
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports College of Engineering and Computer Science

9-1991

Binary Perfect Weighted Coverings (PWC) I. The
Linear Case
G. D. Cohen

S. N. Litsyn

H. F. Mattson Jr

Follow this and additional works at: http://surface.syr.edu/eecs_techreports

Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Cohen, G. D.; Litsyn, S. N.; and Mattson, H. F. Jr, "Binary Perfect Weighted Coverings (PWC) I. The Linear Case" (1991). Electrical
Engineering and Computer Science Technical Reports. Paper 100.
http://surface.syr.edu/eecs_techreports/100

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports/100?utm_source=surface.syr.edu%2Feecs_techreports%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


SU-CIS-91-34 

Binary Perfect Weighted Coverings (PWC) 
I. The Linear Case 

G. D. Cohen, S. N. Litsyn, and H.F. Manson, Jr. 

September 1991 

School of Computer and Information Science 
Syracuse University 

Suite 4-116, Center for Science and Technology 
Syracuse, New York 13244-4100 



BINARY PERFECT WEIGHTED COVERINGS (PWC)1 

I. The Linear Case 

Gerard D. Cohen 

Ecole N ationale Superieure des Telecommunications 

46 rue Barrault, C-220-5 

75634 Paris cedex 13, France 
Email: Cohen@inf.enst.fr 

Simon N. Litsyn 
Dept. of Electrical Engineering-Systems 

Tel-Aviv University 

Ramat-Aviv 

69978, Israel 
Email: litsyn@genius.tau.ac.il 

H. F. Mattson, Jr. 

School of Computer and Information Science 

4-116 Center for Science & Technology 

Syracuse, New York 13244-4100 

Email: jen@SUVM.acs.syr.edu, jen@SUVM.bitnet 

1This paper was presented by invitation at SEQUENCES '91, Methods in Communication, Se­

curity, and Computer Science, Positano, Italy, June 17-21, 1991. It will appear in the Proceedings, 

to be published by Springer in the LNCS series. 



2 

Abstract 

This paper deals with an extension of perfect codes to fractional (or weighted) cov­

erings. We shall derive a Lloyd theorem-a strong necessary condition of existence-­

and start a classification of these perfect coverings according to their diameter. We 

illustrate by pointing to list decoding. 

1 Introduction 

Most codes involved in error-correction use nearest-neighbor decoding, i.e., the output 

of the decoder is the nearest codeword to the received vector. There has been renewed 

interest lately (see, e.g., [11]) in list decoding, where the decoder output is a list 

with given maximal size: correct decoding now means that the actually transmitted 

codeword is in the list. The size of the list could be constant (see the perfect multiple 

coverings studied in [17]) or an increasing function of the distance between the received 

vector and the code, so as to guarantee a given level of confidence. For example, a 

codeword would be given a list consisting of itself (mo = 1 in our notations), whereas 

vectors at distance R (the covering radius of the code) would have lists of maximal 

size. An application of list codes could be to spelling checking, with the code being 

the English vocabulary, and the "ambient" space being any combination of letters 

with maximal length n. 

2 Notations and known special cases 

We denote by Fn the vector space of binary n-tuples, by d( · , ·) the Hamming 

distance, by C[n, k, d]R a linear code C with length n, dimension k, minimum distance 

d = d( C) and covering radius R [8]. In this paper we consider only codes with d ~ 2. 

We denote the Hamming weight of x E Fn by lxl. 
A(x) = (Ao(x), A1(x) ... An(x)) will stand for the weight-distribution of the coset 

C + x,x E Fn; thus 

Ai(x) := l{c E C: d(c,x) = i}l. 
Given an (n + 1)-tuple M = (m0 , m1 , ••• , mn) of weights, i.e., rational numbers in 

[0, 1], we define the M -density of C at x as 

n 

(2.1) IJ(x) := 2: mi Ai(x) = <M,A(x)>. 
i=O 



We consider only coverings, i.e., codes C such that 0( x) ~ 1 for all x. 

(2.2) C is a perfect M -covering if 0( x) = 1 for all x. 

We define the diameter of an M -covering as 

6 := max{i: m, # 0}. 

To avoid trivial cases, we usually assume that m, = 0 fori~ n/2, i.e., 6 < n/2. 
Here are the known special cases. 

(2.3) 

(2.4) 

Classical perfect code: m, = 1 fori= 0, 1, ... 6. 

