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Abstract

During the last 20 years, a large amount of detailed cosmological obser-

vations have promoted cosmology to the rank of high-precision science.

Remarkably, all the observations currently available can be accounted

for by assuming that (i) the universe is approximately homogeneous and

isotropic on large scales, (ii) gravitational interactions are described by

General Relativity with a non-vanishing cosmological constant and (iii)

85% of the matter content of the universe is in the form of dark matter,

a presently unknown type of matter which interacts with ordinary matter

only gravitationally. Current theoretical efforts are focused on gaining

a deeper understanding of the small departures from perfect homogene-

ity and isotropy observed in our universe, the nature of dark matter and

the physical origin of the cosmological constant. Effective field theory

methods provide a natural framework to try to address such outstanding

questions. For instance, such methods have been extensively used to study

alternative theories of gravity which mimic a non-vanishing cosmological

constant and to build models of the early universe which generate the ob-

served anisotropies and inhomogeneities through a period of accelerated

cosmic expansion. In this thesis, we study effective field theories of grav-

ity which violate some basic tenets of General Relativity such as Lorentz

invariance and the weak equivalence principle. We also employ effective

field theory methods to explore the imprint that high energy physics can

leave on the small departures from homogeneity and isotropy generated

in the early universe.
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Chapter 1

Introduction

Einstein’s equations of General Relativity (GR), supplemented with the plausible

assumption that our planet does not occupy a privileged position in the universe,

generically lead to the prediction that the universe is not stationary. This prediction

was confirmed in 1929 by Hubble’s discovery that the universe is indeed expanding [1].

Such a discovery suggests that the universe must have been much denser in the past,

and therefore its energy density much higher. This observation is the foundation of

the Hot Big Bang theory.

The main predictions of the Hot Big Bang theory follow essentially from our

understanding of particle physics applied to an expanding universe. For instance,

the Cosmic Microwave Background (CMB) radiation we observe today was produced

when electrons and nuclei combined to form neutral atoms, allowing the photons to

propagate freely [2, 3]. This process took place when the energy density ρ of the

universe was such that ρ1/4 ∼ 10−10 GeV and was determined by atomic physics. In

turn, nuclei were formed when the universe was much denser and the typical energy

scale was ρ1/4 ∼ 10−4 GeV. The formation of light nuclei is accurately described

by nuclear physics and determines the current abundance of light elements in the

universe [4–6].

The idea that the features of the universe we observe today are a reflection of the

laws governing particle physics at particular energy scales is very powerful and drives

research in modern theoretical cosmology. In particular, it is believed that current
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observations may offer at least three more windows on particle physics at different

energy scales.

The first window is provided by the small temperature fluctuations observed in the

CMB [7, 8]. These fluctuations are believed to have the same origin of the large scale

structures we observe in the universe [9, 10] and could have been determined during

a period of accelerated expansion known as inflation which took place at energy

scales as high as ρ1/4 ∼ 1016 GeV. Thus, primordial perturbations offer a unique

opportunity to test energy scales that would otherwise be too high to be tested with

particle accelerators.

The second window follows from precise observations of galaxies [11], galaxy clus-

ters [12–14] and large-scale structures [9, 10] which indicate that the vast majority

of matter in the universe is in the form dark matter—a presently unknown form of

matter which seems to interact with ordinary matter only gravitationally.1 Given the

current abundance of dark matter in the universe, it is plausible [15] that dark matter

might be a manifestation of physics taking place at energy scales ρ1/4 ∼ 103 GeV.

This energy scale is of particular interest because it is currently being investigated at

the Large Hadron Collider.

Finally, the last window on particle physics comes from the groundbreaking discov-

ery that the universe is currently undergoing a phase of accelerated expansion [16, 17].

Although this result can be accounted for by a non-vanishing cosmological constant,

such an explanation would require a remarkable fine-tuning of parameters, as we will

point out in Sec. 2.3.1. For this reason, it was suggested that the phenomenon of

cosmic acceleration may be due to a modification of the gravitational sector which

becomes relevant at energy scales as low as ρ1/4 ∼ 10−42 GeV [18]. Thus, by studying

cosmic acceleration we may be able to probe gravitational interactions at extremely

small energy scales.

Given the preponderant role which particle physics plays in our current exploration

of the universe, it is not surprising that, over time, techniques that were originally

developed in particle physics have been also fruitfully applied in cosmology. A good

1CMB observations also provide indirect evidence for the existence of dark matter.
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example of such techniques is provided by effective field theories (EFTs). The main

advantage of EFTs is that they provide an isolated description of the relevant physics

at any given energy scale. As such, EFTs are an ideal tool to study the energy

scales we have access to in cosmology. In this thesis, we will make an extensive use

EFT methods to study modifications of GR as well as features of the primordial

fluctuations generated during inflation.

More specifically, this dissertation is organized as follows. In chapter 2, we intro-

duce some basics EFT concepts which are extensively used in the rest of this thesis.

We give a brief overview of the standard cosmological model, some of its limitations

and some of the proposals put forward to address them. We focus in particular

on possible modifications of GR, and we argue that these alternative theories require

either additional degrees of freedom besides the graviton or violations of Lorentz sym-

metry. We also review the mechanism which leads to the generation of primordial

fluctuations during inflation.

In chapter 3, we study theories of gravitation which admit violations of Lorentz

symmetry. By extending the coset construction of Callan, Coleman, Wess and Zu-

mino [19], we develop a systematic approach to low-energy theories of gravity which

are locally invariant only under a subgroup of the Lorentz group. We illustrate our

formalism by considering the explicit case of a theory invariant under local rotations.

In chapter 4, we consider what is arguably the simplest alternative to GR which

preserves Lorentz symmetry, namely a gravitational theory with an additional scalar

degree of freedom. We show how this class of theories inevitably leads to violations

of the weak equivalence principle, which however are likely to be too small to be

detectable.

In chapter 5 we examine the imprint that high energy physics might leave on the

statistical properties of the small departures from homogeneity and isotropy produced

during single-field inflation. We find that high energy physics significantly affects

the spectrum of perturbations only when the physical size a fluctuation becomes

&Mp× 105. This value is likely to lie well beyond the regime of validity of the EFT,

suggesting that for all practical purposes high energy physics would have a negligible
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impact on the spectrum of primordial perturbations. We conclude in chapter 6 by

summarizing the main results of this dissertation and outlining some future directions.

Throughout this dissertation, we made a deliberate use of footnotes to include

technical details that can be omitted on a first reading. For completeness, we conclude

this introduction with a list of the conventions adopted in this thesis as well as a list

of abbreviations.
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Appendix 1.A List of Conventions

Throughout this dissertation, we have adopted the following conventions:

• Greek indices µ, ν, λ, ... label the components of tensors with respect to the

coordinate basis and take values 0, 1, 2, 3.

• Latin indices a, b, c, ... label the components of tensors with respect to an arbi-

trary orthonormal basis and take values 0, 1, 2, 3.

• Latin indices i, j, k, ... run over the spatial coordinates and take the values 1, 2, 3.

• Repeated indices are summed over.

• The metric has a (−,+,+,+) signature.

• The Riemann tensor is defined as Rλ
µσν ≡ ∂σΓλµν − ∂νΓλµσ + ΓλσρΓ

ρ
µν − ΓλνρΓ

ρ
µσ.

• The Ricci tensor is defined as Rµν ≡ Rλ
µλν .

• The energy momentum tensor Tµν is related to the matter action Sm by

Tµν = − 2√
−g

δSm
δgµν

.

• We work in units such that ~ = c = kB = 1.

• We express energies in GeV, lengths in Mpc and times in yrs. The relation

between these units of measure is 1 Mpc ∼ 3× 106 yr ∼ 2× 1038 GeV−1.

• We use the reduced Planck mass Mp = (8πG)−1/2 ≈ 2× 1018 GeV.

• We denote cosmic time with t and conformal time with τ . The relation between

these two time variables is dτ = dt/a(t), and I use the abbreviations ḟ ≡ ∂tf

and f ′ ≡ ∂τf .
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Appendix 1.B List of Abbreviations

Throughout this dissertation, we have used the following abbreviations:

• CMB: Cosmic Microwave Background

• EFT: Effective Field Theory

• FRW: Friedmann-Robertson-Walker

• GR: General Relativity

• PNGB: Pseudo-Nambu-Goldstone Boson

• vev: vacuum expectation value



Chapter 2

Effective Field Theories and

Modern Cosmology

2.1 Introduction

A fundamental feature of our world is that it is characterized by a variety of inter-

esting phenomena occurring at different energy scales. At the core of the success

of physical sciences is the basic realization that different phenomena can be mod-

eled independently as long as they take place at different energy scales. Effective

Field Theories (EFTs) provide a quantitative description of this qualitative state-

ment. Initially developed in the context of particle physics and condensed matter,

EFT methods are also particularly suited to the study of cosmology. After all, the

universe is the system with the largest possible hierarchy of scales, ranging from the

size of our observable patch of universe down to the Planck length.

The goal of this chapter is to provide the reader with an introduction to EFTs

and their applications in cosmology. To this end, in Sec. 2.2 we will briefly review the

basics of EFTs. Since scalar fields will play an important role in this thesis, the last

part of this section will be devoted to EFTs involving scalar fields. In Sec. 2.3, we will

review the standard cosmological model which embodies our current understanding

of the universe. We will review some of the open problems which are driving current

research in theoretical cosmology along with some of the solutions proposed in the
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literature. One of the possibilities often entertained is that, despite passing stringent

observational constraints at solar system scales, General Relativity may fail to provide

an accurate description of gravitational interactions at cosmological scales. For this

reason, in Sec. 2.4 we will consider possible modifications of General Relativity from

an EFT point of view. Many shortcomings of the standard cosmological model can be

addressed by assuming that the early universe underwent a phase of quasi-exponential

accelerated expansion known as inflation. In Sec. 2.5 we will review EFTs of inflation

characterized by a single scalar field. We will pay particular attention to the properties

of quantum fluctuations during inflation and we will review some of the challenges

that need to be overcome in order to build a successful EFT of inflation.

2.2 Effective Field Theories

EFTs are a modern tool to exploit the simplification which arises whenever a system

admits a large hierarchy of scales. In this section, we will introduce some basic EFT

concepts that will be used in the rest of this thesis. For further details, we refer the

reader to the many excellent reviews available in the literature [20–26]. A pedagogical

introduction to EFT methods in the context of gravitational theories can also be found

in [27, 28].

EFT methods are based on the fundamental assumption that, at any given energy

scale, physical phenomena can be described using an effective action which provides

an “isolated description of the important physics” [20]. The effective action is com-

pletely determined once we specify (i) the symmetries and (ii) the field content of

the theory. The latter determines in turn the particle content once the theory is

quantized. It is actually remarkable that many interesting physical predictions can

follow from considerations based exclusively on symmetries and field content.

Any effective action in d space-time dimensions can be schematically written as

S =

∫
ddx

∑
i

giOi (2.1)

where the gi’s are coupling constants and the Oi’s are operators which (i) are in-
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variant under the symmetries of the theory and (ii) depend on the fields and their

derivatives at a single space-time point. The latter requirement is sufficient to ensure

that the principle of locality is satisfied, i.e. that distant experiments yield uncor-

related results [29]. If the EFT is weakly coupled, then the typical size of quantum

fluctuations is controlled by the free part of the action, which includes the terms that

are quadratic in the fields and (usually) contain at most two derivatives. These are

the terms that determine the mass dimension of the fields [26].

If a given term in the action has mass dimension [Oi] = δi, then we can introduce

the dimensionless coupling ḡi = giM
δi−d where M is some mass scale known as cut-off

(for reasons that will be soon clear) which is chosen in such a way that all ḡi . 1. We

can then use simple dimensional analysis to estimate the contribution of each term in

the effective action to a process characterized by an energy scale E larger than any

other mass scale in the theory except M :∫
ddx giOi ∼ ḡi

(
E

M

)δi−d
. (2.2)

It follows that the operators Oi can be divided into three distinct categories. The

terms that have a mass dimension δi > d give a contribution to the action which

becomes less and less important at low energies, and for this reason such terms are

called irrelevant. The terms with δi = d give a contribution which is equally important

at all energies and are known as marginal. Finally, the terms with δi < d give

a contribution which becomes more and more important at low energies and are

therefore called relevant. Equivalently, we can say that the low-energy phenomenology

of an EFT is encoded in the relevant operators, while the small corrections due to

physics at high energies are captured by the irrelevant operators.

Despite the fact that the effective action (2.1) contains an infinite number of terms

Oi, only a finite number of them have mass dimension equal or smaller than any given

δi. This means that, as long as we are interested in carrying out perturbative low-

energy calculations with a finite precision, only a finite number of terms and therefore

of parameters gi is needed. This ensures that EFTs are predictive at any given order

in the E/M expansion.
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Since the dimensionless couplings are all ḡi . 1, it should be clear from (2.2) that

the corrections due to irrelevant operators become all equally important at energies

E &M and therefore the validity of perturbation theory is cut off (hence the name)

at energies of order M . As we will see in chapter 5, a more refined criterion is based

on comparing the size of classical (tree-level) correlation functions of the fields with

the perturbative corrections coming from quantum (loop) effects.1 When energies

are so large that quantum corrections become of the same order as the classical

result, perturbation theory breaks down and analytical calculations become extremely

difficult. When this happens, one can introduce a new EFT with a larger cut-off

M ′ > M . In order for the new EFT to reproduce the results of the old one at

energies E < M , the couplings ḡi must change with the cut-off in a way which is

captured by the renormalization group equations

M
∂ḡi
∂M

= βi(ḡ). (2.3)

The functions βi are usually calculated as a perturbative expansion in the couplings

ḡi [30], although non-perturbative techniques have been developed as well [31].

Since the cut-off determines the largest energy at which perturbative calculations

can be trusted, one might be tempted to avoid such limitation by working with an

EFT with an infinite cut-off. However, it sometimes happens that the renormalization

group equations cannot be integrated beyond a certain limiting scale Mmax. In this

1A slightly technical remark is in order here. Loop corrections are generically divergent and need

to be regulated in order to be handled properly. One way of regulating loop corrections consists in

cutting off divergent integrals over momenta by introducing an arbitrarily large but finite scale Λ.

The distinction between the regulator Λ and the cut-off M becomes blurred in the Wilson approach

to EFTs, but these two concepts are independent of each other. This means that we do not need

to use Λ as a regulator for an EFT with a cut-off M and we can instead choose to use dimensional

regularization, i.e. to work in d = 4− ε space-time dimensions. There are indeed several advantages

in doing so. For instance, dimensional regularization makes dimensional analysis much easier and

allows for an easier determination of the which terms in the effective action should be considered

at any given order in the E/M expansion. Moreover, in equation (2.3) we are assuming that the

functions βi do not depend on M , and this happens only if we use a mass-independent regularization

procedure such as dimensional regularization.
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case, two scenarios are possible:2

1. Heavier particles with a mass equal to or smaller than Mmax come into play as

the cut-off gets closer to Mmax. It is therefore necessary to include these heavy

particles in the EFT if we want to consider a cut-off larger than their mass.

These heavier particles will contribute to the renormalization group equations

in such a way that the maximum integration scale Mmax gets lifted to a larger

value, possibly up to Mmax =∞.

2. Another possibility is that the fields that appear in the effective action actually

describe bound states and that at high energies these are no longer the correct

degrees of freedom to use. An example of this scenario is provided by QCD:

at low enough energies physical processes can be described using an effective

action which involves only pions. However, as the energy increases the coupling

between pions becomes stronger and stronger and eventually one needs to switch

to QCD—a new EFT in which quarks are the appropriate (weakly coupled)

degrees of freedom.

A sufficient condition3 to ensure that the renormalization group equations (2.3)

can be integrated up to M = ∞ is if the couplings ḡi approach a fixed poin ḡ∗

such that β(ḡ∗) = 0 in the limit M → ∞. A theory which satisfies this condition

is called asymptotically safe [33] and is said to be “fundamental” because it gives

a self-consistent description of physics at arbitrarily high energies. QCD is an ex-

ample of a fundamental theory since it is not only asymptotically safe, but actually

asymptotically free because the fixed point is at ḡ∗ = 0.

2It is worth mentioning a third and definitely more speculative scenario known as classicaliza-

tion [32]. In this scenario, scattering processes with an energy E &Mmax are still under control and

they lead to the formation of classical field configurations.
3The rationale behind this condition can be intuitively understood by integrating the renormal-

ization group equations to get ∫ ḡi(M
′)

ḡi(M)

dḡi
βi(ḡ)

= log
M ′

M
.

If the couplings ḡi approach a fixed point in the limit M ′ →∞, then both the LHS and the RHS of

this equation will diverge.
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An important concept to introduce is that of naturalness [34], which requires that

the dimensionless coefficients ḡi cannot be much smaller than one unless setting them

to zero would increase the symmetry of the EFT. The expectation of naturalness

comes from the fact that loop corrections will generically yield an order one contri-

bution to ḡi even if we start with ḡi = 0 at tree-level. We will explore this extensively

in Chapter 4. If however the EFT acquires an additional symmetry when ḡi = 0,

loop corrections to ḡi which preserve such symmetry must vanish in the limit ḡi → 0

and therefore must be proportional to ḡi itself. Hence, if the tree-level value of ḡi is

much smaller than one, loop corrections are guaranteed to yield a negligible correc-

tion. This happens for instance in gauge theories, where gauge couplings can be much

smaller than one because setting them to zero would turn the gauge bosons into free

particles whose number is separately conserved [34]. Similarly, fermion masses can be

much smaller than the cut-off because massless fermions enjoy an additional chiral

symmetry ψ → eiαγ
5
ψ. Finally, it is presently believed that scalar fields can have a

mass much smaller than the cut-off only in the presence of (i) spontaneously broken

continuous symmetries or (ii) supersymmetry. Since we will make an extensive use of

scalar fields in the rest of this dissertation, it is appropriate to conclude this section

by briefly reviewing both these scenarios.

2.2.1 Pseudo-Nambu-Goldstone Bosons

Symmetries are spontaneously broken when the vacuum of the theory is not as sym-

metric as the theory itself. In the case of spontaneously broken continuous symme-

tries, Goldstone’s theorem ensures the existence of one massless scalar particle—a

Goldstone boson—for every symmetry broken by the vacuum.4 If the theory does

not have other massless particles, it is possible to consider a low-energy EFT which

involves only the Goldstone bosons.

The prototypical example of such an EFT is a theory in which the global symmetry

SU(N) is spontaneously broken down to SU(N − 1) at the energy scale f . Such a

4This statement applies only to internal symmetries. In the case of space-time symmetries, the

number of Goldstone bosons can also be smaller than the number of broken symmetries [35].



13

theory contains 2N−1 Goldstone bosons πa which transform according to a non-linear

representation of SU(N) [36]. The Goldstone bosons can be conveniently grouped as

follows

Σ(x) = eiπa(x)ta/f . (2.4)

where the ta’s are the generators of the broken symmetries. This field parametrization

is particularly convenient because it has very simple transformation properties under

SU(N), namely Σ → UΣU † where U ∈ SU(N). Then, the most generic low-energy

effective action for the Goldstone bosons which is invariant under SU(N) is

S =

∫
d4x

f 2

4
Tr
[
(∂µΣ)† (∂µΣ)

]
+ · · · , (2.5)

=

∫
d4x

{
1

2
(∂π)2 +

1

24f 2

[
(∂π2)2 − 4π2(∂π)2

]
+ · · ·

}
(2.6)

where the dots in (2.5) stand for terms with higher derivatives which become negligible

in the low-energy limit E � f .

The action (2.6) clearly shows that the Goldstone bosons are massless because

there are no quadratic terms without derivatives. In fact, a small mass term for the

πa’s would explicitly break SU(N) and therefore it would be natural because setting

it to zero would restore the SU(N) symmetry. A Goldstone boson with a small mass

term is known as pseudo-Nambu-Goldstone boson (PNGB).

2.2.2 Supersymmetry

In supersymmetric theories, each fermonic field has a bosonic counterpart with the

same mass. In particular, any spin 1/2 field is associated with a complex scalar field.

A small mass for these scalars is then natural because the mass of the associated

fermions is protected by chiral symmetry as mentioned above. There is however a

price to pay: the constraints imposed by supersymmetry are so stringent that, even

in the presence of gravitational interactions, the potential for the scalar fields must

take the form [37]

V = eK/M
2
p

[(
∂W

∂ϕn
+

W

M2
p

∂K

∂ϕn

)†(
∂2K

∂ϕ†n∂ϕm

)−1(
∂W

∂ϕm
+

W

M2
p

∂K

∂ϕm

)
− 3
|W |2

M2
p

]
(2.7)
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where W depends only on ϕn (not on ϕ†n) and K = ϕ†nϕ
n + O(1/M2

p). As we will

discuss in Sec. 2.5.3, this constraint will turn out to be a major obstacle toward the

construction of successful models of inflation based on supersymmetry.

2.3 The Standard Cosmological Model

Our current understanding of the Universe is based on the assumption that gravita-

tional interactions at cosmological scales are well described by Einstein’s equations

of General Relativity (GR):

Rµν −
1

2
gµνR =

Tµν
M2

p

+ Λgµν . (2.8)

Moreover, precise observations of the Cosmic Microwave Background (CMB) and the

Large Scale Structures respectively indicate that the universe appears to be isotropic

and homogeneous at scales & 100 Mpc. For this reason, it is plausible that the

large-scale behavior of space-time can be approximately described by the Friedmann-

Robertson-Walker (FRW) metric

ds2 = gµνdx
µdxν = −dt2 + a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (2.9)

which is the most general metric invariant under spatial translations and rotations.

The index k = 0,±1 determines the intrinsic curvature of the hypersurfaces of con-

stant time, while the scale factor a(t) determines how the proper distance between

two free-falling observers changes over time. Isotropy and homogeneity also constrain

the energy-momentum tensor Tµν appearing on the right hand side of equation (2.8),

which must take the form T µν = diag {−ρ(t), p(t), p(t), p(t)} where ρ is the total

energy density and p is the total pressure. Therefore, under the assumptions of ho-

mogeneity and isotropy Einstein’s equations (2.8) reduce to the following system of

differential equations: (
ȧ

a

)2

+
k

a2
=

ρ

3M2
p

+
Λ

3
(2.10a)

ä

a
= −ρ+ 3p

6M2
p

+
Λ

3
(2.10b)
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These equations can also be rewritten as

Ωm + ΩΛ + Ωk = 1 (2.11a)

q(1− Ωm) = −

(
ΩΛ +

Ω̇m

2H

)
(2.11b)

where we have defined the Hubble parameter H = ȧ/a, the deceleration parameter

q = −ä/(aH2) and the fractional densities of matter, Ωm = ρ/(3M2
pH

2), cosmological

constant, ΩΛ = Λ/(3H2) and spatial curvature Ωk = −k/(3a2H2). In order to cast

Einstein’s equations in the form (2.11) we have also used the conservation of the

energy-momentum tensor, ∇µT
µν = 0. It is useful to break Ωm into three distinct

components,

Ωm = Ωr + Ωb + Ωdm, (2.12)

by introducing the fractional densities of relativistic species, Ωr, of non-relativistic

baryons, Ωb, and of dark matter Ωdm. Relativistic species include known particles

such as photon and neutrinos, but could also include unknown relativistic particles.

Baryons include all known particles which are too heavy to be relativistic. Finally,

dark matter consists of non-relativistic particles which haven’t been discovered yet

and seem to interact with baryons and relativistic species only gravitationally.

One of the most remarkable achievements of modern observational cosmology is

the measurement of the current values of the Hubble parameter, the deceleration

parameter and all the fractional densities appearing in equations (2.11) and (2.12).

The results of these measurements can be summarized as follows:

H0 ≈ 2× 10−42 GeV (2.13a)

q0 ≈ −0.6 (2.13b)

ΩΛ,0 ≈ 0.73 (2.13c)

Ωdm,0 ≈ 0.23 (2.13d)

Ωb,0 ≈ 0.04 (2.13e)

Ωr,0 ≈ 10−5 (2.13f)

Ωk,0 . 10−2. (2.13g)
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The values of these parameters reveal a surprising picture of our universe. First

of all, a negative value of the deceleration parameter implies that the universe is cur-

rently undergoing a phase of accelerated expansion. This defies the näıve expectation

that the gravitational attraction among the universe’s constituents should slow down

the cosmic expansion. Secondly, equations (2.13e) and (2.13f) indicate that all the

particles that have been discovered so far account for just a small fraction of the

universe’s energy budget: the expansion of the universe seems to be essentially deter-

mined by non-baryonic matter and the cosmological constant. Finally, notice that the

standard cosmological model is characterized by a single scale, the Hubble parameter

H0, which determines both the current age as well the size of our observable universe:

H−1
0 ≈ 1.4× 1010 yr ≈ 4× 103 Mpc. (2.14)

Despite the fact that a remarkable array of observations is consistently explained

by the values (2.13), the standard cosmological model is unable to fully account

for the properties of the constituents described by the fractional densities (2.13c) –

(2.13g). For instance, the nature of dark matter is still presently unknown, although

many dark matter candidates have been proposed in the literature. Even the baryonic

sector is somewhat puzzling, as we still lack a convincing explanation for the excess

of matter over anti-matter. In the next section, we will focus on some of the open

problems that are more relevant for the work presented in this dissertation.

