
MBL att. srcs att. srcs att. srcs

1,000| 1,000 1.30 1.69 0.91
1,000 | 2,000 1.13 2.17 1.14
1,000| 3,000 3.70 3.47 3.07
1,000 | 4,000 6.27 5.67 417
1,000 | 5,000 7.92 8.18 5.38
2,000| 2,000 2.47 3.39 2.47
2,000 3,000 5.52 3.23 2.88
2,000| 4,000 6.94 6.87 4.34
2,000| 5,000 9.15 8.92 6.38
2,000 | 6,000 12.38 11.86 8.74
4,000| 4,000 9.24 10.03 7.68
4,000| 5,000 12.89 12.42 9.48
4,000| 6,000 16.77 15.00 11.93
4,000| 7,000 21.25 19.27 13.89
4,000| 8,000 25.54 23.36 16.23

Class B networks can be merged only when their gaps are cabipdp those in Class C networks, which means the
common prefixes after the merges are relatively small. Tosreadditional merges are needed to create those Class
B networks in MBL.

F. Execution Time Per MBL Update

Table | shows the execution time for inserting the tempotdogking list to MBL (Section IV-E). The insertion
took less than 26 milliseconds on a DELL Inspiron 2650 witiHEzGR-1V and 256M main memory. A more powerful
firewall will take less time, which makes it a practical s@uat allowing a single firewall to support many servers
simultaneously.

VI. PROTOTYPE ANDEXPERIMENT

We have implemented targeted filtering on a Linux-basedopype firewall. It consists of three kernel modules: a
targeted-filtering module, a control module, and a log meduihe targeted-filtering module registers to a hook point
of the IPv4 protocol via Netffilter (Linux Kernel V2.4), whidllows it to inspect each passing packet, update MBL,
and drop packets that match MBL. The control module is a @egiiver, to which a user-level process writes the
control information, which is then read by the targeteafittg module. The log module is also a device driver, to
which the targeted-filtering module writes reports, whiglhien read by a user-level process.

The experiment testbed is shown in Figure 8. H1 is respan$dsl generating legitimate requests from random
source addresses. H2 is responsible for generating foegeests. The experimental parameters are chosen as follows
There are 150 attack sources, among which 50 can forge agdrésm Class B networks in a stateful DDoS attack,
50 can forge from Class C networks, and 50 use their real agélse The average attack rate per source is denoted as
r, which will be varied in the experiment. The server’s capeisi 10,000 requests per second, and the normal load is
5,000 requests per second. The size of MBL is 1500, and tee$the temporary blocking list is 1000. The result of
a typical run of the experiment is given in Table Il. It sholat; as the time progresses, most legitimate requests are
continuously accepted by the firewall, while more and motacitrequests are blocked. The few blocked legitimate
requests (e.g., when time = 56) mostly come from the attadkeasd space, which makes them indistinguishable from
the attack traffic.
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Fig. 8. Experiment testbed

TABLE Il
EXPERIMENT ON TARGETEDFILTERING IMPLEMENTATION (NO. OF REQUESTS PER SECONRP 7 = 100000/150

elapsed arrival rate of rate of legitimate| arrival rate of | rate of forged
time (sec)| legitimate requests requests passing forged requests requests passing
at the firewall the firewall at the firewall the firewall

0 5001 5001 0 0

2 4975 4975 0 0

4 4988 4988 93342 93342
6 5156 5156 102509 102509
8 5252 5252 109148 109148
10 4807 4807 101260 101260
12 5095 5095 93213 93213
14 4714 4714 96318 62329
16 4824 4824 103172 66773
18 5066 5066 95648 61880
20 5214 5214 106098 68610
22 4542 4542 95396 61762
24 5088 5088 107219 58026
26 4919 4919 95637 51731
28 4635 4635 103950 56381
30 5227 5227 95713 51843
32 5054 5054 101791 55207
34 4570 4569 97677 27572
36 5568 5567 96459 27287
38 5339 5338 104351 29615
40 4694 4693 95544 26951
42 5120 5120 106869 30146
44 5046 5039 95090 9579
46 4848 4839 101873 10282
48 5344 5335 100600 10079
50 5300 5292 94764 9650
52 4960 4959 108244 10847
54 5226 5217 95766 105
56 5403 5392 95494 119
58 4968 4961 109159 145
60 5224 5214 96626 141
62 4722 4715 95217 111
64 5050 5040 108695 146
66 5087 5080 96119 135

12
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Figure 9 shows the results of experiment runs with diffeltdck rates. During each experiment run, the fire-
wall reacts quickly to the attack and selectively blocks thét attack traffic, while the legitimate traffic is virtually
unaffected. The time it takes the firewall to stabilize tledfic does not vary much for different attack rates.

VIlI. CONCLUSION

We described a class of stateful DDoS attacks that defeabdiséing cookie-based solutions and proposed a new
defense mechanism, called targeted filtering, to block stitzitks. One advantage of the new mechanism is that it
can be deployed at a local firewall. We thoroughly discussetbus algorithms and optimizations, and proved the
worst-case convergence time with respect to a number oérsyattack parameters. Both analytical and simulation
results showed the effectiveness of this mechanism in defgragainst stateful DoS attacks. We also implemented a
Linux-based prototype, demonstrating the technical Belityi of operating such a defense mechanism in real time.
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