Perfect multiple coverings: m, = 1/j fori= 0, 1, ... 6 

where j is a positive integer [17, 6]. 

(2.5) Perfect L-codes: m, = 1 fori E L ~ {1, 2, ... Ln/2J }. See [13] and [7]. 

3 The covering equality 

For a perfect M-covering Cone gets from the definition: 

n 

L: m1 A,(x) = 1 for all x. 
i=O 

Summing over all x in pn and permuting sums, we get 

n 

L mi L A,(x) = 2n. 
i=O :ceFn 

3 

For i = 0, the second sum is ICI = 2\ for i = 1 it is 2kn, and so on. Hence we get 

the following analog of the Hamming condition. 

Proposition 3.1 A covering Cis a perfect M-covering if and only if 

(3.1) 
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0 

As mentioned earlier, we want to avoid trivial solutions to (3.1) as, e.g., 

mi = 1 for all i (k = 0), 

mi = 1 for 0 :5 i :5 Ln/2J for odd n (k = 1). 

In fact, we are interested in getting perfect M-coverings with small diameter. How­

ever, we shall prove in the next section a strong lower bound on 8. 

We can interpret (3.1) in a geometrical way: we define a weighted sphere around 

any vector c in F"' by means of the function 

(3.2) Pc(x) := md(c,x)· 

For d( c, x) > 8, Pc( x) = 0; hence 8 can be viewed as the radius of the weighted sphere, 

denoted by S ( c, 8). Set 

p(S(c,8)) := E Pc(x) 
:c 

then (3.1) becomes 
p(S(c, 8)) = 2n-k 

so that C is a perfect weighted covering (PWC) of pn. 
Equation (3.2) is reminiscent of a fuzzy membership function, as studied, e.g., in 

[5]. 

4 A Lloyd theorem 

We denote by Pn,i(x) or Pi(x) the Krawtchouk polynomial, for 0 < i ~ n, 

(4.1) ·(n- X) (X) Pn,i(x) = E (-1)3 . _ . . . 
O< "<i z J J _J_ 

We now prove 

Theorem 4.1 An [n, k, d] R code C is a perfect (m0 , m~, ... , ms)-covering only if the 

Lloyd polynomial 

L(x) := L mi Pi(x) 
O~i~5 

has among its roots the s nonzero weights of Cl.. 
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Corollary 4.1 s:::; h. 

Proof of the Theorem: (Adapted from [1], Chapter II, Section 1, which records A. 

M. Gleason's proof of the classical Lloyd theorem.) We use the group algebra A of 

all formal polynomials 

L "taXa 
aeFn 

with 'Ya E Q, the field of rational numbers. 

Define 

(4.2) 
O~i~5 !al=i 

We let the symbol C for our code also stand for the corresponding element in A, 
namely, 

(4.3) C:= L xc. 
cEC 

Then we find from Section 3 that 

(4.4) 

( 4.5) Characters on Fn are group homomorphisms of (Fn, +)into {1, -1 }, the group 

of order 2 in Qx. All characters have the form Xu for u E Fn, where Xu is defined as 

Xu ( V) = ( -1) u·v for u, v E Fn. 

We use linearity to extend Xu to a linear functional defined on A: 

For allY E A if Y = EaeFn "taXa, then Xu(Y) := E 'YaXu(a). 
It follows that 

Xu(YZ) = Xu(Y)xu(Z) for allY, Z EA. 

It is known [1, 10] that for any u E Fn, if lui= w, then 

Xu (E xa) = Pn,i(w). 
lal=i 

It follows that 

Xu(S) - L(w). 

From { 4.4), furthermore, we see that 

Xu(SC) = Xu(S)xu(C) 0 
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for all u =J. 0. 
Now if u E Cl., then 

Xu(C) - I: (-1)u•c - ICI - 2k. 
cEO 

Thus Xu(S) = 0. 0 

5 The case when 8 = s 

By a result of Delsarte [10), (3.10), one can always choose 8 = s. Let us reformulate 

his result. 

Proposition 5.1 A code C is a perfect M-covering with 8(M) = s. In that case the 

mi 's are uniquely determined by 

where ai is the ith coefficient in the Krawtchouk expansion of the annihilator polyno­

mial a(x) ofCl.. Here 

a(x) := 2n-k II (1- ~), 
wEW W 

and W is the set of s nonzero weights of vectors in Cl.. 