2.3.1 Some Open Problems

ΩΛ: Cosmological Constant Problem

The results (2.13) indicate that almost 75% of the energy density of the universe is

accounted for by a non-vanishing cosmological constant. If we assume that GR is an

EFT valid up to a certain cut-off M , then arguments based on naturalness lead to

the expectation that M2
pΛ ∼M4 [38]. If we assume that GR remains valid up to the

Planck scale, then we should have Λ ∼ M2
p , in stark contrast with the observational
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result ΩΛ,0 ∼ 1 which implies

Λ ∼ H2
0 ∼M2

p × 10−120. (2.15)

Remarkably, a cosmological constant of this order of magnitude was first predicted

by Weinberg based on anthropic considerations [39]. The huge discrepancy between

the expected and observed values of Λ is known as the cosmological constant problem.

It is important to stress that this problem is not a consequence of the (maybe overly)

optimistic assumption that GR is valid up to energies M ∼ Mp. In fact, even a

cut-off of the order of the mass of the electron M ∼ me would lead to a cosmological

constant which is too large by more than thirty orders of magnitude!

Ωk: Flatness Problem

By differentiating the Friedmann equation (2.11a) w.r.t. the scale factor and using

the conservation of the energy momentum tensor we obtain a differential equation

describing how the fractional density Ωk changes with the scale factor:

dΩk

da
=

(
1 +

3p

ρ

)
Ωk(1− Ωk)

a
. (2.16)

This differential equation admits three fixed points, namely Ωk = 0, 1,∞. The sta-

bility properties of these fixed points are determined by the sign of the coefficient

1+3p/ρ and are summarized in Table 2.1 in the case of an expanding universe. Since

the universe expansion was dominated by relativistic (p = ρ/3) or non-relativistic

(p = 0) matter during the past 14 billion years, one would expect today’s value of Ωk

to be much closer to 1 than the observed value (2.13g). Equivalently, observations

seem to require an extremely fine-tuned and therefore unnatural initial value of Ωk:

this puzzle is known as the flatness problem.

Ωr: Horizon Problem

As we mentioned in the previous section, the most compelling evidence for the isotropy

of the universe at large scales comes from the fact that the CMB temperature is
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1 + 3p/ρ Ωk = 0 Ωk = 1 Ωk =∞

> 0 repeller attractor repeller

< 0 attractor repeller attractor

Table 2.1: Stability properties of the fixed points of equation (2.16) for an expanding universe.

d�

d

�

Figure 2.1: Particle horizon on the surface of last scattering.

uniform across the sky up to a part in 10−5. This remarkable uniformity seems

however to be at odds with the notion of causality in an expanding universe.

The characteristic scale of an FRW metric is the Hubble parameter H. Its inverse

roughly determines the maximum proper distance that particles can travel during

the time it takes for the universe to double in size. Regions of space-time that

are separated by a proper distance greater than H−1 are therefore not in causal

contact because the space in between is expanding faster than the particles can move.

Equivalently, two regions are not in causal contact if they are separated by a comoving

distance larger than the comoving Hubble radius (aH)−1.

The CMB radiation decoupled from the baryon plasma when the universe was

td ∼ 3 × 105 yr old, and at that time the comoving size of the causal regions was

(adHd)
−1. Taking into account that most of the expansion occurred when the universe
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was dominated by radiation, we can estimate the proper size of these regions today

to be

d∗ =
a0

adHd

∼ td

(
t0
td

)1/2

∼ 10 Mpc. (2.17)

Since decoupling, CMB photons have been traveling a much larger proper distance,

roughly equal to d = H−1
0 ∼ 4×103 Mpc. Therefore, CMB photons can be thought of

as originating from a sphere of proper radius d, as shown in Fig. 2.1. The solid angle of

sky subtended by a causally connected region is approximately θ2 ≈ (d∗/d)2 ∼ 10−4,

and therefore the CMB should consist of roughly 4π/θ2 ∼ 105 causally independent

patches. How is it possible that 105 causally independent regions give rise to CMB

radiation with almost exactly the same temperature? This puzzle is known as the

horizon problem.

2.3.2 Possible Solutions

In what follows, I will briefly survey some possible solutions to the outstanding prob-

lems mentioned in the previous section.

ΩΛ: Modified Gravity

As we pointed out in the previous section, the cosmological constant problem is

essentially a naturalness problem. The smallness of the ratio Λ/M2
p would not be

a problem by itself if the value of the cosmological constant was protected by some

symmetry. Unfortunately, the only symmetry which is presently known to protect the

cosmological constant is supersymmetry, which however must be broken at energies

& 103 GeV. Thus, supersymmetry could at most account for a cosmological constant

of the order of (103 GeV)4/M2
p ∼ M2

p × 10−62 that is still much larger than the

observed value (2.15).

While it is true that any model which explains cosmic acceleration without re-

sorting to a cosmological constant must still contain a small parameter (after all, the

small ratio Λ/M2
p must come from somewhere), the goal is to have a small parameter

which is natural. In fact, the smallness of the ratio me/Mp between the mass of the
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big banginflation

log k�1

log af

log dc
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log(adHd)�1

log(aH)�1

Figure 2.2: Evolution of the comoving Hubble radius during inflation and the Big Bang phase. The

values of the scale factor at the end of inflation, at decoupling and today are denoted respectively

with af , ad and a0. Similarly, Hd and H0 stand for the Hubble parameter at decoupling at today.

Finally, k represents the comoving wavenumber of the fluctuations we observe today.

electron and the Planck mass does not constitute a problem precisely because a small

fermion mass is natural.

Any alternative explanation of cosmic acceleration necessarily requires a modifica-

tion of Einstein’s equations (2.8). A subtle distinction is often drawn between models

that introduce additional fields besides the metric (Dark Energy models) and models

that do not (Modified gravity models). However, we find this distinction artificial

given that all these models can be thought of as modifications of the gravitational

sector. For this reason, in what follows we will call any alternative to GR a modified

gravity model. For a more comprehensive review of different approaches to cosmic

acceleration, we refer the reader to [40].

Ωr, Ωk: Inflation or Contraction

Based on equation (2.16), a dynamical solution to the flatness problem requires a long

enough period in the universe’s history during which Ωk = 0 is a dynamical attractor.

According to Table 2.1, this can happen only if (i) the universe is dominated by a

source with ρ+ 3p < 0, or (ii) the universe undergoes a period of contraction.
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In the first case, Eq. (2.10b) implies that the universe must go through a phase of

accelerated expansion known as inflation. During this period, the comoving Hubble

radius (aH)−1 decreases in time, since

d

dt
(aH)−1 = − ä

(aH)2
< 0. (2.18)

This result is the main reason why inflation can also address the horizon problem. As

illustrated in Figure 2.2, regions that were too large to be causally connected at the

time of decoupling might have been smaller than the comoving Hubble radius during

inflation provided the phase of accelerated expansion lasts long enough. Inflation

is therefore able to solve the horizon problem if the comoving Hubble radius at the

beginning and at the end of inflation are such that

N ≡ log
afHf

aiHi

& log
adHd

a0H0

∼ log
t0
td
∼ 10 (2.19)

where we used the fact that td ∼ 3 × 105 yr and t0 ∼ ×1010 yr. This condition also

ensures the resolution of the flatness problem [41].

As a bonus, inflation provides a causal mechanism to generate the primordial den-

sity fluctuations necessary to explain structure formation and CMB anisotropies [42–

46]. As shown in Figure 2.2, inflation allows for the comoving wavelength of the

fluctuations we observe today to be smaller than the comoving Hubble radius in the

early universe. This means that physical process which took place during inflation

within a causally connected region determined the properties of the fluctuations we

observe today in our universe.

As we will see in section 2.5, the simplest models of inflation require just a single

scalar degree of freedom. If we demand that this scalar has a luminal or sub-luminal

speed of propagation, then it can be shown [47–50] that inflation is the only mecha-

nism which (i) remains weakly coupled, (ii) is a dynamical attractor and (iii) gives

rise to primordial perturbations in agreement with observations.
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2.4 Effective Theories of Gravity

Einstein’s equations (2.8) can be derived by varying the Einstein-Hilbert action:

S =

∫ √
−g
[
M2

p

2
(R− Λ)

]
+ Sm[gµν , χ] (2.20)

where χ stands for an arbitrary number of matter fields. Given the observational

evidence that Λ�Mp, in what follows we will set Λ = 0. Then, the Minkowski metric

ηµν is the only vacuum solution of Einstein’s equations. If we consider fluctuations

around the Minkowski background, i.e. gµν = ηµν + hµν/Mp, the Einstein-Hilbert

action (2.20) reduces to

S =

∫ {
(∂h)2 +

h(∂h)2

Mp

+
h2(∂h)2

M2
p

+ · · ·+ hT

Mp

+ · · ·
}
. (2.21)

where for simplicity we have suppressed all the indices.

At the classical level, the action (2.21) clearly shows that GR is a highly non-linear

theory of a rank-2 tensor hµν . In the linear approximation, the equations of motion for

hµν can be written schematically as ∂2h ∼ T/Mp. Such approximation breaks down

when the cubic and higher-order terms in Eq. (2.21) become as large as the quadratic

term. Thus, classical non-linearities become important when h ∼Mp. As an example,

let us consider a static point-like source of mass m: the energy-momentum tensor is

schematically T ∼ mδ(r) and the linear equations can be solved using dimensional

analysis arguments5 to get h ∼ m
Mpr

. Hence, classical non-linearities become important

when h ∼ Mp or, equivalently, at distances of the order of the Schwarzschild radius

r ∼ m/M2
p

From the point of view of quantum field theory, elementary excitations of rank-j

tensors behave as particles with integer spin j. Therefore, the action (2.21) describes

an effective theory for a self-interacting massless spin-2 particle. The Einstein-Hilbert

action (2.20) contains all terms invariant under diffeomorphisms with at most two

derivatives. However, based on the arguments of Sec. 2.2 we expect quantum ef-

fects to introduce an infinite number of higher-derivative terms, such as for instance

5We are neglecting for the moment the issue of gauge invariance, as it will not play any role in

what follows.
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R2, RµνR
µν , · · · . These terms will in turn generate corrections to the action (2.21)

of the form (∂2h)2/M2
p , which cannot be neglected when ∂ ∼ Mp or, equivalently, at

distances6 r ∼ 1/Mp. GR is therefore an EFT with a cut-off of the order of Mp.

It turns out that GR is actually the only consistent Lorentz invariant low-energy

EFT of a self-interacting massless spin-2 particle [51]. Thus, any modification of

gravity necessarily requires either (i) a modification of the particle content in the

gravitational sector or (ii) violations of Lorentz invariance. In the rest of this section

we will briefly review both scenarios.

2.4.1 Modifying the Particle Content

Any modification of GR which preserves Lorentz symmetry necessarily requires ad-

ditional particles which couple to the energy-momentum tensor. Moreover, if we are

interested in modifications which explain cosmic acceleration, then the additional

particles need to mediate a force with a range which is at least r ∼ 1/H0. Such a

long-range interaction can only be mediated by bosons, because fermions cannot form

classical coherent states [52].7 Moreover, massive bosons give rise to an interaction

with a range of the order of the Compton wavelength of the particle, i.e. r ∼ 1/m.

For this reason, the additional bosons should be either massless or have an (effective)

mass m . H0.

As we mentioned earlier, bosons of integer spin j are associated with rank-j ten-

sors. Any Lorentz-invariant coupling between the energy-momentum tensor T µν and

a rank-1 or rank-j with j > 3 necessarily requires some derivatives [54] in order to

contract all the indices in a Lorentz-invariant fashion. Therefore, such couplings will

6Incidentally, it is interesting to notice that 1/Mp is typically much smaller than the length scale

m/M2
p at which classical non-linear effects become relevant around point-like sources. The wide sep-

aration between these two scales is what ultimately justifies going beyond the linear approximation

in classical contexts.
7Fermions can give rise to a composite boson by forming a condensate, but such boson would

mediate a force which decays as 1/r6 at large distances [53] and is therefore negligible compared to

the force mediated by the graviton which decays as 1/r2.
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become negligible at large distances compared to the graviton coupling in Eq. (2.21).8

It is also known that a low-energy EFT which contains more than one massless spin-

2 particle is consistent only if such particles are not coupled to each other [56–58].

Hence, adding one or more massless spin-2 particles to the gravitational sector would

result in a trivial modification of GR.9 For this reason, the only Lorentz-invariant

modifications of gravity that will be relevant to our purposes require the addition of

one of more spin-0 particles to the gravitational sector.

Alternative theories of gravitation with additional scalar degrees of freedom have

a very long history and it is impossible to do justice to all the models that have been

proposed in the literature. In many models, the additional scalar degrees of freedom

are not immediately apparent at the level of the action but they arise, for instance,

from higher derivative terms (e.g. [18]) or additional spatial dimensions (e.g. [61]).

For an extensive review of modified gravity models we refer the reader to [62].

The prototypical model is described by the action

S =

∫ √
−g
{
M2

p

2
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

}
+ Sm[F 2(ϕ)gµν , χ], (2.22)

and is a generalization of the theory originally proposed by Brans and Dicke [63].

Since we are interested in understanding the role played by the additional scalar,

we will now consider the artificial limit Mp → ∞ in which the metric fluctuations

decouple from the rest of the fields and gµν reduces to the Minkowski metric.

Because of the interaction between matter fields and ϕ, the stress-energy tensor of

matter is not conserved. However, in the non-relativistic limit where the pressure of

matter is negligible compared to its energy density, it is possible to define a conserved

quantity ρ̃ which is related to the matter energy density ρ by ρ̃ = ρ/F (ϕ). Then, by

varying the action (2.22) w.r.t. ϕ we see that the effective potential for ϕ is

Veff(ϕ) = V (ϕ) + F (ϕ)ρ̃. (2.23)

8For massless particles with spin j > 3, there is also the additional problem that there are no

self-interactions that can be written [55].
9See however [59] for an exception to this result when the spin 2 particles have a mass and [60]

for a concrete example.
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Although the justification for considering a modified gravity model such as (2.22)

comes from the acceleration taking place at cosmological scales ∼ 103 Mpc, one still

needs to preserve agreement with current experimental constraints obtained at solar

system distances . 10−12 Mpc. The gravitational field outside a static source of mass

m can be generically parametrized using the PPN expansion [64]

ds2 ≈ −

[
1− m

4πM2
pr

+
β

2

(
m

4πM2
pr

)2
]
dt2 +

(
1 + γ

m

4πM2
pr

)
dxidx

i, (2.24)

where γ = β = 1 in GR. Current experimental limits on these parameters are [64]

|γ − 1| . 10−5, |β − 1| . 10−4 (2.25)

Agreement with these constraints is usually achieved by screening the effect of the

scalar degree of freedom at small scales using one of the following mechanisms [65]:

• Chameleon mechanism [66, 67]: in this scenario the effective mass of the scalar

mode is proportional to the local matter density. Then, the scalar mode be-

comes heavy close to the Earth surface and the effective range of the interac-

tion becomes too short to affect experimental tests. A toy model which ex-

hibits this behavior is provided by the action (2.22) with V (ϕ) = µ4+n/ϕn and

F (ϕ) = 1+βϕ/M . In this case, the effective potential (2.23) has a minimum at

ϕmin ∼ ρ̃−1/(n+1) and the effective mass of the fluctuations around this minimum

is m2
min ∼ ρ̃(n+2)/(n+1).

• Symmetron mechanism [68–70]: in this scenario the linear coupling between the

scalar mode and the matter fields is proportional to the vacuum expectation

value (vev) of the scalar field itself. The vev depends on the local density and

it vanishes for large enough densities, leading to an extremely weak interaction.

A toy model with this behavior is provided again by the action (2.22) where

V (φ) = −µ2ϕ2 + λϕ4 and F (ϕ) = 1 + ϕ2/M2. In this case, the effective

potential (2.23) is such that the scalar field acquires a non-vanishing vev only

when ρ̃ < µ2M2. When the local density is larger than this critical value, the

vev of the scalar field vanishes and so does the linear coupling between ϕ and

the matter fields.
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• Vainshtein mechanism [71]: in this scenario higher-derivative non-linear terms

effectively increase the kinetic term of ϕ, leading to a small coupling between the

canonically normalized scalar field and matter. A prototypical example of this

mechanism can be obtained by replacing the potential V (ϕ) with a derivative

self-interaction of the form �ϕ(∂ϕ)2/M3 in the action (2.22) and assuming that

F 2(ϕ) = 1 + ϕ/Mp. When �ϕ/M3 � 1 then the non-linear interaction term

becomes more important than the kinetic term. In the region surrounding a

static point-like mass m, this happens for r . 1/Λ with Λ = (m/Mp)1/3/M ,

because ϕ ∼ m/(Mpr).
10 Then, the canonically normalized scalar fluctuations

around this background are δϕc ∼ (Λ/r)3/2δϕ and the linear coupling with

matter becomes very small: (r/Λ)3/2δϕcT/Mp � δϕcT/Mp.

All these mechanisms can be used to ensure that the bounds (2.25) are satisfied

and therefore that the motion of a single point-like particle outside a static, spherically

symmetric mass m is indistinguishable from the one predicted by GR. However, much

more stringent constraints follow from comparing the motion of two extended objects

with different composition. In the zero-tide approximation, GR predicts that such

objects will behave like point-like particles and will experience the same gravitational

acceleration. This result is known as the weak equivalence principle. The current

experimental limit on violations of the weak equivalence principle is [64]∣∣∣∣a1 − a2

a1 + a2

∣∣∣∣ ∼ 10−13, (2.26)

where a1 and a2 stand for the gravitational acceleration of two test masses.

In the case of the model (2.22), the form of the coupling between ϕ and matter

is such that the motion of point-like particles will preserve the weak equivalence

principle at the classical level. However, it is well known that extended objects

with a gravitational binding energy comparable to the rest mass can grossly violate

the equivalence principle: this phenomenon is known as the Nordtvedt effect [72].

Moreover, it was recently shown that models that employ the chameleon screening

10Notice that quantum corrections are still negligible at these scales because they become impor-

tant only for r . 1/M .
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mechanism can lead to substantial violations of the weak equivalence principle even

with a very small gravitational binding energy [73].

Notice that the coupling between ϕ and matter in (2.22) was chosen ad hoc in

order to preserve the weak equivalence principle for point-like particles at the classical

level. In fact, all point-like particles will fall along the geodesics of the effective metric

g̃µν = F 2(ϕ)gµν and will experience the same gravitational acceleration. However, the

structure of this coupling is not protected by any symmetry and therefore, from an

EFT point of view, we expect quantum corrections to introduce couplings that violate

the weak equivalence principle. We will explore this issue extensively in Chapter 4.

2.4.2 Modifying the Symmetries

In the previous section we considered modified theories of gravity which preserve the

symmetries of GR. We will now pursue the alternative approach of modifying GR by

breaking some of its symmetries. By doing so, we will often allow additional metric

degrees of freedom to propagate and therefore modify the particle content of the

gravitational sector as a byproduct.

In order to make all the symmetries of GR explicit, it is convenient to adopt the

vierbein formalism and write the metric as follows:

gµν = eµ
aeν

bηab. (2.27)

An extensive review of the vierbein formalism is provided for completeness in Ap-

pendix 2.A. In terms of the vierbein, it becomes clear that the symmetries of GR are

diffeomorphisms, under which the vierbein transforms as

eµ
a(x)→ e′µ

a(x′) =
∂xν

∂x′µ
eν
a(x), (2.28)

and local Lorentz symmetry, which acts on the vierbein as follows

eµ
a(x)→ e′µ

a(x) = Λa
b(x) eµ

b(x). (2.29)

On a Minkowski background, the vierbein acquire a vev eµ
a = δaµ. This vev is respon-

sible for the symmetry breaking pattern

Diffeomorphisms × Local Lorentz −→ Global Lorentz.
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Hence, we see that any modification of gravity which breaks either diffeomorphisms or

Local Lorentz symmetry will necessarily lead to violations of global Lorentz symmetry

on a Minkowski background.

Models that break diffeomorphisms have a very different phenomenology than the

models which break local Lorentz symmetry, even when they preserve the same sym-

metries on a Minkowski background. A well studied example of a model which breaks

diffeomorphisms while preserving rotations on a Minkowski background is provided

by the ghost condensate [74]. In this model, a scalar field acquires a time dependent

vev which breaks time diffeomorphisms without affecting spatial diffeomorphisms and

local Lorentz symmetry. This leads to a gravitational sector with three propagating

degrees of freedom corresponding to the two polarizations of the graviton and an

additional massless scalar.

An example of an EFT of gravity which breaks local Lorentz symmetry while

preserving rotations on a Minkowski background is provided by the Einstein-Aether

theory [75]. In this theory, a vector field acquires a time-like vev which breaks local

Lorentz symmetry down to local rotations. On a Minkowski background there are

five propagating degrees of freedom and they are all massless: the two polarizations

of the graviton, two additional vector modes and one scalar.

Although models which preserve rotational symmetry make it simpler to study

cosmological solutions, we can also consider more generic patterns of symmetry break-

ing. This can be especially interesting given that experimental bounds on Lorentz

breaking in the gravitational sector are much weaker than in the Standard Model sec-

tor [76]. For this reason, in chapter 3 we will explore the low-energy phenomenology

of modified theories of gravity in which Lorentz symmetry is broken down to any of

it subgroups.

2.5 Effective Theories of Inflation

As we mentioned in Section ??, the flatness and horizon problems of the standard

cosmological model can be solved if we assume that a phase of accelerated expansion—
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inflation—took place in the early universe. In the simplest model of inflation, the

energy-momentum budget of the universe is dominated by a single scalar field [77–79]

described by the action

S =
√
−g
{
M2

p

2
R− 1

2
∂µϕ∂

µϕ− V (ϕ) + · · ·
}

(2.30)

This is the most generic low-energy effective action that we can write down (up to

field redefinitions) with at most two derivatives.11 On A FRW background, the energy

density and pressure of the scalar field are

ρ =
ϕ̇

2
+ V (ϕ), p =

ϕ̇

2
− V (ϕ). (2.31)

Therefore, the condition ρ+ 3p < 0 necessary for inflation is satisfied if the potential

energy of the scalar field is larger than its kinetic energy. The horizon and flatness

problems are then solved if inflation lasts long enough that the requirement (2.19) is

satisfied. As we will see in section 2.5.3, building an effective theory that produces

a sufficient amount of inflation turns out to be quite challenging from a theoretical

point of view.

At the background level, the isotropy and flatness of the universe are the only two

observable consequences of inflation. In order to distinguish between different models

of inflation it is therefore necessary to study the behavior of perturbations around the

perfectly homogeneous and isotropic FRW background. It is convenient to classify

the metric perturbations according to their transformation properties with respect to

the background symmetries, i.e. spatial rotations and translations. This amounts to

writing the perturbed line element as

ds2 = −(1 + 2φ)dt2 + 2a(∂iB − Si)dxidt

+ a2
[
(1− 2ψ)δij + 2∂i∂jE + 2∂(iFj) + hij

]
dxidxj .

(2.32)

where ∂iSi = ∂iFi = 0, ∂ihij = 0 and δijhij = 0. We will also decompose the scalar

field into its background value ϕ̄ and a perturbation δϕ, i.e. ϕ = ϕ̄ + δϕ. Thus, the

spectrum of perturbations includes five scalars (φ,B, ψ,E, δϕ), two transverse vectors

11The effect of higher-derivative irrelevant operators was considered in [80].
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(Si, Fi) and one traceless and transverse tensor (hij). The advantage of carrying

out such a decomposition is that, at the linear level, perturbations which transform

according to different representations of the background symmetries decouple and

therefore can be studied separately. It turns out that vector perturbations are not

sourced in the simple model of inflation we are considering. For this reason, in what

follows we will focus our attention on scalar and tensor perturbations.

2.5.1 Scalar Perturbations

The analysis of scalar perturbations is complicated by the fact that not all five scalar

perturbations φ,B, ψ,E and δϕ are physical. This follows from the fact that, under

infinitesimal coordinate transformations xµ → xµ + ξµ, perturbations of a rank-n

tensor Aµ1···µn around its background value Āµ1···µn transform as

δAµ1···µn → δAµ1···µn − ξν∂νĀµ1···µn − Āν···µn∂µ1ξ
ν − · · · − Āµ1···ν∂µnξ

ν . (2.33)

As a consequence, if we decompose the infinitesimal quantity ξµ as ξµ = (α, ∂iβ +

γi) with ∂iγ
i = 0, we find that scalar perturbations of the metric and the inflaton

transform as follows:

φ → φ− α̇ (2.34a)

B → B +
α

a
− aβ̇ (2.34b)

E → E − β (2.34c)

ψ → ψ +Hα (2.34d)

δϕ → δϕ− ˙̄ϕα. (2.34e)

Individual scalars are therefore not invariant under coordinate transformations, but it

is still possible to give a coordinate-independent description of scalar perturbations by

considering some linear combinations that remain invariant under (2.34). An example

of such a linear combination is the is the comoving curvature perturbation [81]:

R = ψ − H

ρ̄+ p̄
δq (2.35)
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where δq is the scalar part of the (0, i) component of the stress-energy tensor, i.e.

T 0
i = ∂iδq. During inflation δq = − ˙̄ϕ δϕ and ρ̄+ p̄ = ˙̄ϕ2, and R measures the spatial

curvature of the hyper-surfaces of constant ϕ.

A very important property of R is that its Fourier modes with k/(aH)� 1 do not

evolve in time [81].12 Since (aH)−1 decreases during inflation, modes with a comoving

wavelength smaller than (aH)−1 at the beginning of inflation will evolve until k ∼ aH

and then remain constant until their wavelength becomes again larger than (aH)−1

during the big bang phase (see Figure 2.2). This means that the initial conditions

for today’s curvature perturbations with wavenumber k were essentially determined

during inflation at the time t∗ such that k ∼ a(t∗)H(t∗), which in common parlance

is usually referred to as horizon-crossing time. As we will see, these initial conditions

are a direct consequence of the quantum fluctuations occurring during inflation.