5.1 Uniformly packed codes 

In [2] a code is called uniformly packed ( u. p.) if there exist rational numbers a 0 , a 1 , ..• aR 

such that for any x in Fn, EaiAi(x) = 1 holds. An extensive account of u.p. codes 

appears in [12). With our notations, this reads: 

Proposition 5.2 A uniformly packed code C is a perfect M-covering with 8(M) = 
R(C). 

In that case, R = s = 8 and Proposition 5.1 applies. The reason is that R::; s ::; 8 

in general. The first inequality is Delsarte's Theorem, (3.3) of [10]; the second is 

Corollary 4.1. 

Examples of u.p. codes (see [10], Section (3.1)): 

QR[47, 24, 11]7, with M = (1, 1, 1, 1, 1/9,1/9,1/9, 1/9) 

extended QR[48, 24, 12]8, with M = (1, 1, 1, 1, 5/27, 1/9,1/9,1/9, 1/54). 
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5.2 Strongly uniformly packed codes 

This concept is introduced in [15]: An [n, k, d = 2e + 1 ]R code C is strongly uniformly 

packed (s.u.p.) if R ::=::; e + 1 and for any x such that d(x, C) ~ e, the following holds: 

IB(x,e+ 1) n Cl = r (independent of x). 

Here B(x, e + 1) denotes the sphere of radius e + 1 centered at x in Fn. Of course, if 

d(x, C) ::=::; e- 1, then by the triangle inequality 

IB(x,e+ 1) n Cl = 1. 

Such a code will be denoted by SUP(n,e,r). We have just proved 

Proposition 5.3 An SUP( n, e, r) is a perfect M -covering with m0 = m1 = · · · = 

me-l= 1, me= me+l = 1/r. D 

Note that a code C can be a perfect M-covering for different M's. For example, the 

[23, 12, 7]3 Golay code is an SU P(23, 3, 6), hence a perfect (1, 1, 1, 1/6, 1/6)-covering 

by Proposition 5.3. On the other hand, since this code is perfect, it is also a perfect 

(1, 1, 1, 1)-covering. We saw in (5.1) a sufficient condition for the uniqueness of M. 

5.3 The case of diameter one 

If h = 1, then R = s = 1, and L(x) = m0 + m1(n- 2x) = -2xm1 + 2n-k. Theorem 

(4.1) implies that Cl. has a unique nonzero weight, namely, x = 2n-k-l /m1. 

Since d > 2, Cl. has no coordinates identically 0. Therefore Ci consists of 1/m1 
copies ofthe simplex code [14] with m1 = 1/t, for some integer t. Thus n = t(2n-k -1 ). 

Now from mo + m1n = 2n-k, we get m0 = 2n-k- nft = 1 (which also follows 

directly from d > 2). 

Proposition 5.4 A perfect M covering with h = 1 exists iff n = t(2i- 1), m0 = 1, 

mi = 1ft for some integer t. 

Proof. The "only if" part is proved just above. The "if part" also! Namely, take 

for C the dual of the code consisting of t copies of the simplex code. D 

For its intrinsic interest we shall present an alternate description of these {1, 1/t}­

covermgs. 
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Definitions. Let C[n, k, d]R and C'[n', k', d']R' be two linear codes. 

S () {
o ifxeC 

et Xc X = 
1 otherwise. 

Note that Xc is the complement of the usual indicator function. We then extend this 

function to a mapping X : F"'"'' -+ F"'' by setting 

where the xi's are in F"', for 1 < i ~ n', and 

x = ( x1 , x2 , ••• Xn') is their concatenation. 

We are now ready to define C ® C' as follows: 

C®C' := {z E F"'"'': x(z) E C'}. 
Remark that C ® C' is not linear in general, because Xc is not. 

Proposition 5.5 C ® C' has length nn', minimum distance min{ d, d'}, and covering 

radius RR'. 

Proof. Easy. D 

Proposition 5.6 Suppose that d(C') > 2. Then C ® C' is linear if and only if C is 

an [n, n- 1] code. In that case, C ® C' is an [nn', nn'- (n'- k')] code. 