It turns out that the scalar sector of single-field inflationary model is completely

characterized by the comoving curvature perturbation R. This is because the trans-

formations (2.34) can always be exploited to set two scalar perturbations to zero, and

Einstein’s equations impose two additional constraints on the scalar sector leaving us

with a single propagating degree of freedom. The free action for R can be obtained

by inserting the perturbed metric and scalar field into (2.30) and expanding up to

quadratic order, which yields

S
(2)
R =

∫
dtd3x

az2

2

[
Ṙ2 − (∂iR)2

a2

]
. (2.36)

where we have introduced the quantity z ≡ a ˙̄ϕ/H. Since the action (2.30) is invariant

under diffeomorphisms, it is not surprising that the action for perturbations can be

expressed solely in terms of the invariant quantity R. The action (2.36) can be put

into canonical form by switching to conformal time dτ = dt/a(t) and introducing the

Mukhanov-Sasaki variable v ≡ zR. This leads to the following action for v [82]:

S(2)
v =

1

2

∫
dτd3x

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
, (2.37)

12Strictly speaking, this is true as long as matter perturbations are adiabatic. See the end of

this section for a definition of adiabaticity as well as a discussion about the current observational

evidence supporting this assumption.
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which is essentially the action for a free scalar field with a time-dependent effective

mass −z′′/z. We can now study quantum fluctuations of the canonically normalized

field v using standard quantum field theory methods [83]. For instance, we can

decompose the operator v̂ into a superposition of creation and annihilation operators,

v̂(τ, r) =

∫
d3k

(2π)3

[
âkvk(τ)eik·r + â†kv

∗
k(τ)e−ik·r

]
, (2.38)

with âk and â†k′ satisfying the algebra [âk, â
†
k′ ] = (2π)3δ(k − k′). The vacuum is

defined as usual by the relation âk|0〉 = 0. The mode functions vk(τ) are univocally

determined by the requirement that they reduce to the usual mode functions on a

Minkowski background in the limit k2 � |z′′/z|:

lim
|k|→∞

vk(τ) ≈ e−ikτ√
2k
. (2.39)

The rationale behind this requirement is that the cosmological expansion should not

play any role at very small scales. The variance of comoving curvature perturbations

is then related to the variance of vk(τ) by the following equation:

〈RkRk′〉 =
〈vkvk′〉
z2

= (2π)3δ(k + k′)
|vk(τ)|2

z2
≡ (2π)3δ(k + k′)PR(τ, k), (2.40)

where 〈...〉 denotes a vacuum expectation value and the delta function follows from

the fact that the background is invariant under spatial translations. Since the modes

Rk become constant after they cross the horizon, the initial variance of a mode with

wavenumber k which “re-enters” the horizon in the late universe is equal to PR(τ∗, k).

Equivalently, we can describe the variance of curvature perturbations using the power

spectrum13

∆2
R(k) ≡ k3

2π
PR(τ∗, k) ≈ As

(
k

k0

)ns−1

. (2.41)

Notice that the horizon-crossing time τ∗ can be expressed in terms of k by inverting

the relation k = a(τ∗)H(τ∗). The RHS of equation (2.41) is a phenomenological

parametrization used to compare theoretical predictions with CMB and large scale

structures observations. In particular, current CMB observations [7] show that, for

13The normalization of the power spectrum is chosen in such a way that the real space variance

is simply 〈RR〉 =
∫∞

0
∆2
R(k)d log k.
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k0 = 2 × 10−3 Mpc−1, the amplitude As of the power spectrum and the spectral

index ns are

As = 2× 10−9, ns = 0.97. (2.42)

This means that initial curvature perturbations are very small (R ∼ 10−5) and al-

most scale-invariant, in the sense that ∆2
R(k) has a very mild dependence on the

wavenumber k.

It is important to realize that an early phase of accelerated expansion will not

automatically give rise to an almost scale-invariant spectrum of curvature perturba-

tions. However, a sufficient condition for scale invariance is that the effective mass of

v be approximately z′′/z ≈ 2/τ 2. In this case, the initial conditions (2.39) imply that

the wave modes are

vk(τ) ≈ e−ikτ√
2k

(
1− i

kτ

)
. (2.43)

Since in the long-distance limit k → 0 we have Rk = vk/z ∼ 1/(τz) ≡ const, we

must have that z = a ˙̄ϕ/H ∼ 1/τ . It was shown in [47] that the only accelerating

solution which satisfies this condition is an almost exponential expansion with a ∼

eHt ∼ 1/(Hτ), H ≈ const and ˙̄ϕ ≈ const. The deviation from a perfect exponential

expansion leads in turn to a deviation from perfect scale invariance and it remains

small provided the following conditions are met:14

− Ḣ

H2
≡ ε� 1,

ε̇

εH
≡ 2(ε− η)� 1. (2.44)

Loosely speaking, the first requirement ensures that the Hubble parameter remains

approximately constant during the time it takes for the universe to double in size,

while the second requirement ensures that the phase of almost exponential expansion

lasts “long enough”. We can use Friedmann’s equations (2.10) together with the

conservation of energy-momentum and equations (2.31) to rewrite the conditions

(2.44) as

ε =
ϕ̇2

2M2
pH

2
∼M2

p

(
V,ϕ
V

)2

� 1, η = − ϕ̈

Hϕ̇
∼M2

p

(
V,ϕϕ
V

)
� 1. (2.45)

14More precisely, one should also require that η̇/(ηH) ≡ 2(η − ξ)� 1 and so on, but it turns out

that these additional conditions are usually satisfied if those in Eq.(2.44) are satisfied.
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Therefore, the potential V needs to be very flat (in Planck units) in order to generate

an almost exponential expansion.15 Moreover, if we identify V,ϕϕ with the effective

mass of the scalar field, the requirement η � 1 is equivalent to demanding that this

mass be much smaller than the Hubble parameter during inflation, because

V,ϕϕ � V/M2
p ≈ ρ/M2

p ∼ H2, (2.46)

where we used once again Friedmann’s equations. An intuitive explanation of this

result is that a non-negligible mass would introduce a characteristic scale in the power

spectrum, thus spoiling scale invariance.

In the quasi-exponential limit (2.44), we can use the mode functions (2.43) to

calculate explicitly the amplitude of the power spectrum and the spectral index. To

leading order in ε and η, we get

As = ∆2
R(k0) =

1

8π2

H2
∗

M2
p

1

ε∗
(2.47a)

ns − 1 =
d log ∆2

R
d log k

≈
(

2
d logH∗
dt∗

− d log ε∗
dt∗

)
dt∗

d log k
≈ 2η∗ − 4ε∗, (2.47b)

where we used the fact that d log k/dt∗ ≈ H∗ and the subscript “∗” quantities eval-

uated at horizon-crossing. It is quite remarkable that the results (2.47) are valid for

any potential V which satisfies the conditions (2.45).

To conclude this long section on scalar perturbations, let us mention two more

properties of curvature perturbations. The first one is that curvature perturbations

are gaussian to a very good approximation. Deviations from gaussianity are usually

characterized by the phenomenological parameter fNL which, for historical reasons,

is defined by a relation with a schematic form 〈R3〉 ∼ fNL〈R2〉2. The magnitude of

this parameter can be estimated by studying the cubic corrections to the free action

(2.36). Current observations [7] indicate that |fNL| . 102, which corresponds to non-

gaussianites with a relative size |fNLR| < 10−3. This bound is more than satisfied by

the simple model (2.30), which predicts fNL ∼ ε2
∗ � 1 [85].

15The simple model (2.30) could be generalized by considering a non-canonical kinetic term [84].

In this case, inflation can occur also with a very steep potential. In this scenario, the field v can

have a speed of sound smaller than the speed of light.
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A level of non-gaussianity much closer to the current observational bound can be

produced in models with more than one scalar field (see e.g. [86]). However, these

models usually generate non-adiabatic perturbations which lead to fluctuations in the

ratio ndm/nγ between dark matter and photon number densities. The ratio between

the power spectrums of S ≡ δ (ndm/nγ) and of curvature perturbations is usually

parametrized as
PS(k0)

PR(k0)
≡ α(k0)

1− α(k0)
(2.48)

and current CMB observations [7] lead to the bound α(k0) < 0.1 for k0 = 0.002 Mpc−1.

Therefore, non-adiabatic modes, if present, must be fairly small compared to curva-

ture perturbations, and this places a constraint on models with multiple scalars.

In summary, current observations indicate that primordial scalar perturbations

are (i) scale-invariant, (ii) gaussian and (iii) adiabatic to a very good approximation.

Models of inflation involving a single scalar field are able to account for such properties

provided they lead to a quasi-exponential accelerated expansion.

2.5.2 Tensor perturbations

After an extensive analysis of scalar sector, we now move on to the study of tensor

perturbations generated during inflation. This analysis turns out to be considerably

simpler than the one carried out in the previous section, in part because tensor

perturbations are invariant under coordinate transformations, but also because we

can now borrow most of the formalism introduced above.

We can obtain the free action for tensor perturbations by inserting the perturbed

metric into the action (2.30) and expanding up to quadratic order in hij. This pro-

cedure yields

S
(2)
h =

∫
dtd3x

M2
pa

3

8

[
(ḣij)

2 − (∂khij)
2

a2

]
. (2.49)

Because of the constraints δijhij = 0 and ∂ihij = 0, hij contains two degrees of

freedom. It is therefore useful to express the Fourier modes of hij as a sum of two
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independent polarizations,

hij(t, r) =
∑
s=+,×

∫
d3k

(2π)3
esij(k)hsk(t)eik·r, (2.50)

where δijesij = 0 and kiesij = 0. We can now define the Fourier components of two

canonically normalized field (one for each polarization) as vsk ≡ aMph
s
k/2 and rewrite

the action (2.49) as

S(2)
v =

∑
s=+,×

1

2

∫
dτd3x

[
(v′s)

2 − (∂ivs)
2 +

a′′

a
v2
s

]
. (2.51)

During a phase of almost exponential expansion the scale factor grows as a ∼ 1/(Hτ)

and therefore a′′/a ≈ 2/τ 2. From our previous discussion, we can already conclude

that the spectrum of tensor perturbations will also be almost scale-invariant. We can

check that explicitly by calculating the variance of tensor modes

〈hskhs
′

k′〉 =
4〈vskvs

′

k′〉
a2M2

p

= (2π)3δ(k + k′)δss
′ 4|vsk(τ)|2

a2M2
p

≡ (2π)3δ(k + k′)δss
′
Ph(τ, k) (2.52)

where the modes vsk(τ) are again approximately given by Eq. (2.43). Taking into

account both polarizations, the power spectrum of primordial tensor perturbations is

defined as follows:

∆2
h(k) ≡ 2× k3

2π
Ph(τ∗, k) ≡ At

(
k

k0

)nt
. (2.53)

Notice that, for historical reasons, the spectral index of tensor perturbations nt is

defined differently than the one for scalar perturbations. The simple model (2.30)

therefore predicts the following values for the spectral index and the amplitude of

tensor perturbations

At = ∆2
h(k0) =

2

π2

H2
∗

M2
p

(2.54)

nt =
d log ∆2

h

d log k
= 2

d logH∗
dt∗

dt∗
d log k

≈ −2ε∗. (2.55)

Observations [7] constrain the ratio r ≡ At/As between the amplitudes of tensor

and scalar modes to be r . 0.2. Since the amplitude of scalar perturbations is known,
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this result can be easily turned into an upper bound on the energy scale of inflation.

In fact, by using the fact that H2 ∼ V/M2
p during inflation we obtain

V 1/4 ∼
√
MpH∗ ∼

( r

0.01

)1/4

× 1016 GeV. (2.56)

It is interesting to notice that the ratio r/0.01 also controls the change in ϕ occur-

ring between the time when CMB scales cross the horizon and the end of inflation [87]:

∆ϕ

Mp

=

∫ tf

tcmb

dt
˙̄ϕ

Mp

≈
√

2ε∗ log
af
acmb

∼
( r

0.01

)1/2

, (2.57)

Therefore, in the context of the single-field model (2.30), a detection of tensor per-

turbations with a scalar-tensor ratio r > 0.01 would suggest that inflation occurred

at energies close to the GUT scale MGUT ∼ 1016 GeV and that the inflation value

changed by a large amount in Planck units. This observation would have important

implications from a theoretical point of view. In fact, in order for inflation to last

despite a large change in the value of ϕ, the action for ϕ must be relatively insensitive

to the actual value of ϕ, i.e. it must be approximately invariant under shift symmetry

ϕ→ ϕ+ const. For more details about the connection between field range and shift

symmetry, we refer the reader to [88].

2.5.3 Open Problems

In the simple model of inflation discussed above we have ϕ̇ ∼
√
εHMp (see Eq. (2.45)).

This means that effective corrections to the action (2.30) must be suppressed by a

cut-off that cannot be smaller than M ∼
√
εMp, otherwise higher-derivative terms

with arbitrary powers of ϕ/M would dominate over the relevant operators shown in

(2.30). Since we are interested in calculating the properties of fluctuations at horizon

crossing, the energy scale of interest is ∼ H. Hence, it follows from Eqs. (2.42) and

(2.47a) that the expansion parameter for this EFT is H/M . 6× 10−5 regardless of

the value of the slow-roll parameter ε [80].

From an EFT point of view, one of the major obstacles on the path to a successful

model of inflation stems from the requirement (2.45) that the mass of the inflation be

sufficiently small compared to the Hubble scale during inflation. This requirement is
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much more stringent than the requirement that the mass of the scalar be smaller than

the cut-off M , because the Hubble parameter H is already much smaller than M .

In section 2.1, we pointed out that the only two ways to have a scalar field with a

mass naturally smaller than the cut-off involve either approximate global symmetries

which are spontaneously broken or supersymmetry. In the first case, the inflaton is a

PNGB which, in the simplest possible model [89, 90], is described by the Lagrangian

Lφ = −1

2
∂µϕ∂

µϕ− V0 [1− cos(ϕ/f)] . (2.58)

The problem with this approach is that the whole potential and not only the mass

term is proportional to the small breaking scale V
1/4

0 . Therefore, if we calculate the

slow-roll parameters using equations (2.45) we obtain:

ε ∼ η ∼
M2

p

f 2
. (2.59)

Thus, the simplest model in which the inflation is a PNGB requires a super-Planckian

decay constant f which seems at odds with the notion that quantum gravity effects

should already become preponderant at the Planck scale. More complicated models

that do not require super-Planckian decay constants have been considered in the liter-

ature (e.g. [91, 92]). However, these models are based on the assumption that the UV

completion admits some global symmetries, and this clashes against the expectation

that all global symmetries should be broken by quantum gravity effects at sufficiently

high energies [93].

The other option that we have encountered to keep scalar fields light is supersym-

metry. However, it turns out that supergravity corrections will generically introduce

corrections to the inflation mass of the order of H [94]. This can be checked explicitly

by using the supersymmetric potential (2.7) in the case of a single complex field ϕ. If

we expand the potential in inverse powers of Mp and denote with V0 the leading term

responsible for driving inflation, then there are dimension 6 operators of the form

O
M2

p

∼ V0

M2
p

|ϕ|2 ∼ H2|ϕ|2 (2.60)

that induce an O(1) correction to the eta parameter.16

16See however [95] for an interesting model in which accidental symmetries are combined with
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An additional open problem stems from the fact that many models of inflation

predict an accelerated phase that lasts much longer than what is necessary to solve

the flatness and horizon problems. Based on the discussion in section 2.3.2, it follows

that primordial perturbations with comoving wave numbers of cosmological interest

had a physical wavenumber k/a � Mp at the beginning of inflation. Therefore, the

linear analysis of perturbations carried out in this section is implicitly based on the

assumption that perturbations remain weakly coupled at arbitrarily high-energies [96].

Such an assumption seems unwarranted, and this is known as the trans-Planckian

problem [97] of inflationary cosmology. In Chapter 5, we will carefully explore this

issue from an EFT perspective.

To conclude this section, we would like to mention the existence of a more prag-

matic approach to inflationary model building. Given the difficulties encountered

when trying to formulate natural EFT of inflation, we can choose to adopt an EFT

with a cut-off H � M �
√
εMp [98, 99]. This theory will not be able to describe

the background evolution, but can be used to study the properties of primordial

perturbations produced during inflation. Since all observational constraints on infla-

tionary models come from the study of perturbations, this seems like an acceptable

compromise which does not affect the predictive power of inflation.

Appendix 2.A Vierbein Formalism

In any generally covariant theory defined on a spacetime manifold in which the metric

has Lorentzian signature, and regardless of whether Lorentz invariance is broken

or not, it is always possible to introduce a vierbein, an orthonormal set of forms

ê(a) = eµ
a dxµ in the cotangent space of the spacetime manifold,

gµνeµ
a eν

b = ηab. (2.61)

Greek indices µ, ν, . . . now denote cotangent space indices in a coordinate basis, while

latin indices a, b, . . . label the different vectors in the orthonormal set. Thus, the order

supersymmetry to keep the inflaton mass smaller than H.
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of the vierbein indices is important. The first one is always a spacetime index, and

the second one is always a Lorentz index. Spacetime indices are raised and lowered

with the metric of spacetime, and Lorentz indices are raised and lowered with the

Minkowski metric. Under coordinate transformations, the vierbein eµ
a transforms

like a vector,

diff : eµ
a(x) 7→ e′µ

a(x′) =
∂xν

∂x′µ
eν
a(x). (2.62)

The freedom to choose a vierbein whose sixteen components satisfy the orthonor-

mality condition (2.61) does not add anything to the original ten metric components

if the theory remains invariant under the six parameter group of local Lorentz trans-

formations,

g(x) : eµ
a(x) 7→ e′µ

a(x) = Λa
b(g) eµ

b(x). (2.63)

Note that this transformation does not affect the coordinates of the vectors, that is,

the Lorentz group acts as an “internal” symmetry.

The derivatives of the vierbein do not transform covariantly under these local

Lorentz transformations. We thus introduce the spin connection ωµ, which plays the

role of the gauge field of the Lorentz group. Let lk, k = 1, . . . 6, denote the generators

of the Lorentz group (in any representation), and let us define the components of the

spin connection by

ωµ ≡ ωµk l
k, (2.64)

which transforms like a one-form under general coordinate transformations,

diff : ωµ(x) 7→ ω′µ(x′) =
∂xν

∂x′µ
ων(x). (2.65)

In complete analogy with gauge field theories, let us assume that under local Lorentz

transformations the spin connection transforms as17

g(x) : ωµ(x) 7→ gωµ(x) g−1 + g ∂µg
−1. (2.66)

In that case, it is then easy to verify that the covariant derivative

∇µeν
a = ∂µeν

a − Γρνµeρ
a + ωµk [lk(4)]

a
b eρ

b (2.67)

17To recover expressions fully analogous to those found in gauge theories, the reader should replace

ωµ by −iωµ.
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transforms covariantly both under coordinate and local Lorentz transformations.

Here, Γµνρ are the Christoffel symbols associated with the spacetime metric gµν , and

the lk(4) are the Lorentz group generators in the fundamental representation, under

which the vierbein transforms. In our convention, these matrices are purely imaginary.

Similarly, given any matter field ψ that transforms as a scalar under diffeomorphisms,

and in a representation of the Lorentz group with generators lk, we can construct its

covariant derivative by

∇µψ ≡ ∂µψ + ωµψ, (2.68)

which also transforms covariantly both under diffeomorphisms and local Lorentz

transformations.

In any generally covariant theory defined on a Riemannian spacetime manifold,

the covariant derivative is compatible with the metric, that is, ∇µgνρ = 0. Moreover,

because the Minkowski metric is invariant under Lorentz-transformations, its Lorentz-

covariant derivative vanishes. Thus, differentiating equation (2.61) covariantly, and

using Leibniz rule we obtain

∇νeµ
a = 0. (2.69)

Equation (2.67), in combination with equation (2.69) allows us to express the spin

connection in terms of the vierbein,

ωµk[l
k
(4)]

a
b =

1

2
[eνa(∂µeνb − ∂νeµb)− eνb(∂µeνa − ∂νeµa)− eρaeσb(∂ρeσc − ∂σeρc)eµc] ,

(2.70)

and it is readily verified that this connection indeed transforms as in equation (2.65).

Equation (2.70) is what sets gauge theories and gravity apart. In gauge theories,

the gauge fields are “fundamental” fields on which the action functional depends. In

gravity the spin connection can be expressed in terms of the vierbein, which constitute

the fundamental fields in the gravitational sector. In particular, the metric can be

also expressed in terms of the vierbein,

gµν = eµaeν
a, (2.71)

where, as in Subsection 3.2.3, eµa is the (transposed) inverse of eµ
a, that is, eµ

a eνa =

δµν . Because the covariant derivative of the vierbein vanishes by construction, one
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can use the vierbein to freely alter the transformation properties of any field under

diffeomorphisms and Lorentz transformations. For instance,∇µAa ≡ eνa∇µAν , so one

can use the vierbein to freely convert diffeomorphism vectors into Lorentz vectors and

vice versa.

Since the spin connection transforms like a gauge field, the curvature tensor

Rµν ≡ ∂µων − ∂νωµ + [ωµ,ων ] (2.72)

transforms like a two-form under general coordinate transformations, and in the ad-

joint representation under local Lorentz transformations g(x) ∈ L↑+,

g(x) : Rµν 7→ gRµν g
−1. (2.73)

This transformation law is particularly simple in the fundamental (form) represen-

tation of the Lorentz group. In that case, for fixed µ and ν the curvature Rµν is a

matrix [Rµν ]a
b whose elements transform according to

g(x) : [Rµν ]
a
b → [R′µν ]

a
b = Λa

c(g)Λb
d(g)[Rµν ]

c
d. (2.74)

Note that the curvature tensor is antisymmetric in the coordinate and Lorentz indices,

Rµνab = −Rνµab = −Rµνba. (2.75)

Recall that spacetime indices are raised and lowered with the spacetime metric gµν ,

and Lorentz indices are raised and lowered with the Minkowski metric ηab.

With these ingredients it is then possible to construct effective Lagrangians which

are invariants under both general coordinate and Lorentz transformations. If we

were dealing with an actual gauge theory, the appropriate kinetic term for the spin

connection would be the curvature squared, but in the case of gravity the situation is

slightly different. In fact, in this case the spin connection is not an independent field,

but is determined instead by the vierbein. Since ∇µe
ν
a vanishes by construction,

the only scalar invariant under coordinate transformations and local transformations

which contains up to two derivatives of the vierbein is the Ricci scalar,

R ≡ eµaeν bRµνab. (2.76)



Chapter 3

Lorentz-violating Theories of

Gravity

3.1 Introduction

It is hard to overemphasize the central role that the Lorentz group plays in our present

understanding of nature. The standard model of particle physics, for instance, con-

sists of all renormalizable interactions invariant under Lorentz transformations and

its internal symmetry gauge group, which act on the matter fields of the theory.

While most standard model extensions alter either its field content or gauge group,

they rarely drop Lorentz invariance [100]. Of course, such a reluctance has a well-

established observational support. Elementary particles appear in (irreducible) rep-

resentations of the Lorentz group, and their interactions seem to be well described by

Lorentz-covariant laws. Lorentz-breaking operators in the standard model of particle

physics were first considered by Colladay and Kostelecky [101], and Coleman and

Glashow [102]. Experimental and observational constraints on such operators are so

stringent [76] that it is safe to assume that any violation of Lorentz invariance in the

standard model must be extremely small.

The status of the Lorentz group in theories of gravity is somewhat different. Be-

cause the group of diffeomorphisms does not admit spinor representations, in generally

covariant theories the Lorentz group is introduced as a local internal symmetry. Thus,
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in gravitational theories one formally deals with two distinct groups of transforma-

tions: diffeomorphisms and local Lorentz transformations. Even in the context of

generally covariant theories, it is thus natural to ask and inquire whether the gravi-

tational interactions respect Lorentz invariance, and what constraints we can impose

on any Lorentz-violating gravitational interactions. To date, experimental bounds

still allow significant deviations from Lorentz invariance in gravitational interactions

[64, 76, 103].

In this chapter we follow a general approach to study theories with broken Lorentz

invariance, and address consequences that merely follow from the symmetry breaking

pattern, regardless of any specific model of Lorentz symmetry breaking. Such a model-

independent approach was first introduced by Weinberg to describe the spontaneous

breakdown of chiral invariance in the strong interactions [104], and was subsequently

generalized by Callan, Coleman, Wess and Zumino to the breaking of any internal

symmetry group down to any of its subgroups [19, 105]. Their approach was further

broadened to the case of spontaneous breaking of space-time symmetries [106–110]

down to the Poincaré group. Here, we extend all these results to the case in which

the Lorentz group itself is broken down to one of its subgroups.

Broken Lorentz symmetry has been mostly explored by means of particular models

in which vector fields [111–117] or higher-rank tensors [118] develop a non-vanishing

vacuum expectation value. Because the quantities that acquire a vacuum expectation

value transform non-trivially under the Lorentz group, in these models the breaking

is “spontaneous.” This language is commonly accepted1 for global symmetries, but

for local symmetries it has been criticized on several grounds. It is often argued for

instance that local symmetries are redundancies in the description of the system rather

than actual symmetries [120]. In fact, as we shall show, under certain conditions

local Lorentz invariance can be introduced and removed at will. Furthermore, it

has been shown that under fairly generic assumptions local symmetries cannot be

spontaneously broken [121], in the sense that the vacuum expectation value of a

field that is not invariant under the local symmetry group always vanishes. For these

1See however [119] for an alternative point of view on this matter.
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reasons we shall avoid using “spontaneous symmetry breaking” in the context of local

symmetries, though this is the phrasing usually employed to describe the context in

which the effective formalism that we employ here applies. To avoid confusions, when

we speak of a theory with broken local Lorentz invariance we simply mean a theory

which admits an action functional which is invariant under diffeomorphism and only a

subgroup of local Lorentz transformations (we sharpen this definition in section 3.3.)