Proof. If C is an [n, n- 1] code, then Xc is linear (check!), and so is x, and 

C ® C' = x-1(C'). 
Conversely, suppose C has codimension at least 2. Let a, b be in different cosets 

of C; then Xc( a) = Xc( b) = Xc( a+ b) = 1. Let d be a word of C' with first component 

= 1 and X = (a,x2,x3,• .. ,Xn') a codeword of c ® C'(i.e., in x-1(C')). Then y := 

(b, x2, X3 ••• 'Xn') is also in x-1 (C'). Now X+ y =(a+ b, 0, 0 ... '0) is not inc® C', 

since x(x + y) = (1, 0, ... 0) (/ C'. Hence C ® C' is not linear. 

Let us now prove the dimensional part of the proposition: consider x', the restric­

tion of X to C ® C'. Since ker x c C ® C', ker x' = ker X· But dim(ker x) = 
n' · dimC = n'(n- 1). Combined with Im(x') = C', this yields: 

dimC®C' dim(Jm(x')) + dim(ker(x')) 

k' + n'(n- 1) 
nn'- (n'- k'). 
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0 

To avoid d(C) = 1, and hence d(C ® C') = 1, we choose for C the parity code 

[n, n- 1, 2]1 which is unique with such parameters. Then C ® C' is an [nn', nn'­
(n'- k'), 2]R' code. 

Proposition 5. 7 Let x and x' be such that d(x, C) = R, d(x', C') = R'. Suppose that 

AR(x) and Ak,(x') are independent of x. Then for C ® C' the coefficient ARR'(z) is 

the same for any z such that d(z, C ® C') = RR', and 

0 

Corollary 5.1 The "if" part of Proposition 5.4 (alternate proof). 

Choose C[t, t- 1, 2]1 
C'[2i - 1, 2i - i - 1, 3]1 A~ = 1 

Then C ® C' is a [t(2i- 1), t(2i- 1)- i, 2]1 with A1 (x) = t for all x fl. C ® C', i.e., 

a {1, 1/t}-covering. 0 

If we omit the condition m0 = 1, i.e., we set d = 1, we get an extended family of 

PWC by adding to all code words from PWC in Corollary 5.1 all possible tails of 

length l. Let C be [t(2i- 1), t(2i- 1) - i, 2]1 PWC, and C" consist of all vectors 

(c,x) of length t(2i -1) + l, where c belongs to C, and xis from F 1• 

Proposition 5.8 C" is a [t(2i-1)+l,t(2i-1)+l-i, 1]1 PWC, i.e., a {1-ljt, 1/t}-
coverzng. 

Proof. Linearity and parameters are trivial. Let us consider a vector y = (Yb y2 ), 

where y1 and y2 are from pt(2;-l) and F 1 respectively. If y1 belongs to C, then 

Ao(y) = 1 and A1(y) = 1 (all the code vectors of the shape (y1,x), d(y2 ,x) = 1). 

If d(yt, C) = 1, then Ao(Y) = 0, and A1(y) = t (all the code words of shape (z, y2), 

d(z, YI) = 1). Solving the system m0 + l· m1 = 1, t · m1 = 1, we get the statement. 

From the uniqueness of the above system we conclude 

Proposition 5.9 For 8 = 1 all the possible PWC are described in Proposition 5.8. 

Remark. In particular, setting l = t - 1 in Proposition 5.8 gives a complete 

characterization of the parameters of binary linear P MC with diameter 1, simpler 

than the one in [15]. 
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6 The case of diameter 2 

Now we take 8 = 2. By Corollary 4.1, we know that s is at most 2. We shall treat 

separately the two possible values of s. First, notice the obvious implication following 

from (2.1): 

m 0 #1 => d < 8. 

Under the assumption 8 = 2 this becomes 

(6.1) m 0 #1 => d $ 2. 

Therefore, if the code C corrects at least one error, then m0 = 1. Since R $ s $ 2, C 
is quasi-perfect and, in fact, (..\,JL) uniformly packed. Much is known, although not 

everything, about these codes [12, 10], and we shall not consider them here. Hence 

we assume 

m0 #1, which implies d = 2 

from (6.1) and our blanket assumption d;::: 2. In fact, we shall restrict ourselves to 

perfect multiple coverings (2.2); i.e., set 

m0 = m1 = m 2 = 1 /j. 

From the definition in Theorem 4.1, the Lloyd polynomial L(x) satisfies 

(6.2) jL(x)=2x2 -2(n+1)x+1+n+ (;). 

If we use (3.1) we may write 

(6.3) jL(x) = 2x2 - 2(n + 1)x + j2n-k. 