Generically, the breaking of diffeomorphism invariance in non-trivial backgrounds can

also be understood as Lorentz symmetry breaking [122–124], but this breaking does

not fit our definition, is quite different from what we explore here, and indeed leads

to quite different phenomenology.

These considerations are not a purely academic exercise, but also have important

phenomenological implications. Motivated by cosmic acceleration, several authors

have devoted substantial attention to massive theories of gravity [125–128] and other

modifications [61, 74, 129], even though the distinction between modifications of

gravity and theories with additional matter fields is often blurry. Within the last

class, several groups have studied the cosmological dynamics induced by vector fields

with non-zero expectation values (see for instance [130–137]), though the breaking

of Lorentz invariance has not been the primary focus of their investigations. In

these cases, the theory contains massless Goldstone bosons, which participate in long-

ranged gravitational interactions and alter the Newtonian and post-Newtonian limits

of the theory. Equivalently, we may also think of these additional fields as additional

polarizations of the graviton. From this perspective, broken Lorentz invariance offers

a new framework to study modifications of gravity, and may cast some light onto

theories that have been already proposed.

This chapter is based on the paper [138] and it is structured as follows. In Section

3.2 we generalize the coset construction of Callan, Coleman, Wess and Zumino to

theories in which the group of global Lorentz transformations is spontaneously bro-

ken. In Section 3.3 we briefly review the role of the Lorentz group as an internal local

symmetry group in generally covariant theories, and study the broken Lorentz invari-

ance in this framework. Section 3.4 is devoted to an illustration of our formalism in
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theories in which the rotation group remains unbroken. We summarize our results in

Section 3.5.

3.2 Broken Lorentz Invariance

In this section we explore how to construct theories in which the global symmetry of

the action under a given Lorentz subgroup H is manifest (linearly realized), but the

global symmetry under the “broken part” of the Lorentz group L↑+ is hidden (non-

linearly realized). This is indeed what happens in a theory in which the Lorentz group

L↑+ is spontaneously broken down to a subgroup H. After a brief review of the Lorentz

group, we first consider how to parametrize the broken part of the Lorentz group, that

is, the coset L↑+/H. The corresponding parameters are the Goldstone bosons of the

theory. We define the action of the full Lorentz group on this set of Goldstone bosons

in such a way that they transform linearly under H, but non-linearly under L↑+/H.

Initially, the transformation that we consider is internal, that is, does not affect the

spacetime coordinates of the Goldstone bosons. This is the way the Lorentz group

acts in generally covariant theories, which we discuss in Section 3.3, but it is not

the way it acts in theories in Minkowski spacetime, in which the Lorentz group is a

spacetime symmetry. Hence, we subsequently extend our realization of the Lorentz

group to a set of spacetime transformations.

In order to write down Lorentz-invariant theories in which the symmetry under

H is manifest, we need to come up with appropriate “covariant” derivatives that

transform like the Goldstone bosons themselves. As we shall see, once these covariant

derivatives have been identified, the construction of actions invariant under the full

Lorentz group becomes straight-forward, and simply reduces to the construction of

theories in which invariance under the linearly realized H is explicit.

3.2.1 The Lorentz Group

The Lorentz group L is the set of transformations Λa
b that leave the Minkowski

metric invariant, ηabΛ
a
cΛ

b
d = ηcd. Its component connected to the identity, the proper
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orthochronous Lorentz group L↑+, admits 6 generators which can be subdivided into

the generators of rotations, J i, and those of boosts, Ki. The orthochronous group is

an invariant subgroup of the Lorentz group and its generators satisfy the following

commutation relations:

[Ji, Jj] = iεijkJ
k, (3.1a)

[Ji, Kj] = iεijkK
k, (3.1b)

[Ki, Kj] = −iεijkJk. (3.1c)

Another important subgroup of the Lorentz group is the discrete subgroup V ≡

{1, P, T, PT} spanned by the parity transformation P and the time reversal T . It

turns out that any Lorentz transformation Λa
b can be expressed as a combination of

an orthochronous transformation and, possibly, a parity transformation P and/or a

time reversal T . For this reason, the orthochronous group L↑+ may be understood as

the coset

L↑+ = L/V. (3.2)

The elements of V also define a map whose square is the identity and which preserves

the commutation relations of the Lie algebra (3.1),

P : J i 7→ PJ iP−1 = J i, Ki 7→ PKiP−1 = −Ki (3.3a)

T : J i 7→ TJ iT−1 = J i, Ki 7→ TKiT−1 = −Ki. (3.3b)

In the rest of this chapter I will be mostly concerned with the breaking of the proper

orthochronous Lorentz group L↑+.

3.2.2 Coset Construction

Suppose now that the proper orthochronous Lorentz group L↑+ (“Lorentz group”

for short) is spontaneously broken down to a subgroup H ⊂ L↑+. In the simplest

models of this kind, the breaking occurs because the potential energy of a vector

field has a minimum at a non-zero value of the field, in analogy with spontaneous

symmetry breaking in scalar field theories with Mexican-hat potentials. Perhaps more
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interesting are cases in which Lorentz invariance is broken “dynamically,” that is,

when a strong interaction causes fermion bilinears to condense into spacetime vectors

[139–141]. This is analogous to the way in which chiral invariance is broken in QCD.

The formalism we develop here however does not depend on the actual mechanism

that triggers the symmetry breaking, and only relies on the unbroken group H.

Let H be the Lie algebra of H, which we assume to be semisimple. Although the

Lorentz group is not compact, it is simple, so the Killing form (·, ·) is non-degenerate

and may be regarded as a scalar product on H. We may then uniquely decompose

the Lie algebra of L↑+ into the algebra of H and its orthogonal complement, which we

denote by C,

L↑+ = H⊕ C. (3.4)

Hence, by definition, for any t ∈ H and any x ∈ C, (t, x) = 0. In the following

we assume that the set of unbroken generators ti is a basis of H, and that the set of

broken generators xm forms a basis of C. In any representation, lk collectively denotes

the generators of the Lorentz group, k = 1, . . . , 6.

For any t ∈ H, the map ft : x ∈ C 7→ [t, x] is linear. Moreover, for any t′ ∈ H we

have

(t′, [t, x]) = ([t′, t], x) = 0, (3.5)

where we have used the properties of the Killing form and that [t, t′] ∈ H. Therefore,

ft maps C into itself.2 In fact, the commutator defines a homomorphism of H into

the linear maps of C. Hence, the matrices C(t) with elements defined by

[t, xm] = iC(t)n
m xn (3.6)

provide a representation of H. In particular, equation (3.6) implies that, for any

element of the unbroken group h ∈ H and for any x ∈ C,

hxh−1 ∈ C. (3.7)

2It is at this point where the assumption of a semisimple group becomes necessary. As an

illustration of this point, consider the case where the unbroken group is spanned by the single

generator t ≡ K1 + J2. Then, the commutation relations (3.1) imply [t,K3] = it, which is not in C.
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Following the standard coset construction of Callan, Coleman, Wess and Zumino

[19, 105] (see [36, 142] for brief reviews), we can write down realizations of the Lorentz

group, in which any given set of fields transform in a linear representation of the un-

broken group H. For that purpose, let us first introduce a convenient parametrization

of the coset space L↑+/H. Any element γ ∈ L↑+/H can be expressed as

γ(π) = exp(iπm x
m), (3.8)

where a sum over indices in opposite locations is always implied. The fields πm =

πm(x) correspond to the Goldstone bosons of the theory. If there are M broken

generators of the Lorentz group, there are M Nambu-Goldstone bosons πm.3

We may now introduce a realization of the group L↑+ on this set of Goldstone

bosons. By definition, any g ∈ L↑+ can be uniquely decomposed into the product of

an element of the unbroken group h ∈ H and a representative γ of the coset space

L↑+/H, such that g = γ h. Therefore, the product g γ(π) ∈ L↑+ also has a unique

decomposition

g γ(π(x)) = γ(π′(x))h(π(x), g), with γ(π′) ∈ L↑+/H , h(π, g) ∈ H. (3.9)

Equation (3.9) defines a non-linear realization of the Lorentz group by mapping

π into π′ for any given g ∈ L↑+. Notice however that this representation becomes

linear when g belongs to H. In fact, because of equation (3.7) we must have that

h̄ γ(π) h̄−1 = γ(π′) for every h̄ ∈ H, and a comparison with equation (3.9) implies

h(π, h̄) = h̄. (3.10)

In particular, use of equations (3.6), (3.8) and (3.10) shows that in this case the

Goldstone bosons transform in a linear representation of the unbroken group H,

h ∈ H : πm 7→ π′m = R(h)m
n πn, with R (exp it) ≡ exp [iC(t)] . (3.11)

Therefore, the Goldstone bosons have the same “quantum numbers” as the broken

generators xm. For a compact, connected, semi-simple Lie group G broken down to H,

the uniqueness of the transformation law (3.9), up to field-redefinitions, was proved

in [105].

3See [35] for exceptions to this argument in the case of spontaneous breaking of translations.
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3.2.3 Covariant Derivatives

Thus far, the realization of the Lorentz group that we have defined in equation (3.9)

treats the Lorentz group as an internal symmetry; the spacetime arguments on both

sides of the equation coincide. This is going to be useful in our discussion of the

Lorentz group in generally covariant theories, but it is not the way the Lorentz group

acts in conventional field theories in Minkowski spacetime, in which the Lorentz group

is a group of spacetime symmetries. Following [108, 110], we define now a non-linear

realization of the Lorentz group as a spacetime symmetry by

g : γ(π(x)) 7→ γ(π′(x′)), where g eiPµx
µ

γ(π(x)) = eiPµx
′µ
γ(π′(x′))h(π(x), g).

(3.12)

This implicitly defines a realization of the Lorentz group on the coordinates xµ and

the fields π(x). In particular, under an arbitrary element g ∈ L↑+ , equation (3.12)

implies

g : xµ 7→ x′µ = Λµ
ν(g)xν , γ(π(x)) 7→ γ(π′(x′)) = γ(π′(x)), (3.13)

with gPµg
−1 = Λν

µ(g)Pν and γ(π′(x)) defined in equation (3.9).

Because we are interested in theories in which the Lorentz group is a set of global

symmetries, any action constructed from the Goldstone bosons π can only depend on

their derivatives. In order to introduce appropriate covariant derivatives, in analogy

with the conventional prescription [19], we expand an appropriately modified [108,

110] Maurer-Cartan form in the basis of the Lie algebra,

Ωµ ≡
1

i
γ−1e−iP ·x∂µ(eiP ·xγ) ≡ eµ

aPa +Dµm x
m + Eµi t

i ≡ eµ + Dµ + Eµ, (3.14)

which immediately implies that

eµ
a = Λµ

a(γ). (3.15)

The field eµ
a is the analogue of the vierbein that we shall introduce in Section 3.3.

Both transform similarly under the Lorentz group, and this leads to formally iden-

tical expressions in both cases. But the reader should nevertheless realize that the

“vierbein” (3.15) and the vierbein of Section 3.3 are actually different objects.
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The transformation properties of e,D and E follow from the definition (3.12).

Under an arbitrary g ∈ L↑+, they transform according to

g : eµ(x) 7→ e′µ(x′) = Λµ
ν(g)h(π, g)eν(x)h−1(π, g), (3.16a)

Dµ(x) 7→D′
µ(x′) = Λµ

ν(g)h(π, g)Dν(x)h−1(π, g), (3.16b)

Eµ(x) 7→ E′µ(x′) = Λµ
ν(g)

[
h(π, g)Eν(x)h−1(π, g)− ih(π, g)∂νh

−1(π, g)
]
,

(3.16c)

where h(π, g) is defined in equation (3.9). Therefore, none of these quantities re-

ally transforms covariantly, since the spacetime index µ and the components of the

different fields transform under different group elements. To define fully covariant

quantities, let us introduce the inverse of the quantity defined in equation (3.15),

eµa = Λa
µ(γ−1). (3.17)

This is indeed the (transposed) inverse of eµ
a because it follows from equation (3.15)

that eµaeµ
b = δa

b. Then, the quantities

Da ≡ eµaDµ, Ea ≡ eµaEµ, (3.18)

do transform covariantly under the Lorentz group,

Da(x) 7→ D′a(x′) = Λ(h(π, g))a
b h(π, g)Db(x)h−1(π, g), (3.19a)

Ea(x) 7→ E ′a(x′) = Λ(h(π, g))a
b
[
h(π, g)Eb(x)h−1(π, g)− ih(π, g)∂bh

−1(π, g)
]
,

(3.19b)

where ∂a ≡ eµa∂µ. We identify Da with the covariant derivative of the Goldstone

bosons πm, and Ea with a “gauge field” that will enter the couplings between the

Goldstone bosons and other matter fields. The transformation rules (3.19) are again

non-linear in general, but, because of equation (3.10), they reduce to a linear transfor-

mation if g ∈ H. Note that under g ∈ L↑+, the components of the covariant derivative

Da transform as

g : Dam(x) 7→ D′am(x′) = Λa
b(h(π, g))Rm

nDbn(x), (3.20)

where the matrix R is the one we introduced in equation (3.11).
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For specific calculations, it is often required to have concrete expressions for the

covariant derivatives. It follows from the definitions (3.8) and (3.14) that

Dam = ∂aπm − iπn(xn(4))a
b∂b πm +

1

2
πn∂aπpC

np
m +O(π3), (3.21)

where xn(4) is the fundamental (form) representation of the Lorentz generator xn, and

the Cnp
m are the structure constants of the Lie algebra H in our basis of generators.

Parity and Time Reversal

In certain cases, we can also define the transformation properties of the Goldstone

bosons under parity and time reversal, or, in general, under an appropriate subgroup

of V ≡ {1, P, T, PT}. Let VH denote the “stabilizer” of H, that is, the set of all

elements v ∈ V that leave H invariant, v h v−1 ∈ H for all h ∈ H. This is a subgroup

of V, which may contain just the identity, either P or T , or V itself. Because H is

invariant under VH , the latter defines an homomorphism on C by conjugation,

v xmv−1 = Vn
m xn. (3.22)

The two sets L↑+VH and HVH are two subgroups of L, and, by definition, HVH is

a subgroup of L↑+VH . Thus, just as in Section 3.2.2 , we may define a realization of

VH (which is now contained in L↑+VH) on the coset

L↑+VH
HVH

=
L↑+
H
. (3.23)

In particular, for g ∈ L↑+VH and γ(π) ∈ L↑+/H we set

gγ(π) = γ(π′)h(γ, g)v(γ, g), with h(γ, g) ∈ H and v(γ, g) ∈ VH . (3.24)

If g ∈ L↑+, this definition reduces to that of equation (3.9). For v ∈ VH it leads to

v : γ(π) 7→ γ(π′) = v γ(π) v−1, (3.25)

which can be extended to include the arguments of the Goldstone boson fields as

before,

v : γ(π(x)) 7→ γ(π′(x′)), where v eiP ·xγ(π(x)) v−1 = eiP ·x
′
γ(π′(x′)). (3.26)
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Under these group elements the Goldstone bosons change according to

v : πm 7→ π′m(x′) = Vm
n πn(x), (3.27)

and, from equation (3.20), their covariant derivatives according to

v : Dam(x) 7→ D′am(x′) = Va
bVm

nDbn(x), (3.28)

where vPav
−1 = Va

bPb.

3.2.4 Invariant Action

If we are interested in the low-energy limit of theories in which Lorentz-invariance is

broken, we can restrict our attention to their massless excitations. This is a restate-

ment of the Appelquist-Carazzone theorem [143], though the latter has been actually

proven only for renormalizable Lorentz-invariant theories in flat spacetime. Typically,

massless fields are those protected by a symmetry, and always include the Goldstone

bosons, since invariance under the broken symmetry prevents them from entering

the action undifferentiated. Therefore, the low-energy effective action of any theory

in which Lorentz invariance is broken must contain the covariant derivatives of the

Goldstone bosons. To leading order in the low-energy expansion, we can restrict our

attention to the minimum number of spacetime derivatives, namely, two.

The tensor product representation in equation (3.20) under which the covariant

derivatives transform is in general reducible. Let Λ⊗R = ⊕iR(i) be its Clebsch-

Gordan series, and let D(i) be the linear combination of covariant derivatives that

furnishes the i-th irreducible representation. Some of these representations may be

singlets, and we shall label them by s. Because the unbroken group is not necessarily

compact, the non-trivial irreducible representations are generally not unitary. In any

case, if G(i) is invariant under the i-th representation of the unbroken group H, i.e.

R(i)TG(i)R(i) = G(i), then the Lagrangian

L =
∑
s

FsD(s) +
∑
i

FiD(i)TG(i)D(i) (3.29)
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transforms as a scalar under the Lorentz-group L↑+. Here, Fs and Fi are free param-

eters in the effective action, which remain undetermined by the symmetries of the

theory. In order to construct a Lorentz-invariant action, we just need a volume ele-

ment that transforms appropriately under our realization of the Lorentz group. This

is in general given by [110]

d4V ≡ d4x det eµ
a, (3.30)

which, because of equation (3.15), results in d4V = d4x. (Inside the determinant, the

vierbein should be regarded as a 4 × 4 matrix with rows labeled by µ and columns

labeled by a.) The functional

S =

∫
d4V L (3.31)

is then invariant under the action of the Lorentz group defined by equation (3.12).

3.2.5 Couplings to Matter

The formalism can be also extended to capture the effects of Lorentz breaking on the

matter sector. As mentioned above, at low-energies we can restrict our attention to

massless (or light) fields, which are typically those that are prevented from developing

a mass by a symmetry like chiral or gauge invariance. We consider couplings to the

graviton in Section 3.3.

Let ψ be any matter field that transforms under any (possibly reducible) repre-

sentation R(h) of the unbroken group H, with generators ti. Let us now define the

transformation law under the full Lorentz group to be [105]

g : ψ(x) 7→ ψ′(x′) = R(h(π, g))ψ(x), (3.32)

where x′ and h(π, g) are given in equation (3.12). We can also construct covariant

derivatives under the Lorentz group by setting,

Daψ ≡ eµa [∂µψ + iEµψ] = ∂aψ + iEaψ, (3.33)

where Eµ is defined in equation (3.14). The covariant derivative transforms just as

the field itself, under a representation of the same group element,

g : Daψ(x) 7→ D ′aψ
′(x′) = Λ(h(π, g))a

bR(h(π, g)) Dbψ(x). (3.34)
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Therefore, any Lagrangian built out of d4V , ψ, Daψ and Dam that is invariant under

the unbroken group H is then invariant under the full Lorentz group.

With these ingredients we could develop a formulation of the standard model in

which the Lorentz group is spontaneously broken to any subgroup. If the unbroken

group is trivial, H = 1, this construction would be analogous to the standard model

extension considered by Colladay and Kostelecky [101]. This chapter mainly focuses

on the general formalism of broken Lorentz invariance, so we shall not carry out this

program here. For the purpose of illustration however, and in order to establish the

connection to previous work on the subject, let us consider a formulation of QED

(quantum electro-dynamics) in which the Lorentz group is completely broken. For

simplicity we consider a theory with a single “spinor” ψα of charge q coupled to a

“photon” Aa. We use quotation marks because, according to (3.32), we assume that

under the (completely) broken Lorentz group both fields are invariant. On the other

hand, we require that the theory be invariant under gauge transformations, that is,

we demand invariance under

ψα → eiqχψα, Aa → Aa + ∂aχ, (3.35)

where χ is an arbitrary spacetime scalar. If the Lorentz group is broken down to H =

1, there are six Goldstone bosons in the theory, and γ becomes γ ≡ exp(iπklk), which,

under the Lorentz group transforms as g : γ 7→ γ′(x′) = g γ(x). Following (3.33) we

introduce now the covariant derivatives

DaAb ≡ Λ(γ−1)a
µ∂µAb, Daψα ≡ Λ(γ−1)a

µ∂µψα, (3.36)

which by construction are Lorentz-invariant (if the Lorentz group is completely bro-

ken, Eµ ≡ 0 by definition.) Gauge invariance then dictates that the derivatives of

the fields must enter in the gauge invariant or covariant forms

Fab ≡ DaAb −DaAb, ∇aψα ≡ (Da − iqAa)ψα. (3.37)

Any gauge invariant combination of these elements, such as

LQED = MabcdFabFcd +Nαβaψ†α∇aψβ + Pαβψ†αψβ, (3.38)
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is also Lorentz invariant (for simplicity, we have not written down all the terms com-

patible with the two symmetries). In equation (3.38), the dimensionless matrices M ,

N and P are constant and arbitrary, up to the restrictions imposed by permutation

symmetry and hermiticity. The Lagrangian (3.38) is thus the analogue of the exten-

sion of QED described in [101]. From a phenomenological perspective, its coefficients

can be regarded as quantities to be determined or constrained by experiment, as

in the standard model extension of [101]. But of course, as opposed to the latter,

the Lagrangian (3.38) contains couplings to the Goldstone bosons, and should be

supplemented with the Goldstone boson Lagrangian, which for a trivial H is

Lπ = GamDam + FmnabDamDbn, (3.39)

where Dam is given in equation (3.14), and m,n = 1, . . . , 6. As we shall see in the next

section, in a gravitational theory these covariant derivatives should be included in the

Lagrangian too, but in that case they reduce to appropriate components of the spin

connection. Note that in our conventions the Goldstone bosons are dimensionless.

Thus the coefficients in G have mass dimension three, and those in F mass dimension

two. In theories in which an internal symmetry is spontaneously broken, Lorentz in-

variance and invariance under the unbroken group often restrict the possible different

mass scales appearing in the Lagrangian to a single scale. This single energy scale

is the identified with the scale at which the internal symmetry group is broken. In

our case however, the values of G and F are (up to symmetry under permutations)

completely arbitrary, so the identification of a single energy scale at which Lorentz

symmetry is broken is in general not possible.

The obvious problem with this approach is that the Lorentz group seems to be

an unbroken symmetry in the matter sector. A generic Lagrangian like (3.38), con-

structed out of the standard model fields ψ, their covariant derivatives Daψ and the

covariant derivatives of the Goldstones Dam would clearly violate Lorentz invariance,

in flagrant conflict with experimental constraints [76]. Thus, we are forced to assume

that these “Lorentz-violating” terms are sufficiently suppressed, which in our context

requires specific relations between the coefficients in the effective Lagrangian.
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To illustrate this point, let us briefly discuss how to construct scalars under linearly

realized Lorentz transformations out of the ingredients at our disposal, namely, ψ,Daψ

and Dam. Imagine that the matter fields ψ̃ actually fit in a representation of the

Lorentz group R(g). It is then more convenient to postulate that under the full

Lorentz group, these fields transform as

g : ψ̃(x) 7→ ψ̃′(x′) = R(g)ψ̃(x). (3.40)

Then, any Lagrangian that is invariant (a scalar) under global Lorentz transforma-

tions,

Linv[ψ̃, ∂µψ̃] = Linv[R(g)ψ̃,R(g)Λ(g)µ
ν∂νψ̃], g ∈ L↑+, (3.41)

is clearly invariant under the unbroken subgroup H of global transformations, and

can thus be part of the effective Lagrangian in the broken phase. Note that these

Lorentz invariant terms would not contain any couplings to the Goldstone bosons.

But given the transformation law (3.40) we can also construct a new quantity that

transforms under the non-linear realization of the Lorentz group (3.32),

ψ ≡ R(γ−1)ψ̃, (3.42)

and whose covariant derivative can again be defined by equation (3.33). In this case,

however, the field ψ is to be understood simply as a shorthand for the right hand of

equation (3.42), which contains the Goldstone bosons γ(π). Given any Lagrangian

Lbreak that is invariant under the linearly realized unbroken group H, but not invariant

under linear representations of the full Lorentz group L↑+,

Lbreak[ψ, ∂µψ] = Lbreak[R(h)ψ,R(h)Λ(h)µ
ν∂νψ], h ∈ H, (3.43)

we can then construct further invariants under Lorentz transformations,

Lbreak[R(γ−1)ψ̃,Dµ(R(γ−1)ψ̃)]. (3.44)

Here, the appearance of the Goldstone bosons in those terms that violate the full

Lorentz symmetry is manifest.
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It seems now that the Lagrangians (3.41) and (3.44) do not fit into the general

prescription to construct invariant Lagrangians that we described at the beginning of

this subsection, but this is just an appearance. Suppose we perform a field redefinition

R(γ−1)ψ̃ → ψ, and assume that the new field ψ transforms as in equation (3.32).

This field redefinition turns the Lagrangian in equation (3.44) into Lbreak[ψ,Dµψ],

and takes the Lagrangian (3.41) into

Linv[ψ,Dµψ + iDµmx
mψ]. (3.45)

Both Lagrangians are invariant under the linearly realized symmetry group H (and

the non-linearly realized Lorentz group L↑+), and both are solely constructed in terms

of ψ,Dµψ and Dam.

Of course, a general Lagrangian invariant under H will have the form of equation

(3.45) only for very particular choices of the coefficients that remain undetermined

under the unbroken symmetry. From the point of view of the effective theory, this

particular choice cannot be explained, though it is certainly compatible with the

symmetries we are enforcing. To address it we would have to rely on specific models.