Since s > 1, L(x) has at least one integral root. But the sum of the roots is n + 1, 

so both are integral. Solving (6.1) we find that the roots of L(x) are 

(6.4) 1 ( . r:::--1) m 2 ± m 2 n+l±vn-1 =1+ 2 , 

where we have set 

(6.5) 

for some integer m. 



6.1 PMC with s = 1 

Proposition 6.1 The only perfect multiple covering code with s 

8 = 2 is the [2, 1, 2] code with j = 2. 
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1, d = 2, and 

Proof. Let C be an [n, k, d) code satisfying the hypotheses. Since d = 2, CJ.. has 

repeated coordinates but none identically zero. Therefore C.l. is, for some integer 

t > 2, the t-fold repetition of the simplex code [14] of type [2i - 1, i, 2i-1], where 

i =dim CJ.. = n- k. Thus n = t(2n-k- 1). From (6.5) we get 

(6.6) 

But there are no solutions for (6.6) if n- k ;;::: 2. For let p be any prime dividing 

2n-k - 1. Then -1 is a quadratic residue mod p, from (6.6). Therefore p - 1 

(mod 4). It follows that 2n-k- 1 = 1 (mod 4), a contradiction. 

Therefore there are no P MC with 8 = 2 and s = 1 except for n - k = 1. And in 

this case there is only the [2, 1, 2] code. The reason is that with d;;::: 2 it must be the 

[n, n -1, 2] code. From the definition in Section 1 it easily follows that n can be only 

2. D 

Allowing d to be 1, we find that the only possibility for the check matrix is the 

t-fold repetion of g(Si) (generator matrix of a simplex code of length 2i - 1) with 

l zero-columns appended, yielding n = t(2i- 1) + l. It amounts to appending all 

possible tails of length l to codewords described in Corollary 5.1. It is easy to check 

that there are 2 kinds of covering equalities (namely, vectors coinciding with, or being 

at distance 1 from, codewords on the first t(2i- 1) coordinates): 

This implies 

mo + lmi + G)(2i -1)m2 + {!)m2 = 1 

tm1 + (2i-I - 1) t2m2 + tlm2 = 1. 

which has discriminant 

We get a P MC iff D = x2 has integer solutions. For example, the values i = 3, l = 

3, t = 14 yield the P MC [101, 98] with j = 644. Of course, for i = t we get 81 + 1 = x2 

having all odd x as solutions. 
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Parameters of a series of P MC for s = 1, 8 = 2: 

i = 1 [- x2-1 
- 8 ' X= ±1 (mod 4); 

i=2 l = x2-1 - 1 
16 ' 

x= ±1 (mod 8); 

i=3 l = x2-3- 2 
32 ' X= ±3 (mod 16); 

i=4 l = x2-25- 4 
64 ' X= ±5 (mod 32); 

i=5 l = x2-57- 8 
128 ' X= ±21 (mod 64); 

Conjecture 6.1 For every i there exists an infinite series of P MC iff (2i - 7) is a 

square mod 2i+1 . 

Derivation of parameters [n, k, 1) 

t 1 ,2 = (2i + 2 + l ± x)/2; n = t(2i- 1) + l; j = (2i-1 - 1)t2 + t(1 + l); k = n- i; 

If the above conjecture is true (checked for i up to 10), then 

Theorem 6.1 (based on Conjecture 6.1) Let a = ±J2i+1 - 7 (mod 2i+2 ). Then 

for x - a (mod 2i+t) there is a PM C code with parameters 

t = (2i + 2 + 1 ± x)/2; 

n = t ( 2i - 1) + l; 

k = n- i; 

j = (2i-1 - 1)t2 + t(1 + l). 

6.2 PMC with s = 2 

We have found the following PMC codes C in this case (d = s = S = 2). 
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(6.7) 

c CL 

[5, 1; 5] j=1 [5, 4; 2, 4] 

[5, 2, 2] j=2 [5, 3; 2, 4] 

[5, 3, 2] j=4 [5, 2; 2, 4] 

[10, 7, 2] j=7 [10, 3; 4, 7] 

[37, 32, 2] j =22 [37, 5; 16, 22] 

[8282, 8269, 2] j = 4187 [8282, 13; 4096, 4187] 

The first is a classical perfect code. The notation [n, k; Wt, w2, .. . ] stands for an [n, k] 

code in which all nonzero weights are among Wt, w2 ,. . . . In the above codes C.l., 

since s = 2, both weights are present. All the above codes C are P MC codes. 