Say, if Lorentz symmetry is broken in a hidden sector which is completely decoupled

from the standard model, the breaking in the hidden sector should not have any

impact on the visible sector. But of course, the two sectors must couple at least

gravitationally. Then, if the scale of Lorentz-symmetry breaking is sufficiently small

compared to the Planck mass, we expect a double suppression of Lorentz-violating

terms in the matter sector: from the weakness of gravity, and from the smallness

of the symmetry breaking scale. We defer the discussion of gravitation to the next

section. Radiative corrections to Lorentz-violating couplings in the matter sector of

Einstein-aether models [114] have been calculated in [144].

3.2.6 Broken Rotations

As an example of the formalism discussed so far, we shall briefly study a pattern

of symmetry breaking in which the unbroken group H is non-compact. This is an

interesting case since, for internal non-compact symmetry groups, the theory contains
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ghosts in the spectrum of Goldstone bosons [140, 142]. We show that, instead, it is

certainly possible to have a well-behaved spectrum in a theory in which the Lorentz

group is broken down to a non-compact subgroup. We consider the widely-studied

case of unbroken rotations, H = SO(3), in Section 3.4.

Suppose that the Lorentz group L↑+ is broken down to the group of transforma-

tions that leave the vector field Aµ = (0, 0, 0, F ) invariant. This breaking pattern

was studied in references [139, 140], in which the “photon” of electromagnetism is

identified with the Goldstone bosons associated with the breaking. The Lie algebra

of the unbroken group H is then

H = Span{K1, K2, J3}, (3.46)

which is simple, and isomorphic to the Lie algebra of the group of Lorentz transforma-

tions in three-dimensional spacetime so(1, 2). Its orthogonal complement is spanned

by

C = Span{J1, J2, K3}. (3.47)

Because dim(C) = 3, there are three Goldstone bosons in the theory. It follows from

the commutation relations (3.1) and equations (3.6) and (3.11) that πm ≡ (π3, π1, π2)

transforms like a Lorentz three-vector. It is thus convenient to let m run from 0 to 2

and identify π0 ≡ π3.

The covariant derivative Dam transforms in a reducible representation of the sub-

group H = SO(1, 2). In fact, the covariant derivative

Dm ≡ D3m (3.48)

is an SO(1, 2) three-vector. The remaining irreducible spaces are spanned by the

scalar ϕ, the vector amn and the tensor smn defined by

ϕ ≡ Dmm, amn ≡
1

2
(Dmn −Dnm), smn ≡

1

2
(Dmn +Dnm)− 1

3
ϕηmn, (3.49)

where indices are raised with the (inverse) of the Minkowski metric in three dimen-

sions, ηmn = diag(−1, 1, 1) and m = 0, 1, 2. Scalar invariants are constructed then by

appropriate contraction of indices,

Lπ = Gϕϕ+ Fϕ ϕ
2 + FDDmDm + Fa amna

mn + Fε εmnp a
mnDp + Fs smns

mn. (3.50)
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For simplicity, let us now consider the case where Gϕ = 0. Because to lowest

order in the Goldstone bosons Dmn = ∂mπn + · · · , inspection of (3.50) reveals the

lower-dimension analogue of a generalized vector field theory in which the vector

field consists of the Goldstone bosons πm. This analogy can be further strengthened

by dimensionally reducing the four dimensional theory from four to three spacetime

dimensions. Expanding the Goldstone bosons in Kaluza-Klein modes

πm(t, x, y, z) =
∑
kz

π(k)
m (t, x, y)eikz, (3.51)

and inserting into the action we obtain, to quadratic order,

S =
∑
k

Sk, where (3.52)

Sk[π
(k)
m ] =

∫
dt d2x

[
Fa + Fs

4
amna

mn +

(
Fϕ +

2Fs
3

)
(∂mπ

m)2 + FD k
2 πmπ

m

]
.

Note that we have suppressed the index k of the Kaluza-Klein modes on the right hand

side of equation (3.52). The Kaluza-Klein modes π(k=0) are massless, and transform

like an SO(1, 2) vector. They can be thought of as the Goldstone bosons associated

with the breaking L↑+ ∼ SO(1, 3)→ SO(1, 2) induced by the compactification.

The spectrum of excitations in the theory described by (3.52), and the conditions

that stability imposes on the free parameters Fa, Fϕ, Fs and FD can be derived by

relying on the similarity of the action Sk with the four-dimensional models analyzed

in [137]. Since their stability analysis does not crucially depend on the dimensionality

of spacetime, their results also apply in the case at hand.4 Following the analysis in

Section V of [137] we find:

i) If both Fa + Fs and Fϕ + 2Fs/3 are different from zero, the spectrum consists

of an SO(1, 2) vector and an SO(1, 2) scalar. There is always a ghost at high

spatial momenta (k2
x + k2

y � k2).

4There is just one difference between the four-dimensional and the three-dimensional case: In four

dimensions, the vector sector (under spatial rotations) contains two modes, while in three dimension

the vector sector (under spatial rotations) only contains one mode.
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ii) For Fa+Fs = 0 the theory is stable if Fϕ+2Fs/3 > 0 and FD < 0. The spectrum

consists of a scalar under SO(1, 2). If FDk
2 = 0, there are no dynamical fields

in the spectrum.

iii) For Fϕ + 2Fs/3 = 0 the Lagrangian is the three-dimensional version of the

Proca Lagrangian. The spectrum consists of a massive SO(1, 2) vector, with

two polarizations. The theory is stable for Fa+Fs > 0 and FD < 0. If FDk
2 = 0

the vector is massless, with only one polarization. This last cast corresponds to

electrodynamics in three spacetime dimensions.

Hence, as we anticipated there are theories in which the low-energy theory is free of

ghosts. These are however non-generic, in the sense that they require the coefficients

of certain terms otherwise allowed by Lorentz invariance to be zero.

3.3 Coupling to Gravity

In the previous section we have explored spontaneous symmetry breaking of Lorentz

invariance in Minkowski spacetime, in which the Lorentz group is a global symmetry.

Though this approach should appropriately capture the local physical implications of

the breaking in non-gravitational phenomena, it certainly does not suffice to study

arbitrary spacetime backgrounds, or the gravitational interactions themselves.

In order to extend these considerations to gravity, it is convenient to exploit the

formal analogy between gravity and gauge theories. For that purpose, one intro-

duces the Lorentz group L↑+ as an “internal” group of symmetries, in addition to the

symmetry under general coordinate transformations [145]. In theories with fermions

(such as the standard model) this is actually mandatory, as the group of general

coordinate transformations does not admit spinor representations. In the first part

of this section we review the standard formulation of GR as a gauge theory of the

Lorentz group [146]. In the second part we then extend this standard formulation to

theories in which Lorentz invariance is “broken.” As for global symmetries, we say

that local Lorentz invariance is broken down to a subgroup H if the theory admits
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a generally covariant formulation in which invariance under local transformations in

H is manifest (linearly-realized), and invariance under local transformations in the

broken part of L↑+ is hidden (non-linearly-realized.) Readers already familiar with the

vierbein formalism can skip directly to Subsection 3.3.1.

3.3.1 Broken Lorentz Symmetry

The extension of this formalism to theories with broken Lorentz invariance is rela-

tively straight-forward, and parallels the standard construction in flat spacetime. We

begin by constructing the most general theory invariant under (linearly realized) lo-

cal transformations in a Lorentz subgroup H and general coordinate transformations,

and then we show that, by introducing Goldstone bosons, the theory can be made

explicitly invariant under the full (non-linearly realized) Lorentz group.

Unitary Gauge

Let us first postulate the existence of a vierbein eµ
a that transforms linearly under

local transformations in a subgroup of the Lorentz group,

h(x) : eµ
a(x) 7→ e′µ

a(x) = Λa
b(h) eµ

b, h(x) ∈ H ⊂ L↑+. (3.53)

This particular transformation law shall later allow us to extend the local symmetry

of the action from H to the full Lorentz group L↑+. Given this vierbein, we define the

spacetime metric to be

gµν ≡ eµ
aeν

bηab. (3.54)

It follows then from the definition of the metric that the vierbein forms a set of

orthonormal vectors, as in equation (2.61), and that the volume element (3.30) is

invariant both under general coordinate and Lorentz transformations.

In order to construct derivatives that transform covariantly under local transfor-

mations in H, we need to postulate the existence of an appropriate connection ωµ. If

we want to avoid introducing extraneous ingredients into the gravitational sector, we

should construct such a gauge field solely in terms of the vierbein, as in the standard
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construction. Inspection of equations (2.66) and (2.70) reveals that if we define ωµ

by equation (2.70), under an element of H the connection transforms like

h(x) : ωµ 7→ hωµ h
−1 + h ∂µh

−1. (3.55)

But as opposed to the original construction in which we demanded invariance under

the full Lorentz group, the reduced symmetry in the broken case allows us to introduce

additional covariant quantities. In particular, expanding the connection in the basis

of broken and unbroken generators,

ωµ ≡ i
(
Dµm x

m + Eµi t
i
)
≡ i (Dµ + Eµ) , (3.56)

it is then easy to verify that Dµ transforms covariantly (under H), while Eµ trans-

forms like a gauge field,

h(x) : Dµ(x) 7→ hDµ(x)h−1, (3.57a)

Eµ(x) 7→ hEµ(x)h−1 − i h ∂µh−1. (3.57b)

These transformation laws are analogous to those in equations (3.16). The only

difference, setting g = h and using equation (3.10), is that in the latter the Lorentz

group acts a transformation in spacetime, which changes the spacetime coordinates of

the fields, while here the Lorentz group acts internally, and thus leaves the spacetime

dependence of the fields unchanged.

The transformation properties of Eµ allow us to define another covariant derivative

of the vierbein, ∇̄ρeµ
a = ∂ρeµ

a − Γνµρeν
a − iEρi(ti4)ab eµ

b. But because ∇ρeµ
a = 0,

this derivative equals −iDνm(xm4 )a
beµb, and therefore does not yield any additional

covariant quantity. Finally, from the connection ωµ we define the curvature (2.72),

which under (3.53) transforms like

h(x) : Rµν 7→ hRµν h
−1. (3.58)

In order to construct invariants under both diffeomorphisms and local Lorentz

transformations, it is convenient to consider quantities that transform as scalars under
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diffeomorphisms, and tensors under the unbroken Lorentz subgroup H. We thus

define, in full analogy with equations (3.18),

Da ≡ eµaDµ, Ea ≡ eµaEµ, Rab ≡ eµae
ν
bRµν . (3.59)

The quantities Da and Ea are the appropriate generalization of the covariant deriva-

tives defined in equation (3.18), since they also transform like in equation (3.19), the

only difference being again that here the Lorentz group acts as an internal trans-

formation. As before, the covariant derivatives of any diffeomorphism scalar ψ that

transforms in a representation of the unbroken group with generators ti are defined

by equation (3.33), where Eµi is now given by equation (3.56).

By construction, any term solely built from the covariant quantities d4V , Dam,

Rab
cd, ψ and Daψ, which is invariant under global H transformations is also invariant

under local transformations in H and diffeomorphisms. In particular, because the

covariant derivatives Dam defined in (3.18) and the the covariant derivatives in equa-

tion (3.59) transform in the same way under H, the unbroken symmetries now allow

us to write down linear and quadratic terms for the components of the connection ωµ

along the directions of the broken generators, as in equation (3.29). In an ordinary

gauge theory, the quadratic terms give mass to some gauge bosons, but in our context,

because the spin connection depends on derivatives of the vierbein, these quadratic

terms cannot be properly considered as mass terms for the graviton. Since the space-

time metric is gµν = eµae
νa, a graviton mass term should be a quartic polynomial

in the vierbein. But the only invariants one can construct from the vierbein eµa are

field-independent constants. In gravitational theories in which the spin connection is

a fundamental field however, quadratic terms in the spin connection can be regarded

as mass terms [147–149].

Manifestly Invariant Formulation

Let us assume now that we have constructed an H invariant action,

S[e, ψ] = S[Λ(h)e,R(h)ψ], h(x) ∈ H, (3.60)
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where the functional dependence emphasizes that only e and ψ are the “fundamental”

fields of the theory, from which the remaining covariant quantities are constructed,

as discussed above. We show next that by introducing the corresponding Goldstone

bosons in the theory γ ≡ γ(πm), this symmetry can be extended to the full Lorentz

group. To that end, let us assume that the vierbein eµa transforms in a linear repre-

sentation of the Lorentz group, as in equation (2.63), and let us define

ẽµ
a ≡ Λa

b(γ
−1)eµ

b, (3.61)

where ẽµa is to be regarded as a shorthand for the expression on the right hand side,

and γ is a function of the Goldstone bosons defined in equation (3.8). Let us postulate

that under local Lorentz transformations, γ(π) transforms as in equation (3.9), while

under g(x) ∈ L↑+,

g(x) : ψ 7→ R(h(π, g))ψ. (3.62)

In that case, it follows from the definition (3.61) that ẽ transforms analogously,

g(x) : ẽµa 7→ Λa
b(h(π, g)) ẽµb. (3.63)

The transformation properties (3.62) and (3.63) and the invariance of the action

(3.60) imply that a theory with

S̃[γ, e, ψ] ≡ S[Λ(γ−1)e, ψ] (3.64)

is invariant under the full Lorentz group. In the Lorentz-invariant formulation of

the theory in equation (3.64) the action appears to depend on the Goldstone bosons

γ(π). However, inspection of the right hand side of the equation reveals that such a

dependence can be removed by the field redefinition (3.61). By a “field redefinition”

we mean here a change of variables in the theory, which replaces the combination

of two fields Λ(γ−1)e by a single field, which we may call again e. Since the field

variables we use do not have any impact on the physical predictions of a theory, we

may thus replace S[Λ(γ−1)e, ψ] by S[e, ψ]. In this “unitary gauge” we have effectively

set γ = 1, and returned back to the original action in equation (3.60).

It is instructive to show how the introduction of the Goldstone bosons would make

the theory manifestly invariant under local transformations. For simplicity, let us just
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focus on the gravitational sector. As mentioned above, the modified vierbein (3.61)

transforms non-linearly under the action (2.63) of the Lorentz group, g(x) ∈ L↑+.

When we substitute this modified vierbein into the expression for the spin connection

(2.70) we obtain

ω̃µ = γ−1 (∂µ + ω̃µ) γ, (3.65)

which is just the covariant generalization of the Maurer-Cartan form γ−1∂µγ, and

transforms non-linearly under (2.63),

g(x) : ω̃µ 7→ h(π, g) ωµ h
−1(π, g) + h(π, g) ∂µh

−1(π, g), (3.66)

with h(π, g) defined in equation (3.9). Therefore, if we expand this connection in the

basis of the Lie algebra,

ω̃µ ≡ i
[
D̃µm x

m + Ẽµi t
i
]
, (3.67)

we obtain covariant derivatives D̃a ≡ ẽµaD̃µ and gauge fields Ẽa ≡ ẽµaẼµ that trans-

form like in equations (3.19), but with x′ = x. The curvature tensor R̃µν associated

with ω̃µ is in fact given by

R̃µν = γ−1Rµνγ, (3.68)

where Rµν is the curvature tensor associated with the spin connection ωµ, derived

itself from eµ
a. Under the action of elements g(x) ∈ L↑+ on the vierbein (2.63), this

curvature transforms non-linearly too,

g(x) : R̃µν 7→ h(π, g) R̃µν h
−1(π, g). (3.69)

It is thus clear from the transformation properties of these new quantities that if

the original action S is invariant under H, the new action S̃ defined in equation (3.64)

will be invariant under L↑+. In fact, we could have reversed the whole construction.

We could have started by defining a modified vierbein ẽµ
a, a modified covariant

derivative D̃µ and a modified curvature tensor R̃µν according to equations (3.61),

(3.67) and (3.68). Then, any invariant action under H, solely constructed out of

these ingredients would have been automatically and manifestly invariant under L↑+.
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3.4 Unbroken Rotations

We turn now our attention to cases in which the unbroken group is the rotation

group, H = SO(3), which is the maximal compact subgroup of L↑+. This pattern of

symmetry breaking is analogous to the spontaneous breaking of chiral invariance in

the two quark model. In the latter, the chiral symmetry of QCD with two massless

quarks, SU(2)L × SU(2)R, is broken down to the isospin subgroup SU(2), while in

the former, the Lorentz group SO(1, 3) ∼ SU(2)×SU(2) is broken down to the diag-

onal subgroup of rotations SO(3) ∼ SU(2). Hence, the construction of rotationally

invariant Lagrangians with broken Lorentz invariance is formally analogous to the

construction of isospin invariant Lagrangians with broken chiral symmetry.

As in the two-quark model, the case for unbroken rotations can be motivated

phenomenologically. If rotations were broken, we would expect the expansion of the

universe to be anisotropic, in conflict with observations, which are consistent with a

nearly isotropic cosmic expansion all the way from the initial stages of inflation. Our

main goal here however is not to consider the phenomenology of theories with unbro-

ken rotations, as this has been already extensively studied, but simply to illustrate

how our formalism applies to theories with gravity. We shall see in particular how in

this case our construction directly leads to the well-known Einstein-aether theories,

which we show to be the most general class of theories in which rotations remain

unbroken.

3.4.1 Coset Construction

In order to build the most general theory in which the rotation group remains un-

broken, let us assume first that spacetime is flat, as in Section 3.2.2. In the case at

hand, then, the generators of the unbroken group are the generators of rotations Ji,

and the remaining “broken” generators are the boosts Km. Therefore, the theory

contains three Goldstone bosons πm. Of particular relevance are the transformation

properties of these Goldstone bosons under rotations. For an infinitesimal rotation
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t = ωiJi, equations (3.6) and (3.11) lead to

t : πm 7→ π′m = πm + (ω × π)m . (3.70)

In addition, since PKmP−1 = −Km and TKmT−1 = −Km we have, from (3.25) that

πm → −πm under parity and time reversal. Therefore, the set of Goldstone bosons

transform like a 3-vector under spatial rotations. These are analogous to the pions of

spontaneously broken chiral invariance.

The restriction of the four-vector representation Λ(g) to the subgroup of rotations

H is reducible, 4 = 1⊕ 3, so the tensor product representation of the rotation group

in equation (3.20) is also reducible,

(1⊕ 3)⊗ 3 = 3⊕ 1⊕ 3⊕ 5. (3.71)

(The different representations of the rotation group are labeled by their dimension.

The dimension N of the representation is N = 2S + 1, where S is the spin of the

representation.) More precisely, the covariant derivative

Dm ≡ D0m (3.72)

transforms like a spatial vector under rotations (spin one, 3), while Dmn transforms

in the tensor product representation of rotations 3⊗ 3. Defining

Dmn =
1

3
ϕ δmn + amn + smn, (3.73)

with a antisymmetric and s symmetric and traceless, leads to a scalar ϕ (spin zero,

1), a vector amn ≡ εmnpa
p (spin one, 3), and a traceless symmetric tensor smn (spin

two, 5). Therefore, the most general Lagrangian density at most quadratic in the

covariant derivatives, and invariant under the full Lorentz group is

Lπ =
1

2

(
Fϕ ϕ

2 + FDDmDm + Fa amna
mn + Fs smns

mn
)
, (3.74)

where indices are raised with the (inverse) metric of Euclidean space, δmn. Note that

we have omitted a linear term proportional to ϕ, and the parity-violating expres-

sion εmnp a
mnDp in the Lagrangian. As we show below, these terms are just total

derivatives.
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Let us now address the new ingredients that gravity introduces into the theory. As

we discussed in Section 3.3.1, in a generally covariant theory we may choose to work

in unitary gauge, in which the Goldstone bosons identically vanish. In this gauge, the

covariant derivativesDam defined above simply reduce to the spin connection along the

appropriate generators, as in equations (3.56). Therefore, using the explicit form of

the rotation generators in the fundamental representation, and tr(xm(4) · xn(4)) = −2δmn,

we find

Dm = ω0m0, Dmn = ωmn0. (3.75)

Recall that there are three broken generators which transform like vectors under

rotations, which we label by m,n, and that the derivatives defined in equations (3.59)

transform in the same way as the covariant derivatives defined in equation (3.18),

with x′ = x. Therefore, the Lagrangian (3.74) already contains all the rotationally

invariant terms constructed from the undifferentiated spin connection.

To complete the most general gravitational action invariant under general coor-

dinate and local Lorentz transformations, with at most two derivatives acting on the

vierbein, we just need to add all invariant terms that can be constructed from the

curvature alone. Without loss of generality, we may restrict ourselves to the com-

ponents of the Riemann tensor in an orthonormal frame, Rab
cd. Then, indices along

spatial direction transform like vectors, while indices along the time direction trans-

form like scalars under rotations. Most of the invariants one can construct out of the

Riemann tensor vanish because of antisymmetry. For instance, the term R0
mnpεmnp is

identically zero because of the antisymmetry of the curvature tensor in the last three

indices. In addition, the identity [∇µ,∇ν ]A
ρ = Rµν

ρ
σA

σ, in an orthonormal frame

and up to boundary terms, implies the relation∫
d4V

[
R0m

0m −DmnDmn + (Dmm)2
]

= 0, (3.76)

which can be used to eliminate a scalar term proportional to R0m
0m from the action.

As we mentioned earlier a term linear in the covariant derivative, ϕ ≡ Dmm, is a total

derivative, since from equations (2.67) and (2.69)

ωm0
m = ∂µe

µ
0 + Γµνµe

ν
0 =

1

det e
∂µ(det e eµ0). (3.77)
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Similarly, one can show that εmnp a
mnDp is a total derivative too, since the latter

equals εmnpq∇mAn∇pAq, for Am = δm
0. We therefore conclude that the most general

diffeomorphism invariant action invariant under local rotations is

S =
M2

P

2

∫
d4V [R+ Lπ] + SM , (3.78)

where R ≡ Rab
ab is the Ricci scalar, the “Goldstone” Lagrangian Lπ is given by

equation (3.74), and SM denotes the matter action. Tests of the equivalence principle

[64] and constraints on Lorentz-violating couplings in the standard model [76] sug-

gest that any Lorentz-violating term in the matter action SM is very small. Hence,

for phenomenological reasons, we assume that the breaking of Lorentz invariance is

restricted to the gravitational sector. Therefore, SM is taken to be invariant under

Lorentz transformations, and the action (3.78) defines a metric theory of gravity.

3.4.2 The Einstein-aether

For unbroken rotations, the matrix γ that we introduced in Section 3.2.2 is a boost,

γ = exp(iπmK
m). Hence, instead of characterizing the Goldstone bosons by the set

of three scalars πm, we may simply describe them by the transformation matrix Λa
0

of the boost itself. The latter has four components,

ua ≡ Λa
0, (3.79)

but not all of them are independent, because Lorentz transformations preserve the

Minkowski metric. In particular, the vector field ua has unit norm

uau
a ≡ ηabΛ

a
0Λb

0 = η00 = −1. (3.80)

In the conventional approach to the formulation of the most general theory in which

rotations remain unbroken, one would solve the constraint (3.80) by introducing an

appropriate set of three parameters, and then identify their transformation properties

under the Lorentz group [117]. One would then proceed to define covariant derivatives

of these parameters, and use them to construct the most general theory compatible

with the unbroken symmetry, just as we did.
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In this case however, a simpler approach leads to the same general theory, but

avoids introducing coset parametrizations and covariant derivatives altogether. Since

the Lorentz transformation of a boost can be described by a the vector field (3.79),

one may simply expect that the problem of constructing the most low-energy effective

theory in which the rotation group remains unbroken just reduces to the problem of

writing down the most general diffeomorphism invariant theory with the least numbers

of derivatives acting on a unit norm vector field. This was precisely the problem that

Jacobson and Mattingly studied in [114], which resulted in what they called the

“Einstein-aether”. The most general action in this class of theories is

S =
M2

G

2

∫
d4V

[
R− c1∇aub∇aub − c2(∇au

a)2 − c3∇aub∇bua+

+ c4u
aub∇auc∇bu

c + λ(uau
a + 1)

]
, (3.81)

where the parameters ci are constant, and we have written down all the components

of the “aether” vector field uµ in an orthonormal frame, ua ≡ eµ
auµ, with covariant

derivatives given by

∇au
b ≡ eµa

(
∂µu

b + ωµ
b
cu
c
)
. (3.82)

The constraint uaua = −1 on the norm of the field is enforced by the Lagrange mul-

tiplier λ. Hence, the action (3.81) is analogous to the linear σ-model in which chiral

symmetry breaking was originally studied. In this formulation, the Lorentz group

acts linearly on the vector field ua, and, as we shall see, the fixed-norm constraint

can be understood as limit in which the potential responsible for Lorentz symmetry

breaking is infinitely steep around its minimum.

To establish the connection between the Einstein-aether (3.81) and the rotationally

invariant action (3.78), we simply need to impose unitary gauge. We can solve the unit

norm constraint in (3.81) by expressing the vector field ua as a Lorentz transformation

acting on an appropriately chosen vector ũa,

ua = Λa
b(π)ũb, with ũa = δa0, (3.83)

which is just a restatement of equation (3.79). Then, invariance under local Lorentz

transformations implies that the aether action (3.81) can be equally thought of as a
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functional of ũb and the transformed vierbein ẽµ
a = (Λ−1(π))ab eµ

b. If we now redefine

the vierbein field, ẽµ
b → eµ

a, the Goldstone bosons π disappear from the action, and

we are left with the theory in unitary gauge. In this gauge the vierbein is arbitrary,

but (dropping the tildes) we can assume that ua = δa0. In that case equation (3.82)

gives in addition∇aub = ωab0, which, when substituted into the Einstein-aether action

(3.81) precisely yields the action (3.78). The corresponding parameters MP and Fi

are expressed in terms of five linearly independent combinations of aether parameters,

MP = MG, Fϕ = −1

3
(c1+3c2+c3), FD = c1+c4, Fa = c3−c1, Fs = −(c1+c3),

(3.84)

and, therefore, the Einstein-aether is the most general low-energy theory in which the

rotation group remains unbroken. The correspondence (3.84) also explains then why

these particular combinations of the Einstein-aether parameters enter the predictions

of the theory. In our language, they map into the different irreducible representations

in which one can classify the covariant derivatives of the Goldstone bosons. The

phenomenology of Einstein-aether theories is nicely reviewed in [75].