These codes arise from the following two constructions. 

Notation 
g( C) generator matrix of code C 

si i-dimensional simplex code 

First Construction. We construct a 2-weight code c.1. by setting g( C.J..) equal to 

g(Si); ch where c is any column of g(Si)· For example, the [5, 3, 2] code for j = 4 

above has 

Here i = 2 and h = 2. There is no loss of generality in taking c to be a unit vector. 

In general we have 

(6.8) 

The weights in C.J.. are 2i-l and 2i-l + h. 

We will now calculate the values 

for the cosets of C: 

Identify the cosets with the syndromes, which are columns of Si. 

( i) The code C has 



since column c occurs h + 1 times in g(C.l..). 
(ii) For any column c' of g(Si) other than c, 

2i- 2 
D = 0,1,-2- + h, 

14 

since there are (2i- 2) /2 vectors v of weight 2 in any coset of weight 1 in the Hamming 

code Sl. Column c is covered by one of those vectors v. We may replace c there by 

any of its h clones. 

(iii) For column c, 
21 -2 

D = O,h+ 1,-2-

Now the code C will be a P MC iff the sum of D is the same in all three cases: 

(6.9) 

This equation can be written 

(6.10) 

All solutions of this Diophantine equation are known [16]. They exist precisely for 

h = 0, 1, 2, 3, 6, and 91. 

Since his the difference between the two weights in C.!., h =mas defined in (6.4) 

and (6.5). Thus we consider 

h = m = 0, 1, 2, 3, 6, and 91. 

The corresponding values of j, from (6.9), are 

j = 1,2,4, 7,22,4187. 

Since i = dim(C.l..), i = n- k. We may calculate i from (6.10). We get 

n-k= 0,1,2,3,5,13. 

The first two cases have s = 0 and 1. They are nevertheless the PM C codes C shown 
here: 

c J C.L 

[1, 1; 1] 1 [1, 0; 0] 

[2, 1; 2] 2 [2, 1; 2]. 
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The next cases are the [5, 3, 2) code in our table (6.7), and the three larger codes 

of (6.7). 

It remains to account for the [5, 1; 5) code and the [5, 2, 2) code. 

Second Construction. The [5, 1; 5) code C has s = R = 2. Since it is perfect, it is 

a P MC with j = 1. If we now let C2 be a coset of C of weight 2, and define 

we get a [5, 2, 2] code C1 . This construction obviously doubles the value of j for any 

P MC code with R = 2. Thus we get the second code in (6.7). 

Since C1 has R = 2 as well, we may arrive at the [5, 3, 2) P MC code again by 

applying the second construction to cl. 
Note. The first construction yields nothing if we repeat the simplex code in CJ.... 

I.e., if 

then the smaller weight in cj_ is 

t. 2i-l - 1 + 
2 

from (6.4). The length is 

n - t(2i -1) + m = 1 + 

from (6.5). These easily imply t = 1. We have proved 

Prop osition 6. 2 The only PM C codes with d = s = 8 = 2 obtainable by the First 

Construction are those in (6.1). 

Conjecture 6.2 We conjecture the nonexistence of P MC codes with d = s = 8 = 2 
other than those in (6.1}. 

7 List codes 

Recall from the introduction that in list decoding, to every x in pn (received vector) 

is attached a list of at most K candidates (transmitted codewords ). Following [4, 11), 

we denote by ( n, e, K) a code C enabling the correction of up to e errors by list 

decoding with maximal list size K. This is equivalent to 

(7.1) IB(x, e) n Cj ~ K for all x, 
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where B(x, e) denotes the sphere of radius e centered at x. A code satisfying (7.1) is 

also called a K-fold e-packing, and a perfect multiple covering (2.2) if equality holds 

in (7.1) for all x (see [17]). From (5.2), the following is immediate. 

Proposition 7.1 An SU P(n, e, r) is a list code (n, e + 1, r). 

Refining the definition of a list code, we denote by K, = { Ki} the set of possible 

list sizes attached to x's, with max Ki = K. Here is a small table of these codes. 

n e K, 

23 4 {1,6} 

23 5 {1,22} 

47 7 {1,9} 

Comments 

Golay code 

Golay code 

QR 

48 8 {1, 24, 29, 34, 39, 44, 45, 49,54} Ext. QR 
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