3.4.3 General Vector Field Models

In Einstein-aether theories, Lorentz invariance is broken because the vector field ua

develops a time-like vacuum expectation value. In this context, it is then natural

to consider generic vector field theories in which a vector field develops a non-zero

expectation value, and to study how the latter reduce to the Einstein-aether in the

limit of low energies. This will also help us to illustrate our formalism in cases in which

the spectrum of excitations contains a massive field, and how the latter disappears

from the low-energy predictions of the theory.

The most general low energy effective action for a vector field non-minimally

coupled to gravity which contains at most two derivatives and is invariant under local
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Lorentz transformations and general coordinate transformations reads

S =
1

2

∫
d4V

[
M2

GR+
α

2
FabF

ab + β (∇aA
a)2 + β4RAaAa + β5RabA

aAb + (3.85)

+
AaAb

Λ2
(α1∇aAc∇bA

c + α2∇cAa∇cAb + α3∇aAb∇cA
c) +

+γ
AaAbAcAd

Λ4
∇aAb∇cAd + δ1AbA

b∇aA
a − Λ4 V

]
.

Here, Fab ≡ ∂aAb − ∂bAa, Aa are the components of the vector field in an arbitrary

orthonormal frame, and the various coefficients α, αi, β, βi, γ, δ1 and V should be

regarded as arbitrary (dimensionless) functions of AaA
a/Λ2. Finally, MG and Λ are

the two characteristic energy scales of the effective theory, which is valid at energies

E � min(Λ,MG). In order to generate spontaneous breaking of Lorentz symmetry

down to rotations we assume, without loss of generality, that the potential V is

minimized by field configurations with AaA
a = −Λ2. Other low energy terms that

do not appear in the expression (3.85) can be reduced to linear combinations of the

terms above after integrations by parts. An action very similar to (3.85) has been

already considered in [115], though the latter did not include the terms proportional

to β4 and δ1, and all the other couplings were assumed to be constants rather than

arbitrary functions of Aa. Models involving fewer terms have been studied for instance

in [150–153] under the name of “bumblebee models,” and in [137] under the name of

“unleashed aether models.”

In order to make contact with the formalism developed in the previous sections,

we shall parametrize again the vector field as a Lorentz transformation acting on

Aa(x) = δa0 (Λ + σ(x)) , (3.86)

where the field σ is just a singlet under rotations. This is the same we did for the

aether, the only difference being that there the fixed-norm constraint forced the field

σ to vanish. As before, invariance under local Lorentz transformations then implies

that the vector field can be taken to be given by (3.86). In this unitary gauge, the

covariant derivative of Aa is

∇aA
b = δb0(eµa∂µσ) + ηbm(Λ + σ)Dam, (3.87)
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where we have used equations (3.75). Thus, the action (3.85) can be expressed in

terms of rotationally invariant operators that solely involve Rab
cd, Dam, the scalar σ

and its covariant derivative Daσ = eµa∂µσ.

It shall prove to be useful to expand the action (3.85) in powers of σ. To quadratic

order, and to leading order in derivatives, the results is

S =
1

2

∫
d4V

[
(M2

G − β̄4Λ2)R+ Λ2

(
β̄ +

2β̄5

3

)
ϕ2 + Λ2(ᾱ1 − ᾱ)DmDm − Λ2β̄5 smns

mn

+Λ2(2ᾱ + β̄5) amna
mn + σ(−2δ̄1Λ2ϕ+ · · · ) + σ2(−2V̄ ′′Λ2 + · · · ) +O(σ3)

]
, (3.88)

where the dots stands for the subleading terms in the derivative expansion and V̄ ′′

denotes the second derivative of the potential function with respect to its argument,

evaluated at its minimum, where AaA
a = −Λ2. Similarly, ᾱ, β̄, β̄4, β̄5, ᾱ1 and δ̄1 stand

for the values of the couplings at the minimum of the potential. Apart from the

additional rotationally invariant terms involving the field σ, the action (3.88) has

manifestly the form (3.78) with M2
P ≡ (1− β̄4)M2

G.

We study the spectrum of this class of theories in Appendix 3.A. Their scalar

sector consists of a massless excitation, one of the Goldstone bosons, and a massive

field, whose mass is linear in V̄ ′′. We show in the appendix that in the low-momentum

limit, the field σ has a vanishing matrix element between the massless scalar particle

and the vacuum,

lim
p→0
〈m = 0|σ(p)|0〉 = 0. (3.89)

Hence, if we are interested in low momenta and massless excitations, the field σ can be

simply integrated out. At tree level, this can be easily done by solving the classical

equations of motion to express σ in terms of the covariant derivatives Dam. From

(3.88), we see that to lowest order in derivatives the result is completely determined

by the two terms proportional to σ2 and σϕ. Thus, solving the corresponding linear

equation,

σ = − δ̄2
1

2V̄ ′′
ϕ+O(∂2/Λ), (3.90)



75

and plugging back into the action (3.88) we get, to leading order in derivatives,

S =
1

2

∫
d4V

[
(M2

G − β̄4Λ2)R+ Λ2

(
β̄ +

δ̄2
1

2V̄ ′′
+

2β̄5

3

)
ϕ2 + Λ2(ᾱ1 − ᾱ)DmDm +

+Λ2(2ᾱ + β̄5) amna
mn − Λ2β̄5 smns

mn

]
. (3.91)

As expected the low energy action (3.91) has the form of (3.78). Integrating out the

field sigma has simply renormalized the coefficients of the low energy theory, which

are now given by

M2
P = M2

G − β̄4Λ2, Fϕ =

(
β̄ +

δ̄2
1

2V̄ ′′
+

2β̄5

3

)
Λ2

M2
P

, FD = (ᾱ1 − ᾱ)
Λ2

M2
P

,

Fa = (2ᾱ + β̄5)
Λ2

M2
P

, Fs = −β̄5
Λ2

M2
P

. (3.92)

By combining these relations with equations (3.84), one can easily derive the disper-

sion relations and residues of the massless excitations in the model (3.85) from the

known aether theory results [75]. Equations (3.92) show from the very beginning that

the couplings γ, α2 and α3 will not enter the low-energy phenomenology. A “brute

force” calculation based on the action (3.85) tends to obscure this fact, as shown

explicitly in Appendix 3.A, although the final results are of course identical.

Alternatively, if we are interested only in the low energy phenomenology of the

theory, we can choose to drop the field σ from the onset, as massive excitations will

not give any observable contribution at low energies [143]. In the limit V̄ ′′ →∞ where

the massive mode becomes infinitely heavy, the potential may be replaced by a fixed-

norm constraint, as in Einstein-aether theories. In fact, when V̄ ′′ → ∞, equation

(3.90) implies that σ can be simply set to zero, and the general class of vector field

models described by (3.85) directly reduces to the Einstein-aether. After introducing

a rescaled vector Aa ≡ Λua and integrating some terms by parts, the coefficients ci

in (3.81) can be easily mapped onto the couplings in (3.85) as follows:

α = −c1
M2

G

Λ2
, β = −(c1 + c2 + c3)

M2
G

Λ2
, β5 = (c1 + c3)

M2
G

Λ2
, α1 = c4

M2
G

Λ2
,

α2 = α3 = β4 = γ = δ1 = 0. (3.93)

Once again, equations (3.93) can be easily combined with the known Einstein-aether



76

results [75] to immediately obtain the dispersion relations and the residues for the

massless propagating modes in the specific model (3.85).

3.5 Summary

In this chapter we have generalized the effective Lagrangian construction of Callan,

Coleman, Wess and Zumino to the Lorentz group. In flat spacetime, the Lorentz group

is a global symmetry, and its breaking implies the existence of Goldstone bosons, one

for each broken Lorentz generator. The broken global symmetry is not lost, and

is realized non-linearly in the transformation properties of these Goldstone bosons

and the matter fields of the theory. Because the Lorentz group is a spacetime sym-

metry, the Goldstone bosons transform non-trivially under the Lorentz group, and

can be classified in linear representations of the unbroken subgroup. The same non-

linearly realized global symmetry prevents the Goldstone bosons from entering the

Lagrangian undifferentiated, which allows us to identify them as massless excitations.

Because spacetime derivatives transform non-trivially under the Lorentz group, the

covariant derivatives of Goldstone bosons typically furnish reducible representations

of the unbroken Lorentz subgroup. The Lorentz group does not seem to be broken

in the standard model sector, so any eventual breaking of this symmetry must be

confined to a hidden sector of the theory. In that respect, phenomenologically re-

alistic theories must resemble models of gravity-mediated supersymmetry breaking

[154–156]. In both cases, a spacetime symmetry is broken in a hidden sector, the

breaking is communicated to the standard model by the gravitational interactions,

and, for phenomenological reasons, the symmetry breaking scale has to be sufficiently

low.

Given an internal symmetry group, one always has a choice to make it global or

local. But in the case of the Lorentz group this choice does not seem to exist. Any

generally covariant theory that contains spinor fields, such as the standard model

coupled to GR, requires that Lorentz transformations be an internal local symmetry,

very much like a group of internal gauge symmetries. We have therefore extended
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the construction of actions in which global Lorentz invariance is broken to generally

covariant formulations in which the group of local Lorentz transformations is non-

linearly realized on the fields of the theory, which at the very least must contain the

covariant derivatives of the Goldstone bosons and the vierbein, which describes the

gravitational field. But in this case, since the Lorentz group is a local symmetry,

it is possible and simpler to work in a formulation in which the Goldstone bosons

are absent, and Lorentz symmetry is explicitly broken. In this “unitary gauge,” the

theory remains generally covariant, but Lorentz symmetry is lost. Even though the

lost invariance under the Lorentz group can always be restored by introducing the

appropriate Goldstone bosons, this restored symmetry is merely an artifact.

Generally covariant theories with broken Lorentz invariance differ significantly

from their fully symmetric counterparts. In unitary gauge for instance, the covariant

derivatives of the Goldstone bosons that the unbroken symmetry allows us to write

down simply become the spin connection along the broken generators. This is just

the Higgs mechanism. But in a generally covariant theory without extraneous ad-

ditional fields, this connection is expressed in terms of the vierbein, so these terms

actually represent kinetic terms for some of its components. Thus, instead of a mas-

sive theory of gravity, when Lorentz invariance is broken we obtain a theory with

additional massless excitations (in Minkowski spacetime), which we can interpret as

extra graviton polarizations in unitary gauge, or simply as the Goldstone bosons of

the theory in general.

We have illustrated these issues for cases in which the rotation group remains un-

broken. In particular, we have rigorously shown that the most general low-energy ef-

fective theory with unbroken spatial rotations is the Einstein-aether, and how generic

vector field theories reduce to the latter at low energies.

The construction of low-energy effective theories that we have described here pro-

vides us with a tool to explore Lorentz symmetry breaking systematically and in a

model-independent way. It identifies first how the Lorentz group acts on the field

of the theory, it removes the clutter of particular models by focusing on the rele-

vant fields at low energies, and it uniquely enumerates all the invariants under the
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unbroken symmetries.

Appendix 3.A Vector-Tensor EFTs

In this appendix we study the spectrum of excitations in the vector-tensor theories

introduced in Section 3.4.3, in which Lorentz symmetry is broken down to rotations.

Although such a study is usually carried out in the standard metric formulation (see

for example [115]), in what follows we adopt instead the vierbein formalism which we

already used in the main body of this chapter.

3.A.1 Perturbations

Our starting point is the action (3.85), which is a functional of the vierbein eµ
a and

the vector field Aa, and describes the behavior of both light and heavy modes. Pertur-

bations of the vierbein around the Minkowski solution eµ
a = δµ

a can be decomposed

into scalars, vectors and tensors under spatial rotations as follows:

δe0
0 = φ, (3.94a)

δe0
i = ∂iB + Si, (3.94b)

δei
0 = −∂iC − Ti, (3.94c)

δei
j = −δijψ + ∂i∂jE + εijk∂

kD − ∂(iFj) + εijkW
k +

1

2
hij. (3.94d)

In this decomposition φ,B,C, ψ,E,D are scalars, Si, Ti, Fi,Wi are transverse vectors,

∂iS
i = · · · = ∂iW

i = 0, and hij is a transverse and traceless tensor, hi
i = ∂ih

ij = 0.

Here, i = 1, 2, 3 labels spatial indices, which we raise and lower with the flat metric

δij.

Scalars, vectors and tensors transform in different irreducible representations of

the rotation group and therefore do not couple from each other in the free theory.

As we show in Section 3.4.3, no matter what the spacetime background is, we can

always use invariance under local boosts to impose the “unitary gauge” condition

(3.86), namely

Aa(x) = δa0 (Λ + σ(x)) . (3.95)



79

The field σ is a scalar under rotations.

Gauge fixing

At this point, not all the scalars and vectors in equations (3.94) and (3.95) describe

independent degrees of freedom, because of the residual gauge invariance associated

with general coordinate transformations and the unbroken group of local rotations. In

fact, under infinitesimal coordinate transformations (xµ → xµ+ξµ) and local Lorentz

rotations (ei
µ → ei

µ +ωkεijkej
µ) the fluctuations of the vierbein around a Minkowski

background (3.94) transform in the following way:

δe0
0 → δe0

0 − ∂tξ0, (3.96a)

δe0
i → δe0

i − ∂t∂iξ − ∂tξiT , (3.96b)

δei
0 → δei

0 − ∂iξ0, (3.96c)

δei
j → δei

j − ∂i∂jξ − ∂iξjT + εi
jk∂kω + εi

j
kω

k
T , (3.96d)

where we have decomposed ξµ and ωi into the scalars ξ0, ξ, ω and the transverse

vectors ξiT and ωiT (∂iξ
i
T = ∂iω

i
T = 0). Comparison of equations (3.94) and (3.96)

then shows that, by performing an appropriately chosen rotation together with a

general coordinate transformation, one can set for instance Fi = Wi = 0 and C =

D = E = 0 = 0. Thus, we are eventually left with only four scalars (φ,B, ψ and σ),

two vectors (Si and Ti) and one tensor (hij). This is the same number of degrees of

freedom one obtains in the metric formulation of the theory, after completely fixing

the gauge.

3.A.2 Tensor Sector

As we mention above, in the free theory, scalars, vectors and tensors decouple from

each other. Let us therefore start by considering the tensor sector, which is described

by the quadratic Lagrangian

Lt =
1

4

{[
M2

G −
(
β̄4 + β̄5

)
Λ2
]
ḣijḣij −

[
M2

G − β̄4Λ2
]
∂khij∂khij

}
, (3.97)
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from which we can immediately read off the residue and the speed of sound of the

tensor modes,

Z−1
t =

M2
G −

(
β̄4 + β̄5

)
Λ2

2
, c2

t =
M2

G − β̄4Λ2

M2
G − (β̄4 + β̄5)Λ2

. (3.98)

Once again, β̄4 and β̄5 stand for the values of the couplings at the minimum of the

potential, and a similar notation applies in what follows to the other couplings too.

The tensor sector is ghost free provided (β̄4 + β̄5)� (MG/Λ)2. We should also impose

β̄4 � (MG/Λ)2 in order to ensure classical stability. The results (3.98) agree with the

ones of aether models with parameters given by equation (3.92), and they also reduce

to the ones found by Gripaios [115] in the limit where Λ�MG.

3.A.3 Vector Sector

The Lagrangian for the vector modes is only slightly more complicated, and reads

Lv =
1

2

{[
M2

G − β̄4Λ2
]
∂i(Tj + Sj)∂i(Tj + Sj) + 2(ᾱ1 − ᾱ)Λ2 ṪiṪi+ (3.99)

+(β̄5 + 2ᾱ)Λ2 ∂iTj∂iTj − β̄5Λ2 ∂iSj∂iSj

}
.

The field Si only appears in the Lagrangian density through the combination ∂iSj

and does not propagate. Its equation of motion can be easily solved to get

[
M2

G − (β̄4 + β̄5)Λ2
]
Si = −

[
M2

G − β̄4Λ2
]
Ti, (3.100)

which, when substituted back in (3.99) gives

Lv = (ᾱ1 − ᾱ)Λ2 ṪiṪi +

(
ᾱ− β̄2

5Λ2

2
[
M2

G − (β̄4 + β̄5)Λ2
]) ∂iTj∂iTj. (3.101)

Therefore, only two massless vector modes propagate, with residue and a speed of

sound given by

Z−1
v = 2(ᾱ1 − ᾱ)Λ2, c2

v =
1

ᾱ− ᾱ1

(
ᾱ− β̄2

5Λ2

2
[
M2

G − (β̄4 + β̄5)Λ2
]) . (3.102)

In empty space, the vector sector of GR is non-dynamical. However, the breakdown of

Lorentz invariance gives dynamics to this sector, even in the absence of matter fields.
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Of course, these two vector modes correspond to two of the Goldstone bosons of the

“spontaneously broken” phase. They are well behaved in the limit Λ�MG provided

(ᾱ1 − ᾱ) > 0 and ᾱ < 0. Notice that this result does not agree with [115], though

it does agree with the result found in aether theories [75], upon the identification in

equations (3.92).

3.A.4 Scalar Sector

Let us finally consider the scalar sector, which now contains both massive and massless

fields. To quadratic order in the perturbations, its Lagrangian density is given by

Ls =
1

2

{
2(M2

G − β̄4Λ2)(∂iψ∂iψ − 2∂iφ∂iψ) + β̄Λ2(∆B)2

+(3β̄Λ2 + 2β̄5Λ2 + 2β̄4Λ2 − 2M2
G)(3ψ̇2 + 2ψ̇∆B)

+(ᾱ1 − ᾱ)Λ2∂iφ ∂iφ+ (β̄ − ᾱ1 − ᾱ2 − ᾱ3 + γ̄)σ̇2 − (ᾱ− ᾱ2)∂iσ∂iσ +

−2V̄ ′′Λ2σ2 + [(−4β̄4 + 4β̄′4 − 2β̄5 + 2β̄′5 + ᾱ3 − 2β̄)σ̇ + 2δ̄1Λσ](∆B + 3ψ̇) +

−∂iσ∂i[(4β̄4 − 4β̄′4 + 2β̄5 − 2β̄′5 + 2ᾱ)φ− 8(β̄4 − β̄′4)ψ]
}
. (3.103)

The scalars φ and B only appear in the Lagrangian trough the combinations ∂iφ and

∆B, so they can be easily eliminated by solving their classical equations of motion.

At this point, it is more convenient to switch to Fourier space, and write the action

for the two remaining scalars in the form

Ss = −1

2

∫
d4k X†DX, with X ≡

σ(k)

ψ(k)

 (3.104)

and

D ≡

 a1ω
2 + a2k

2 + a3Λ2 a4ω
2 + a5k

2 + ia6Λω

a4ω
2 + a5k

2 − ia6Λω a7ω
2 + a8k

2

 . (3.105)

Here, the (dimension two) coefficients ai are some complicated functions of the various

coupling constants of the model. In particular, a3 and a6 are the only couplings that

break the Z2 symmetry Aa → −Aa.

The inverse of the matrix D is just the field propagator. In order to find the

propagating modes we just have to find the values of ω2 at which its eigenvalues
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have poles, or, equivalently, the values of ω2 at which the eigenvalues of D have zeros.

Requiring that det(D) vanish we thus arrive at the frequencies of the two propagating

modes,

ω2
1 = m2

1Λ2 + c2
1k

2 +O(k4/Λ2), ω2
2 = c2

2k
2 +O(k4/Λ2), (3.106)

with

m2
1 =

a2
6 − a3a7

a1a7 − a2
4

, (3.107a)

c2
1 =

a8(a3a
2
4 − a1a

2
6) + (a2

6 − a3a7)(2a4a5 − a2a7)

(a2
6 − a3a7)(a1a7 − a2

4)
, (3.107b)

c2
2 =

a3a8

a2
6 − a3a7

. (3.107c)

In the absence of fine-tuning, the first mode has a mass of order Λ and can be excluded

from the low-energy theory. On the other hand, the speed of sound of the massless

mode,

c2
2 =

(2V̄ ′′β̄ + δ̄2
1)
[
2M2

G − (2β̄4 − ᾱ + ᾱ1)Λ2
] [
M2

G − β̄4Λ2
]

(ᾱ− ᾱ1)
[
M2

G − (β̄4 − β̄5)Λ2
] [

2V̄ ′′
(
2M2

G − (2β̄4 + 2β̄5 + 3β̄)Λ2
)
− 3 δ̄2

1Λ2
] ,

(3.108)

coincides with the speed of sound of the scalar mode in aether theories [75], after

substitution of equations (3.92). Note that the terms O(k4/Λ2) in equation (3.106)

cannot be trusted since our starting point was an effective action in which all the

terms with more than two derivatives were excluded.

As in the vector sector, in the absence of matter fields the scalar sector of GR is

non-dynamical. But again, the breakdown of Lorentz invariance gives dynamics to

this sector. This captures of course the existence of a Goldstone boson in the scalar

sector of the theory, which, together with the two massless modes we found in the

vector sector, play the role of the three Goldstone bosons associated with the broken

boost generators.

The residues of the scalar modes can be determined using the general result [137]

1

Z1,2

= − 1

tr(D)

∂

∂ω2
det(D)

∣∣∣∣
ω2=ω2

1,2

, (3.109)
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which, in our case, yields

Z−1
1 =

a2
6(a1 + a7)− a3(a2

4 + a2
7)

(a1a7 − a2
4)(a2

6 − a3a7)
+O(k4/Λ2), Z−1

2 =
a3

a3a7 − a2
6

+O(k4/Λ2).

(3.110)

Like for the speed of sound, the residue of the massless mode

Z−1
2 =

2
[
M2

G − (β̄4 + β̄5)Λ2
] [

3δ̄2
1Λ2 − 2V̄ ′′(2M2

G − (2β̄4 + 2β̄5 + 3β̄)Λ2)
]

(δ̄2
1 + 2V̄ ′′β̄)Λ2

+O(k4/Λ2)

(3.111)

agrees with that obtained in aether theories [75], upon the identification (3.92). Once

again, the terms O(k4/Λ2) in the residues are out of the reach of validity of the

effective theory we wrote down.

To conclude, it is interesting to point out that none of the results concerning

the massless modes depend on α2, α3, γ, nor on the derivatives of β4 and β5. A

brute-force approach like the one we just followed makes this look like the result of

accidental cancellations. Notice for instance that in fact the free scalar Lagrangian

(3.103) does depend on α2, α3, γ, as well as on the derivatives of β4 and β5. The

low-energy effective action (3.91) on the other hand makes this manifest from the

very beginning.

3.A.5 The field σ

We obtained the low energy effective Lagrangian (3.91) by integrating out the field σ.

In that context, we claimed that this procedure was justified because that the matrix

element of σ between the vacuum and a state with one massless particle vanishes in

the low-momentum limit (see equation (3.89)). We are now in a position to prove

this result.

As we have seen above, the scalar spectrum consists of a massive field s1 and a

massless field s2. We can thus express the field σ as a linear combination of the two

canonically normalized fields,

σ = κ1s1 + κ2s2, (3.112)

in which κ1 and κ2 are momentum-dependent coefficients. Therefore, using the re-

duction formula, the matrix element for emission of a massless excitation in equation
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(3.89) can be written as

〈m = 0, p|σ(p′)|0〉 = lim
ω→ω2

i (ω2
2 − ω2)〈s2(p)σ(p′)〉T =

= iκ2 lim
ω→ω2

(ω2
2 − ω2)〈s2(p)s2(p′)〉T = δ(p+ p′)κ2, (3.113)

where p = (ω, k), the energy ω2 was defined in equation (3.106), and 〈f(p)g(p′)〉T is

the Fourier transform of the corresponding Green’s function. The value of κ2 can be

readily calculated by noting that

−iδ(p+ p′)D−1
σσ (p) = 〈σ(p)σ(p′)〉T = κ2

1〈s1(p)s1(p′)〉T + κ2
2〈s2(p)s2(p′)〉T (3.114)

= δ(p+ p′)

(
iκ2

1

ω2 − ω2
1

+
iκ2

2

ω2 − ω2
2

)
. (3.115)

Hence,

κ2
2 = lim

ω→ω2

(ω2
2 − ω2)D−1

σσ =
a2

6 a8

(a3a7 − a2
6)2

k2

Λ2
+O(k4/Λ4), (3.116)

which clearly shows that κ2 vanishes in the low-momentum limit.



Chapter 4

Scalar-Tensor Theories of Gravity

and WEP violations

4.1 Introduction

Einstein based the development of GR on two pillars: general covariance and the

equivalence principle. Since then, physicists have often wondered whether there are

any alternatives to GR, which, while preserving its theoretical framework and phe-

nomenological successes also avoid some of the shortcomings sometimes attributed

to it. Among the phenomenological successes of GR, the equivalence principle—

the proportionality of inertial and gravitational mass—is the most accurately tested

and constrained one. Indeed, experiments at the University of Washington limit the

relative difference in acceleration towards the earth of two test spheres of different

atomic compositions to be less than one part in 1012 [157]. Therefore, any putative

alternative theory of gravitation has to pass the significant hurdle of the equivalence

principle.

Arguably, the simplest way to modify GR is to add a scalar field to the gravita-

tional sector. Since gravitation is a long-ranged interaction, such a scalar would have

to be sufficiently light to be considered part of the gravitational field. Whereas it

is straightforward to include such a scalar field while preserving diffeomorphism in-

variance, the most general diffeomorphism-invariant theory with a light scalar would
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generically lead to strong violations of the equivalence principle [158]. There is never-

theless a subclass of scalar-tensor theories which respect the weak form of the equiva-

lence principle, at least at tree level, and thus provides a natural class of phenomeno-

logically viable alternatives to GR. (As shown by Nordtvedt [159], theories in this

class do violate the strong equivalence principle, although these violations are negli-

gible in laboratory-sized experiments.) The first such theory was proposed by Pascual

Jordan [160], after criticism by Fierz [161] of an earlier proposal of the former [162].

Essentially the same theory was later revived by Brans and Dicke [63], whose names

are usually associated with the class of scalar-tensor theories we study here. Further

extensions and generalizations within this class were later considered by different

authors [163].

What distinguishes these weak equivalence principle-preserving scalar-tensor the-

ories is the existence of a formulation of the theory—a conformal frame—in which the

scalar field only couples to gravity (at tree level). It follows then, by construction,

that these theories preserve the weak equivalence principle classically, since their mat-

ter sector is the same as that of GR. Of course, the question is what happens to the

equivalence principle when quantum fluctuations are turned on, and, more generally,

whether quantum corrections preserve the structure of this subclass of scalar-tensor

theories. This is not just a purely academic question, because even Planck-suppressed

interactions eventually generated by loops would lead to departures from the weak

equivalence principle that are experimentally ruled out. The question is most con-

veniently addressed in the Einstein conformal frame of these theories, in which the

propagators of the graviton and the scalar are diagonal. Although in this frame the

scalar couples directly to matter, it is easy to check that the equivalence principle is

preserved at tree level. However, because the field couples directly to matter, it is

hard to see why quantum corrections would not lead to violations of the equivalence

principle.

The impact of quantum corrections on the equivalence principle has been the

subject of a small but interesting debate in the literature. In the first article on the

topic we were able to find, Fujii argued that quantum corrections should violate the
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equivalence principle [164]. He explicitly calculated one-loop quantum corrections

to the vertex for scalar emission by a photon, with matter fields running inside the

loop, and argued that the latter do seem to violate the equivalence principle. But

somewhat later the same author realized that this purported violation disappears if

one employs dimensional regularization instead of a cut-off [165]. Unaware of these

results, Cho also argued that the equivalence principle should be violated in scalar-

tensor theories [166], though some of his arguments seemed to be in conflict with the

explicit calculation performed by Fujii in [165]. Up to that point, whether or why

quantum corrections preserve the equivalence principle remained unclear, to say the

least. Recently, Hui and Nicolis have shed more light on the issue by providing explicit

examples for massive fields showing that matter loops do not lead to violations of

the weak equivalence principle in scalar-tensor theories [167]. They argue that this is

due to the linear coupling of the scalar to the trace of the energy momentum tensor:

Because the energy-momentum tensor is conserved, the scalar couples to a charge

density given by the time-time component of the energy-momentum tensor, which

they identify with the mass density.

In this chapter, which is based on the paper [168], we extend these arguments

further. As we shall see, the equivalence principle in scalar-tensor theories has a

two-fold origin: A broken Weyl symmetry that relates the couplings of the scalar to

those of the graviton, and diffeomorphism invariance, which significantly constrains

the couplings of the graviton (and demands in particular that the latter couple to

a conserved quantity, the energy-momentum tensor.) Diffeomorphism invariance im-

plies that in the limit of zero momentum transfer the vertex for graviton emission

by matter—the gravitational mass—has to be proportional to the inertial mass [169–

171], and it is the broken Weyl symmetry what makes the couplings to the scalar

inherit that property. Moreover, because this Weyl symmetry is broken, there is a

corresponding Ward identity for the broken symmetry that exactly predicts the size

of those quantum corrections that violate the equivalence principle: They have to be

proportional to three inverse powers of the gravitational couplings.



88

4.2 Formalism

4.2.1 Action Principle

The scalar-tensor theories we are about to study are characterized by the existence of

a conformal frame, the Jordan frame, in which bosonic matter is minimally coupled

to the spacetime metric. Out of all possible scalar-tensor theories, this restriction

singles out a very specific class of theories in which the weak equivalence principle

holds, at least classically.

By definition, the gravitational sector of any scalar-tensor theory consists of a

scalar φ and a rank two symmetric tensor gµν , the metric. Our universe contains

fermionic fields however, and this conventional formulation has to be replaced by one

in terms of the scalar φ and the vierbein eµ
a (see [146] for a review.) In this language,

the scalar-tensor theories we consider here have an action functional

SJ =

∫
ddx det e [F (φ)R−G(φ)∂µφ∂

µφ−W (φ)] + SJM [eµ
a, ψα], (4.1)

where the index J denotes Jordan frame quantities, ψα is a set of matter fields and

R is the Ricci scalar associated with the metric

gµν = ηabeµ
aeν

b. (4.2)

Note that we work in an arbitrary number of dimensions d, and that matter is now

minimally coupled to the vierbein field, which is what singles out the class of theories

we consider in this chapter. To some extent the dynamics of the gravitational sector

are unimportant; our considerations can be easily generalized to even more general

forms of the gravitational sector of the action.

The action (4.1) is invariant under two symmetry groups: diffeomorphisms and

local Lorentz transformations. Because any spacetime tensor can be converted into a

diffeomorphism scalar by contraction with the vierbein, we can assume that all matter

fields are diffeomorphism scalars. In that case, under infinitesimal diffeomorphisms
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xµ → x′µ = xµ + ξµ(x) the fields of the theory transform according to

eµ
a → e′µ

a = eµ
a + ∆eµ

a, ∆eµ
a = −ξν∂νeµa − eνa∂µξν , (4.3a)

φ→ φ′ = φ+ ∆φ, ∆φ = −ξµ∂µφ, (4.3b)

ψα → ψ′α = ψα + ∆ψα, ∆ψα = −ξµ∂µψα. (4.3c)

Under local Lorentz transformations Λ(x) ∈ SO(1, 3) the different fields transform in

the corresponding representation of the Lorentz group,

eµ
a → e′µ

a = Λa
b eµ

b, (4.4a)

φ→ φ′ = φ, (4.4b)

ψα → ψ′α = D(Λ)α
βψβ, (4.4c)

where D is the linear representation of the Lorentz group under which the matter

fields transform.

Our goal is to investigate the gravitational interactions experienced by the dif-

ferent matter fields. In the quantum theory these interactions are mediated by the

interchange of gravitons and scalar particles. However, in the action (4.1) the gravi-

ton and scalar propagators are typically not diagonal. Hence, it is convenient and

customary to introduce a new set of variables in terms of which the propagators be-

come diagonal. This set of new variables define what is usually known as the Einstein

frame, in which the action reads

SE = SEH [eµ
a] + Sφ[eµ

a, φ] + SEM [f(φ/M)eµ
a, ψα], (4.5a)

where

SEH =

∫
ddx det e

M2
P

2
R, Sφ =

∫
ddx det e

[
−1

2
∂µφ∂

µφ− V (φ)

]
. (4.5b)

Of course, the choice of conformal frame is a matter of convenience, and both (4.1)

and (4.5) are physically equivalent, as recognized early on by Dicke [172] (in the

quantum theory, the equivalence follows from the invariance of S-matrix elements

under field redefinitions.) For convenience and simplicity we take however (4.5) as

the starting point of our considerations. We also assume that the equations of motion
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admit a solution with constant value φ̄ of the scalar field, which for simplicity we take

to be φ̄ = 0, and at this minimum we define

m2
φ ≡

d2V

dφ2

∣∣∣∣∣
φ̄=0

. (4.6)

If both f(0) and f ′(0) differ from zero, we may assume without loss of generality the

normalization conditions

f(0) = 1, f ′(0) = 1. (4.7)

Note that in d spacetime dimensions, MP and M do not have mass dimension one.

Instead they have the same mass dimension as the scalar and the graviton.

4.2.2 The Weak Equivalence Principle

Recall that the weak equivalence principle states that in a gravitational field all

neutral test bodies fall with the same acceleration, or, more simply, that gravitational

and inertial mass are proportional to each other. To see how the equivalence principle

emerges in the classical theory defined by the action (4.5a), consider the tree-level

diagram in figure 4.1.1, in which two different matter particles scatter through scalar

exchange on a Minkowski background. The amplitude of the diagram in figure 4.1.1

is1

Mφ = − 1

(2π)3d−1
[u†β(p′A)γβαφ uα(pA)]

1

q2 +m2
φ

[u†β(p′B)γβαφ uα(pB)], (4.8)

where γβαφ is the tree-level amplitude for scalar emission by matter, the uα(p) are the

appropriate mode functions for the external particles, q ≡ p′A − pA is the momentum

transfer, and (q2 + m2
φ)−1 is the scalar propagator. We are interested here in the

potential energy between two static bodies, that is, on a scalar whose four-momentum

qµ approaches zero: p′A → pA, p
′
B → pB.

1We mostly follow the conventions of [54]. In these conventions, the propagator carries a factor

of (2π)−d, each external line contributes a factor of (2π)−(d−1)/2, and the relation between S-matrix

elements and the amplitudesM for an initial state i and a final state f is Sfi = δfi−2πiδ(pf−pi)Mfi.

See the next subsections for additional information on our conventions for vertices and propagators.
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q
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pA

p′B

p′A

(2)

Figure 4.1: Scalar and graviton exchange between two different matter species. Continuous lines

denote matter fields (bosonic or fermionic), dashed lines label the scalar φ, and wiggly lines label

the graviton.

Inspection of the way φ enters the action (4.5a) reveals that in flat spacetime the

scalar vertex γφ is related to the vertex for graviton emission (γh)
µν by

Mγβαφ = 2MP (γβαh )µµ, (4.9)

where we have used equation (4.7). The graviton vertex γh is proportional to the

quadratic component of the energy momentum tensor in flat space, so equation (4.9)

is just roughly the statement that the scalar couples to the trace of the energy-

momentum tensor (the factor of two stems from the identification of the vierbein as

“half” a graviton). As we shall see, it follows from diffeomorphism invariance alone

that in momentum space, and in the limit of zero momentum transfer, this tree-level

graviton vertex has to be of the form

2MP (γβαh )µν = πβα(p) ηµν − p(µ∂π
βα

∂pν)

, (4.10)

where a parenthesis next to an index denotes symmetrization, pµ is the momentum of

matter, and παβ is the tree-level self-energy, that is, minus the inverse of the tree-level

propagator. The reader can easily verify this relation in the cases of a scalar, a spin

half fermion and spin one vector. Hence, because of equation (4.9), an analogous

relation applies for the amplitude for scalar emission,

Mγβαφ = d πβα − pµ∂π
βα

∂pµ
, (4.11)
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which, again, can be checked independently for scalars, spinors and vectors. On shell,

the self-energy π vanishes by definition. Contracting then equation (4.11) with the

appropriate mode functions we find for all three types of matter fields that, on shell,

u†βγ
βα
φ uα =

(2π)d

M

p2

p0
= −(2π)d

M

m2
I

p0
, (4.12)

where mI is the inertial mass of the particle, defined to be the value of −p2 at the

zero of the self-energy, and we have also used that for free fields of arbitrary spin

u†β
∂πβα

∂pµ
uα = −(2π)d

pµ

p0
. (4.13)

In particular, note that equation (4.12) implies that massless particles do not couple

to the scalar at tree level, even if the field Lagrangian is not conformally invariant,

as happens for instance for a massless scalar. Hence, the scalar interaction does not

contribute to the bending of light, and the experimental constraints on the Eddington

parameter γ thus demand that the scalar interaction be much weaker than gravity,

MP � M [64]. Finally, substituting equation (4.12) into (4.8) and taking the limit

of non-relativistic massive particles, p0 ≈ mI , we arrive at

Mφ = − 1

(2π)d−1

mAmB

M2

1

q2 +m2
φ

, (4.14)

where mA and mB are, respectively, the inertial masses of particles A and B.

As we mentioned above, we want to calculate the potential energy for two static

bodies, at fixed spatial distance ~r in d = 4 spacetime dimensions. To this end, we

simply need to Fourier transform the non-relativistic limit of the scattering amplitude

(4.14) back to real space. Since in the non-relativistic limit q2 = ~q 2, we obtain

V (~r) ≡
∫
d3q ei~q·~rMφ(~q) = −mAmB

M2

e−mφr

4πr
. (4.15)

Hence, the force mediated by the scalar φ is proportional to the inertial mass, with

a proportionality factor 1/M2 that is universal: The scalar interaction respects the

weak equivalence principle.

Of course, if we calculate the potential energy due to graviton exchange, we also

find that the latter respects the weak equivalence principle. As before, on shell, using
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equations (4.10) and (4.13) we find

u†β(γβαh )µνuα =
(2π)d

2MP

pµpν

p0
. (4.16)

Since with our conventions the graviton propagator in d spacetime dimensions (say,

in de Donder gauge) is

i[π−1
h (q)]µν,ρσ =

−4i

(2π)dq2

{
1

2
(ηµρηνσ + ηµσηνρ)−

1

d− 2
ηµνηρσ

}
(4.17)

we obtain in the non-relativistic limit that the amplitude associated with the diagram

in figure 4.1.2 in d = 4 is

Mh = −mAmB

2M2
P

1

q2
. (4.18)

Again, the amplitude is proportional to the inertial masses of both particles, with a

proportionality constant 1/M2
P that is universal. The origin of this result is the tree-

level Ward-Takahashi identity (4.10). The latter relates emission of a graviton—the

gravitational mass—to the self-energy of matter—the inertial mass. It just so happens

that, due to the structure of the matter action in (4.5a), the scalar couplings “inherit”

this Ward identity, ultimately leading to the preservation of the weak equivalence

principle in the scalar sector (at tree level). We explore whether these features survive

in the quantum theory next.

4.2.3 Quantization

For the purpose of quantization, it shall prove to be useful to work with the quantum

effective action Γ, the sum of all one-particle-irreducible (1PI) diagrams with a given

number of external lines. In order to calculate the effective action, we expand the

fields in quantum fluctuations around a given (but arbitrary) background. We thus

write

eµ
a = ēµ

a +M−1
P δeµ

a, (4.19a)

φ = φ̄+ δφ, (4.19b)

ψα = ψ̄α + δψα, (4.19c)
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where overbars denote background values, and deltas quantum fluctuations. Plugging

equation (4.19a) into (4.2) we find

gµν ≡ ḡµν+M−1
P hµν+O(M−2

P ), with ḡµν = ηabēµ
aēν

b, hµν = δeµν+δeνµ, (4.20)

and δeµν ≡ ēνaδeµ
a (note that the location of the vierbein indices is important.)

Hence, the symmetric part of the vierbein fluctuations, hµν , is the graviton field; its

antisymmetric part aµν ≡ δeµν − δeνµ is non-dynamical [173]. It follows then by

definition that2

δeµν =
hµν
2

+
aµν
2
. (4.21)

As in any non-abelian gauge theory, we quantize the theory defined by (4.5) using

the functional integral formalism. Because the action (4.5) is invariant under two

groups of local symmetries (diffeomorphisms and Lorentz transformations), we need

to fix both gauges and introduce the corresponding ghost fields. Hence, our total

action becomes

Stot = SE + SGF + SG, (4.22)

where SE is given in equation (4.5b), SGF is the gauge-fixing term, and SG the action

for the ghosts. In the background field method, the gauge fixing term is such that the

total action Stot in equation (4.22) is invariant under a set of symmetries in which the

background fields transform like the fields themselves, that is, under equations (4.3).

For concreteness, and following [173], we impose the de Donder (harmonic) gauge

condition to fix the diffeomorphism gauge, and an algebraic term to fix the Lorentz

frame,

SGF = −1

4

∫
ddx det ē

[
ḡµν

(
∇̄ρh

ρ
µ −

1

2
∇̄µh

ρ
ρ

)(
∇̄ρh

ρ
ν −

1

2
∇̄νh

ρ
ρ

)
+ḡµρḡνσ

aµνaρσ
2M2

P

]
.

(4.23)

With this choice of gauge fixing, the action for the diffeomorphism ghosts ζµ and the

Lorentz ghosts θµν becomes

SG = − 1√
2

∫
det ē

[
ζ†µ
(
ḡµν�̄− R̄µν

)
ζν +

M2
P

2
ḡµρḡνσθ

†µνθρσ
]
. (4.24)

2Roughly speaking, just as we think of the vierbein as the square root of the metric, we can think

of a vierbein fluctuation as half a graviton.
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We employ dimensional regularization, which preserves the gauge symmetries of the

theory while rendering the theory finite. The effective action is the path integral over

these fluctuations, with the prescribed values of the background fields kept fixed,

exp(iΓ[ēµ
a, φ̄, ψ̄α]) ≡

∫
1PI

DδeDδφDδψDζ Dθ exp[iStot]. (4.25)

The integral is restricted to run only over all one-particle-irreducible vacuum dia-

grams. The end result of this construction is that the effective action remains invariant

under diffeomorphisms and Lorentz transformations, even though these symmetries

had to be broken to define the path integral.

4.2.4 Gravitational Interactions

Consider now the scattering of two distinguishable particles described by the matter

fields ψα (and their adjoints ψ†α when appropriate). Restricting ourselves to inter-

actions mediated by the vierbein and the scalar, these are determined by the two

diagrams in figure 4.2, the counterparts of the two tree-level diagrams of figure 4.1.

In real space, the 1PI vertices are given by functional derivatives of the quantum

effective action evaluated at vanishing field fluctuations. In particular, in view of

(4.20) and (4.21), the irreducible vertices for emission of a graviton and a scalar by

matter are

(Γβαh )µν(z; y, x) ≡ 1

2MP

δ3Γ

δψ̄α(x)δψ̄†β(y)δē(µ
a(z)

ēν)a(z),

Γαβφ (z; y, x) ≡ δ3Γ

δψ̄α(x)δψ̄†β(y)δφ̄(z)
,

(4.26)

while the self-energies of the graviton and the scalar (minus the inverse of their prop-

agator) are given by3

(Πh)
µν,ρσ(y, x) ≡ ē(ρa(x)

δ2Γ

δēσ)
a(x)δē(µ

b(y)
ēνb(y), Πφ(y, x) ≡ δ2Γ

δφ̄(x)δφ̄(y)
. (4.27)

3Because the effective action is diffeomorphism invariant by construction, we need to add to it

an additional gauge fixing term to define the graviton propagator [174].
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pB

pA

p′B

p′A

(1)
pB

pA

p′B

p′A

(2)

Figure 4.2: A light scalar (dashed) and a massless graviton mediate long-ranged interactions

through the interchange of a single quantum. Each blob in a vertex represents the sum of all one-

particle-irreducible diagrams (1PI) with the corresponding number of external lines, and external

propagators stripped off. Each blob with two external lines represents the full propagator, the sum

of all (connected) diagrams with the corresponding type of external lines.

These functional derivatives are evaluated in a Minkowski spacetime background with

vanishing scalar and matter fields,

φ̄ = 0, ψ̄α = 0, ēµ
a = δµ

a, (4.28)

though we do not make this explicit (it should be clear from the context.) If, aside

from the vierbein, the background does not contain any Lorentz vectors, the varia-

tional derivative δ2Γ/(δēµ
aδφ̄) vanishes as a consequence of Lorentz invariance. There-

fore, there is no need to consider diagrams with one incoming scalar and one outgoing

graviton. Note that the cubic vertices above describe the couplings of unrenormal-

ized fields. To calculate physical scattering amplitudes we have to multiply these

amplitudes with the appropriate wave function renormalization constants.

Scattering amplitudes are typically calculated in momentum space, so it is conve-

nient to work with the momentum-space vertices and self-energies defined above. In

our conventions, one of the vertex momenta is incoming (p1), the other two (p2 and

p3) are outgoing, and a momentum-conserving delta function has been split off,

Γ(p2, p1) δ(p1 − p2 − p3) ≡
∫
ddx ddy ddz Γ(z; y, x) e−ip3ze−ip2yeip1x. (4.29)

In this way, the scattering amplitude is given by

M =
1

(2π)2d−1

[
Γφ(p′A, pA)Π−1

φ (q)Γφ(p′B, pB) + Γh(p
′
A, pA)Π−1

h (q)Γh(p
′
B, pB)

]
, (4.30)
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where q ≡ p′A − pA = p′B − pB is the momentum transfer and the Γ′s have been

contracted with the appropriate mode functions for the matter fields, Γf (p
′, p) ≡

u†β(p′)Γβαf (p′, p)uα(p). The potential energy is determined by the values of the ir-

reducible vertices and propagators at zero momentum transfer, q = 0. Using the

definition of potential energy and the Fourier transform in (4.15), the gravitational

potential in d = 4 becomes

V (r) ≈ − 1

2(2π)9

[
Γφ(pA, pA)Γφ(pB, pB)

Zφe
−mφr

r
+ Γh(pA, pA)Γh(pB, pB)

Zh
2r

]
,

(4.31)

where we have used the spectral representation for the scalar propagator, and Zφ

and Zh respectively are the residues of the scalar and graviton propagators. We

assume that m−1
φ is much larger than the scales r under consideration, so that we can

think of the force mediated by φ effectively as a long-ranged interaction (we do not

consider the Chameleon mechanism here [66].) What matters for our purposes is that

the potential energy is determined by the vertices for scalar and graviton emission,

and, therefore, the latter dictate the fate of the equivalence principle in the quantum

theory.

4.3 Ward Identities

Because the quantum effective action is invariant under diffeomorphisms, it satisfies

a set of Ward-Takahashi identities that relate the full vertex for graviton emission

Γh to the full matter self-energy Π, as we shall derive next. These Ward identities

are ultimately responsible for the validity of the equivalence principle in the quantum

theory, as far as the couplings of matter to the graviton are concerned.

The origin of the Ward identity for graviton emission is that the vierbein trans-

forms non-trivially under diffeomorphisms, even for a trivial vierbein background (flat

spacetime.) This is why diffeomorphism invariance strongly restricts the couplings of

matter to the graviton. In particular, it is possible to derive the weak equivalence

principle in S-matrix theory solely from the requirement that S-matrix elements be

invariant under diffeomorphisms acting on the polarization vectors of the graviton
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[169].

The case of scalar emission however is quite different. The existence of a scalar

field φ coupled to matter does not require nor entail any particular symmetry. In

particular, because the change in the scalar field φ under diffeomorphisms vanishes at

zero background field, diffeomorphisms have nothing to say about the couplings of the

scalar to matter. This is why there is no a priori reason to expect that the couplings

of the scalar field to matter respect the equivalence principle in the quantum theory.

In fact they do not, as we also show further below. Nevertheless, because the scalar

field only couples to matter in the combination f(φ/M) eµ
a, its couplings inherit the

Ward identity satisfied by the graviton to all orders in the matter coupling constants.

4.3.1 Graviton Emission

Our first goal is to derive the Ward identity for graviton emission. Such an iden-

tity was proven for arbitrary bosonic matter fields by DeWitt in [171], following the

derivation in [170] for scalar matter. We basically extend here DeWitt’s derivation

to the vierbein formulation of the theory.

Let us consider the self-energy of the matter fields ψα in the presence of a back-

ground vierbein and a background scalar, and a vertex with an additional vierbein

line,

Πβα(y, x) ≡ δ2Γ

δψ̄α(x)δψ̄†β(y)
, (Γβαe )µa(z; y, x) ≡ 1

2MP

δΠβα(y, x)

δeµa(z)
. (4.32)

Because the effective action is invariant under diffeomorphisms it does not change

under the infinitesimal transformation (4.3),∫
ddz

[
δΓ

δēµa(z)
∆ēµ

a(z) +
δΓ

δφ̄(z)
∆φ̄(z) + ∆ψ̄α(z)

δΓ

δψ̄α(z)

]
= 0. (4.33)

Therefore, acting on this equation with two functional derivatives with respect to the

matter fields we obtain∫
ddz

[
δΠβα(y, x)

δēµa(z)
∆ēµ

a(z) +
δΠβα(y, x)

δφ̄(z)
∆φ̄(z) (4.34)

+
δ∆ψ̄γ(z)

δψ̄α(x)
Πβγ(y, z) +

δ∆ψ̄†γ(z)

δψ̄†β(y)
Πγα(z, x)

]
= 0.
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Using the transformation (4.3) and the definitions (4.32), and evaluating the last

equation in our background (4.28) we then get

2MP

∫
ddz δν

aξν(z)
∂

∂zµ
(Γβαe )µa(z; y, x) (4.35)

+
∂

∂yµ
[
ξµ(y)Πβα(y, x)

]
+

∂

∂xµ
[
ξµ(x)Πβα(y, x)

]
= 0.

In momentum space, with our momentum conventions (4.29), this becomes the iden-

tity

2MP (p′µ − pµ)(Γβαe )µν(p
′, p) = p′ν Πβα(p)− pν Πβα(p′), (4.36)

which in the limit of zero momentum transfer p′ → p and after symmetrization reduces

to the Ward-Takahashi identity for graviton emission,

2MP (Γβαh )µν(p, p) = Πβα(p) ηµν − p(µ∂Πβα

∂pν)

. (4.37)

An analogous identity holds in electromagnetism.

The self-energy is the sum of the tree-level contribution πβα and the sum of all

one-particle-irreducible self-energy diagrams4 ∆πβα,

Πβα = πβα + ∆πβα. (4.38)

It is convenient to work in renormalized perturbation theory, with fields whose self-

energy corrections vanish on shell, and whose propagators have unit residue at the

corresponding pole,

∆πβα

∣∣∣∣∣
OS

= 0,
∂∆πβα

∂pµ

∣∣∣∣∣
OS

= 0. (4.39)

The irreducible vertex (Γβαh )µν is also the sum of the tree contribution (γβαh )µν and

the contribution from loop diagrams (∆γβαh )µν ,

(Γβαh )µν = (γβαh )µν + (∆γβαh )µν . (4.40)

Because the Ward identity (4.37) is merely an expression of diffeomorphism invari-

ance, it also holds in the limit in which all coupling constants of the theory go to

4For a scalar, π ≡ −(2π)d(p2 + m2), and ∆π = (2π)dπ∗, where π∗ is what is usually called the

self-energy insertion [54].
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zero, in which we can approximate all quantum amplitudes by tree-level expressions.

Hence, the tree vertex and the tree-level self-energy obey the identity (4.10), the

tree-level counterpart of equation (4.37), as the reader can explicitly check.

We are ready now to derive the main result of this subsection. Substituting

equations (4.38) and (4.40) into the Ward-Takahashi identity (4.37), using the tree-

level relation (4.10), and going on shell, equations (4.39), we conclude that

(∆γβαh )µν

∣∣∣∣∣
OS

= 0. (4.41)

On shell, and in the limit of zero-momentum transfer, quantum corrections to the

gravitational vertex vanish. Since, as we have seen in Subsection 4.2.2, tree-level

(classical) amplitudes do respect the equivalence principle, so do the quantum cor-

rected ones. As before, this result has an analogous counterpart in electromagnetism,

which guarantees the non-renormalization of the electric charge (up to an overall wave

function renormalization constant) at zero momentum transfer.

4.3.2 Scalar Emission

Let us turn our attention now to the emission of a scalar by matter. Although there

is no analogous Ward identity for scalar emission, because of the structure of the

couplings of φ to matter the vertex for scalar emission is closely related to that for

graviton emission, whose properties it partially inherits. To see this, note that the

matter action SEM in (4.5a) is invariant under the set of infinitesimal transformations

ψα → ψ′α = ψα, (4.42a)

φ→ φ′ = φ+ εM, (4.42b)

eµ
a → e′µ

a = eµ
a − ε f

′

f
eµ
a, (4.42c)

where ε is an arbitrary function on spacetime. For certain functions f(φ/M), namely,

exponentials, this transformation can be promoted to a group of U(1) transformations

that act on φ by a shift, and on the vierbein by a Weyl transformation. In that

particular case, the transformations (4.42) are linear in the fields, though, in general,
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the transformation (4.42c) is non-linearly realized. Whatever the case, if (4.42) were

an exact, linearly-realized, global symmetry of the full action we would get, plugging

the transformation rules (4.42) into the general identity (4.34), and evaluating at our

background (4.28)∫
ddz

[
M
δΠβα(y, x)

δφ̄(z)
− f ′(0)

f(0)

δΠβα(y, x)

δēµa(z)
δµ
a

]
= 0, (4.43)

where we have used that linear symmetries of the action are symmetries of the effective

action. Using equations (4.26) and (4.27) this would lead immediately to the zero

momentum identity

M Γβαφ (p, p) = 2MP (Γβαh )µµ(p, p), (4.44)

which relates the vertex for scalar emission to that for graviton emission. Since the

latter satisfies equation (4.37) it would then follow in the limit of zero momentum

transfer that

M Γβαφ (p, p) = dΠβα(p)− pµ∂Πβα

∂pµ
, (4.45)

and, as in the graviton case, using the tree-level relation (4.11) this would finally yield

∆γφ

∣∣∣∣∣
OS

= 0, (4.46)

which states that quantum corrections to the scalar vertex in the limit of zero-

momentum transfer vanish. Since the tree-level scalar vertex does respect the equiv-

alence principle, so would quantum corrections. Note that if, in addition, the trans-

formation (4.42) were a local symmetry, we would be able to eliminate φ altogether

from the theory by choosing the appropriate gauge.

But, of course, the full action is not invariant under the global transformation

(4.42), and moreover, in general, the transformation (4.42) is non-linear. From this

point of view, equation (4.43) is just an approximation to zeroth order in symmetry-

breaking terms of a general Ward-Takahashi identity that we derive in Appendix 4.A.

To apply the general Ward identity (4.129) to our case, consider a linear version of
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the Weyl transformation (4.42) acting on the field fluctuations,

φ→ φ′ = φ+ εM, (4.47a)

δeµ
a → δe′µ

a = δeµ
a − ε f

′(0)

f(0)
(ēµ

a + δeµ
a). (4.47b)

Using the normalization conditions (4.7), substituting equations (4.47) into (4.129),

and taking two functional derivatives with respect to the matter fields yields the ana-

logue of equation (4.44), modulo corrections due to the fact that the transformation

(4.42) is not an exact (linear) symmetry of the action,

M Γβαφ (p, p) = 2MP (Γβαh )µµ(p, p) + Γβα∆ . (4.48)

Here, as we detail in Appendix 4.A, Γαβ∆ is the sum of all one-particle-irreducible dia-

grams with two external fields ψα and ψβ (with amputated propagators), and a vertex

insertion of ∆, the change of the Lagrangian density under the linear transformation

(4.47), carrying zero momentum into the diagram.

In order to determine the explicit form of ∆ we note that, from the action (4.5),

δSφ
δφ

= det e

[
�φ− dV

dφ

]
, (4.49a)

eµ
a δSφ
δeµa

= − det e

[
d− 2

2
∂µφ∂

µφ+ d V (φ)

]
, (4.49b)

eµ
a δSEH
δ δeµa(z)

= det e
(d− 2)M2

P

2
R, (4.49c)

eµ
a δSM
δ δeµa

≡ det e fd TM
µ
µ, (4.49d)

δSM
δφ

= det e fd
f ′

Mf
TM

µ
µ, (4.49e)

where R the scalar curvature and

(TM)µ
ν ≡ f eµ

a

det(f e)

δSM
δ(feνa)

(4.50)

is the energy-momentum tensor of matter, which depends on φ because we assume

that the matter action is of the form (4.5a). Hence, using equations (4.128), (4.47)

and (4.7) we arrive at

∆ = M
δSφ
δφ(x)

− eµa
δ(Sφ + δSEH + δSGF )

δ δeµa(x)
+ det e fd

(
f ′

f
− 1

)
TM

µ
µ, (4.51)
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which we should expand around our background (4.28) in order to calculate the cor-

responding diagrams. The key of this result is that the correction term proportional

to the energy-momentum tensor of matter is at least proportional to φ. This reflects

that the transformation (4.47) leaves the part of the matter action proportional to

f(0) invariant.

A graphical representation of equation (4.48) to leading order in the gravitational

couplings is given in figure 4.3, and helps to understand the different corrections due

the broken Weyl symmetry. In our background, δSφ/δφ contains a linear term in φ,

whose insertion in a vertex does not lead to any 1PI diagrams. The next contribution

from δSφ/δφ stems from a term proportional to φh/MP , and thus, the sum of all

diagrams with an insertion of M δSφ/δφ and two external matter lines contributes a

term of order M−2
P to the equation in figure 4.3. (The diagram only has two external

matter lines, so the scalar and graviton lines must end at a vertex in the diagram.

Since the latter respectively couple with strength M−1 and M−1
P , the suppression must

be at least of order M/MP ×M−1×M−1
P = M−2

P .) Similarly, because eµ
aδSφ/δ(δeµ

a)

is at least quadratic in the scalar φ, insertion of this vertex yields a contribution

of order M−2, from the vertices at which the two scalar lines must end. In our

background the variational derivative eµ
aδSEH/δ(δeµ

a) is at least quadratic in the

graviton field, and, therefore, the vertex containing (4.49c) yields a contribution of

order M−2
P , the same as that from the gauge fixing term, which is also quadratic

in the graviton. Since the ghost action does not contain hµν nor φ, it is invariant

under the transformation (4.47). Finally the vertex insertion proportional to T µMµ in

equation (4.51) is linear in φ/M , and thus contributes a correction of order M−2 to

the proper vertex, unless f ′′(φ̄ = 0) = 1, for which this term would be proportional

to (φ/M)2, and hence would contribute a factor of order M−3. An extreme example

of the latter is an exponential, for which the insertion proportional to T µMµ would be

absent altogether. Overall, because of (4.37), this translates into the approximate

scalar Ward-Takahashi identity

M Γβαφ (p, p) = dΠβα(p)− pµ∂Πβα

∂pµ
+O(MP

−2) +O(M−2). (4.52)
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M = 2Mp + M −

− +

Figure 4.3: Diagrammatic expression of equation (4.48) to leading order in the gravitational

couplings M−1
P and M−1. The irreducible vertex for scalar emission equals the trace of that for

graviton emission plus or minus corrections terms. In each correction term, the blob represents the

sum of all 1PI diagrams with the corresponding number of external lines and the vertex insertion

marked by a dot.

Expanding the scalar vertex on the left hand side of the last equation into a tree-level

contribution γφ and loop corrections ∆γφ, using equations (4.38) and (4.39) for the

right hand side, and employing that the tree-level couplings of the scalar do respect

the equivalence principle, equation (4.11), we thus finally get

∆γφ

∣∣∣∣∣
OS

= O(M−1MP
−2) +O(M−3). (4.53)

Quantum corrections to scalar couplings do violate the equivalence principle, but by

terms suppressed by three powers of the gravitational couplings. Since experimental

constraints require MP � M [64], the dominant violations are of order M−1M−2
P .

Although we have assumed for concreteness that the dynamics of the graviton and

scalar fields is described by equation (4.5b), it is straightforward to extend our analysis

to more general forms. As long as the latter do not preserve the Weyl symmetry (4.47),

there should be violations of the weak equivalence principle in those theories too.

4.3.3 Extension of the Weyl Symmetry to the Full Action

We have previously noted that exponentials f = exp(φ/M) play a special role in the

action (4.5a), since for such functions the Weyl transformation (4.42) is a linearly

realized, exact symmetry of the matter action, ∆SEM = 0. In this case, the last term
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in equation (4.51) is absent, and the corresponding equivalence principle violating

corrections to the scalar vertex proportional to T µMµ vanish. It is then natural to ask

whether this Weyl symmetry can be extended to the rest of the action.

Consider first the scalar field action Sφ. To render it invariant under the transfor-

mation (4.42) we just need to interpret φ as the Goldstone boson of a spontaneously

broken Weyl symmetry. In that case, a mass term is forbidden by the global shift

symmetry φ → φ + εM , and field derivatives need to enter with appropriate factors

of exp(φ/M),

S̃φ = −1

2

∫
ddx det e exp

[
(d− 2)φ

M

]
gµν∂µφ∂νφ. (4.54)

It is then easy to check then, that this new action is invariant under global Weyl

transformations, ∆S̃φ = 0. In such a theory, the correction terms in equation (4.51)

coming from the change of Sφ under the Weyl transformation would vanish.

Along the same lines, we can also extend the Einstein-Hilbert action to a globally

Weyl invariant expression,

S̃EH =

∫
ddx det e exp

[
(d− 2)φ

M

]
M2

P

2
R, (4.55)

which, again remains invariant under (4.47), ∆S̃EH = 0. For such an action, the

correction terms in (4.51) stemming from the change of S̃EH would again vanish.

However, we cannot make the full action Weyl invariant while keeping intact its

scalar-tensor nature. In fact, if the total action reads

S̃tot = S̃EH + S̃φ + SM [exp(φ/M)eµ
a, ψ] , (4.56)

the field redefinition ẽµ
a ≡ eφ/Meµ

a leads to

S̃tot =

∫
ddx det ẽ

[
M2

P

2
R̃− 1

2

(
1 + (d− 2)(d− 1)

M2
P

M2

)
g̃µν∂µφ∂νφ

]
+ SM [ẽµ

a, ψ].

(4.57)

This is just the action of GR minimally coupled to matter with an extended matter

sector consisting of a minimally coupled massless scalar. Because there are no vertices

with an odd power of φ in this theory, the amplitude for emission of a single scalar

by matter vanishes (in any case, the scalar field couples derivatively, so it cannot

mediate a long-ranged interaction.)
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It is also instructive to consider the action (4.5) in flat space, with gravitation

turned off (MP → ∞). Though the broken Weyl symmetry (4.47) acts non-trivially

on the metric, this approximate symmetry does not get lost. Indeed, with all matter

fields taken to be diffeomorphism scalars, in flat spacetime and for an exponential f

the Weyl transformation (4.42c) has the same effect on the vierbein as the infinitesimal

coordinate dilatation

xµ →
(

1− ε f
′(0)

f(0)

)
xµ. (4.58)

Therefore, in that case, as a consequence of diffeomorphism invariance, the matter

action in the Einstein frame possesses an exact dilatation symmetry under which the

fields transform according to

ψα → ψα + ε xµ∂µψα, (4.59a)

φ→ φ+ ε(M + xµ∂µφ), (4.59b)

where we have used the normalization conditions (4.7).

The dilatation (4.59a) does not act conventionally on the matter fields. To bring

it to its usual form it is convenient to redefine the matter fields. Suppose that the

kinetic term of the matter field ψα contains n derivatives. Then, diffeomorphism

invariance implies that each derivative is accompanied by the inverse of the vierbein,

and that the integration measure ddx is multiplied by det e. Therefore, in the Einstein

frame the kinetic term of the field ψα is proportional to fd−n. Let us hence redefine

ψ̃α = f
d−n

2 ψα. (4.60)

Then, by construction, the kinetic term of ψ̃α does not contain factors of f (though

there may be additional derivative interactions), and the matter action is invariant

under

ψ̃α → ψ̃α + ε

(
d− n

2
+ xµ∂µ

)
ψ̃α, (4.61a)

φ→ φ+ ε(M + xµ∂µφ), (4.61b)

where we have used again equation (4.7). Acting on the matter fields, this is now a

conventional dilatation, since (d− n)/2 is the scaling dimension of the field ψα. The
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inhomogeneous term in the transformation of φ underscores its interpretation as a

pseudo Nambu-Goldstone boson of an approximate, spontaneously broken conformal

symmetry, although, even for a massless φ, the scalar field action is not invariant

under (4.61).

Because the field φ transforms inhomogeneously under (4.61), the vertex for scalar

emission satisfies a Ward-Takahashi identity (4.129) related to this broken symmetry

[175],

M Γβαφ (p, p) +

(
pµ

∂

∂pµ
− n

)
Πβα(p) = Γβα∆ , (4.62)

where, again, Γαβ∆ is the sum of all 1PI diagrams with two external ψ lines and a

vertex insertion of ∆, the change in the Lagrangian density under the infinitesimal

transformation (4.61). This equation is the flat space counterpart of equation (4.52),

and also guarantees that, for fields renormalized on shell, quantum corrections to

the vertex for scalar emission are determined by the change of the action under the

broken symmetry (4.61).

The dilatation (4.58) is part of the conformal group, the set of all coordinate

transformations that preserve the Minkowski metric up to an overall conformal fac-

tor. Along the same lines as for dilatations, as a consequence of diffeomorphism and

Lorentz invariance, it is easy to show that, for an exponential f , the matter action

in flat space is symmetric under the full conformal group, acting again on the scalar

φ linearly, but inhomogeneously. There exist then additional Ward identities related

to the full conformal symmetry of the theory, though we shall not write them down.

Although conformal symmetries are typically anomalous, the structure of the cou-

plings to φ in the matter action for an exponential f guarantees that the symmetry

remains intact in the dimensionally regularized theory. If f is not an exponential,

or if scalar kinetic term is not conformally invariant, conformal symmetry is broken,

and the corresponding Ward identities contain the appropriate vertex insertions, as

in the dilatation case.
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4.4 Specific Examples

Our next goal is to illustrate our main results with a set of concrete examples that

show the nature and size of the equivalence principle violations in scalar-tensor the-

ories. We only address this issue for scalars and spin half fermions; the vertex for

scalar emission by a gauge boson vanishes on shell as a consequence of Lorentz and

gauge invariance, so there is no need to consider this case in the context of the weak

equivalence principle.

We first check explicitly in a one-loop calculation that couplings to matter do not

lead to any violations of the weak equivalence principle. For scalars, these results

partially overlap and complement previous work in the literature [167]. In addition,

we verify that one-loop corrections involving the scalar φ do result in violations of

the equivalence principle, in agreement with the Ward identity (4.53). To avoid the

complications of index algebra, we focus on loops of φ for simplicity, but we expect

analogous violations from diagrams in which the loop contains at least one graviton.

4.4.1 Scalar Matter

Let us assume for the time being that matter consists of scalar particles χ, which for

simplicity interact through a cubic coupling with another species of scalar particles

σ. Then, in the Jordan frame, the matter action is

LJM = −1

2
gµν∂µχ∂νχ−

1

2
m2χ2 − 1

2
gµν∂µσ∂νσ −

1

2
m2
σσ

2 − λ

2
σχ2. (4.63)

We are going to calculate quantum corrections to the vertex for emission of a scalar

φ by matter χ. In order to obtain the action in the Einstein frame, we apply the

conformal transformation implicit in (4.5a). As we have seen, exponentials play a

somewhat special role in scalar-tensor theories, so, for the purposes of illustration we

choose

f

(
φ

M

)
= exp

(
φ

M

)
. (4.64)

Since we are interested in corrections to the vertex at most of order 1/M3 we then

expand the Einstein-frame action in Minkowski space to third order in φ, and drop



109

some of the terms that do not enter our calculation,

LEM = −1

2
∂µχ∂

µχ− m2

2
χ2 − 1

2
∂µσ∂

µσ − m2
σ

2
σ2 − λ

2
σχ2 − d λ

2M
φσχ2 (4.65)

−1

2

φ

M

[
(d− 2)∂µχ∂

µχ+ dm2χ2
]
− 1

2

φ

M

[
(d− 2)∂µσ∂

µσ + dm2
σσ

2
]

−1

4

φ2

M2

[
(d− 2)2∂µχ∂

µχ+ d2m2χ2
]
− 1

12

φ3

M3

[
(d− 2)3∂µχ∂

µχ+ d3m2χ2
]

+ · · · .

Note that some of the couplings above are redundant, and can be removed away

by a field redefinition. Although the field redefinition simplifies the Feynman rules,

it somewhat obscures the symmetry between the couplings of the scalar and the

graviton, so we shall mostly proceed with the Lagrangian (4.65). Of course either

formulations yield the same S-matrix elements.

Matter Loops

Our first goal is to explicitly show that one-loop corrections in which matter fields run

inside the loop do respect the equivalence principle. In order to do so, it is simpler

(and more revealing) to verify first the Ward-Takahashi identity (4.52). Consider

for that purpose the order λ2 correction to the amplitude for emission of a scalar

φ by a matter field χ. At this order, the correction is given by the four diagrams

in figure 4.4, where χ lines are labeled with an arrow, σ lines are plain and φ lines

are dashed. Because we are interested in the limit of zero momentum transfer, we

consider equal incoming and outgoing momenta. Using the vertices implied by the

Lagrangian (4.65), and combining denominators using Feynman parameters in the

standard way [54], we find

i∆γ1 = −2λ2

M

∫
ddk

∫ 1

0

dx
x[(d− 2)(p2(1− x)2 + k2) + dm2]

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]3

, (4.66a)

i∆γ2 = −2λ2

M

∫
ddk

∫ 1

0

dx
(1− x)[(d− 2)(p2x2 + k2) + dm2

σ]

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]3

, (4.66b)

i∆γ3 + i∆γ4 =
2d λ2

M

∫
ddk

∫ 1

0

dx
1

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]2

, (4.66c)
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(1) (2) (3) (4)

Figure 4.4: One-loop corrections to the vertex for scalar emission by matter

where we have dropped the iε factors in the propagators. Combining all the contri-

butions in (4.66) we thus conclude that the total vertex correction is

i∆γ ≡ i

4∑
i=1

∆γi =
λ2

M

∫
ddk

∫ 1

0

dx
4k2 + 4p2x(1− x)

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]3

. (4.67)

The interactions of matter χ with the field σ also modify the self-energy of matter.

At order λ2, the self-energy corrections are described by the diagram in figure 4.5,

which leads to

i∆π = λ2

∫
ddk

∫ 1

0

dx
1

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]2

, (4.68a)

and directly yields

i

(
d∆π − pµ∂∆π

∂pµ

)
= λ2

∫
ddk

∫ 1

0

dx

(
d

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]2

+

+
4p2x(1− x)

[k2 + p2x(1− x) +m2x+m2
σ(1− x)]3

)
. (4.68b)

The integrals over loop momenta in equations (4.67) and (4.68) can be explic-

itly carried out by rotating the integration contour counterclockwise into Euclidean

momenta and making use of the well known relation∫
ddkE

(k2)n

[k2 + ∆2]m
= πd/2

Γ(d+2n
2

)

Γ(d
2
)

Γ(m− d+2n
2

)

Γ(m)
∆d+2n−2m, (4.69)

which immediately confirms the Ward identity (4.52).

When we calculate S-matrix elements (as opposed to Green’s functions) it is

convenient to work in the OS scheme of renormalized perturbation theory. We then

need to introduce appropriate field renormalization and mass counterterms to enforce
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our renormalization conditions (4.39). With χ → Z1/2χ and m2 → m2 − δm2 the

counterterm Lagrangian becomes

LEC = − 1

2
(Z − 1)(∂µχ∂

µχ+m2χ2) +
1

2
Zδm2χ2 −

− 1

2

φ

M

{
(Z − 1)[(d− 2)∂µχ∂

µχ+ dm2χ2]− dZδm2χ2
}

+ · · · , (4.70)

with Z and δm2 chosen to satisfy the conditions (4.39),

Z − 1 =
1

(2π)d
d∆π

dp2

∣∣∣∣∣
p2=−m2

, Zδm2 = −∆π(−m2)

(2π)d
. (4.71)

These counterterms yield the additional contributions to the vertex amplitude

i∆γ5 = −i(2π)d

M

{
(Z − 1)

[
(d− 2)p2 + dm2

]
− dZδm2

}
. (4.72)

Using the Ward identity (4.52), evaluated at p2 = −m2, it is now straightforward

to see that the total vertex correction vanishes. Alternatively, bringing all the factors

in ∆γi to a common denominator, and simplifying the resulting numerator we find

that the total vertex correction is

i(∆γφ)OS ≡ i
5∑
i=1

∆γi =
λ2

M

∫
ddk

∫ 1

0

dx
(4− d)k2 − d[m2x2 +m2

σ(1− x)]

[k2 +m2x2 +m2
σ(1− x)]3

. (4.73)

Using equation (4.69) in (4.73) yields again (∆γφ)OS = 0, in agreement with our gen-

eral result (4.53). The corresponding cancellation among the five different diagrams

is an expression of diffeomorphism and Weyl invariance. In the Lagrangian (4.65),

the vertex to which a single scalar φ is attached could be replaced by one to which a

single graviton is attached. Since the Ward identity (4.41) guarantees that the sum

of all diagrams that contribute to the vertex correction for graviton emission vanishes

in the appropriate kinematic limit, this result transfers to the vertex for emission of

a scalar particle.

This also explains why the total vertex correction does not vanish if we simply use

a cut-off to regularize the theory. If we cut off the Euclidean momentum integrals at

kE = Λ in d = 4 we get, from equation (4.73),

(∆γφ)OS = −2π2λ2

M

∫ 1

0

dx

(
1 +

m2x2 +m2
σ(1− x)

Λ2

)−2

. (4.74)
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Figure 4.5: One loop correction to the self-energy of matter

(1) (2) (3) (4)

Figure 4.6: One-loop corrections to the vertex for scalar emission at order 1/M3. Continuous lines

denote matter fields, while dashed lines label the scalar φ.

This remains finite in the limit Λ → ∞, but does not vanish. The origin of the

non-zero correction is of course the breaking of diffeomorphism invariance by the

momentum cut-off, which leads to a breakdown of the Ward-Takahashi identity for

graviton emission (4.10), but does not affect the relation (4.9) between the vertex

and the graviton vertex. Although the quantum theory of massless spin two particles

with non-derivative couplings to matter requires diffeomorphism invariance [51], the

coupling of a spin zero scalar φ to matter does not demand any symmetry. In other

words, by regulating the momentum integrals with a cut-off, we are not breaking any

symmetry in the scalar sector that is not already broken, so a momentum cut-off

appears to be a perfectly valid regularization method. In this light, even our claim

that matter loops do respect the equivalence is somewhat misleading.

Scalar Loops

We proceed now to calculate corrections to the vertex that include the scalar φ run-

ning inside a loop. These are described by the four diagrams in figure 4.6, which
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respectively lead to the four vertex corrections

i∆γ1 = − 2

M3

∫
ddk dx x× (4.75a)

× [(d− 2)p · (p(1− x)− k) + dm2]2[(d− 2)(p(1− x)− k)2 + dm2]

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]3

,

i∆γ2 =
1

M3

∫
ddk dx× (4.75b)

× [(d− 2)p(p(1− x)− k) + dm2] [(d− 2)2 p(p(1− x)− k) + d2m2]

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]2

,

i∆γ3 = i∆γ2, (4.75c)

i∆γ4 = − 1

2M3

∫
ddk

(d− 2)3p2 + d3m2

k2 +m2
φ

, (4.75d)

where, from now on and as before, the integral over x covers the range from zero to

one.

Because we want to show that φ loops do lead to violations of the equivalence

principle, it is more convenient to work in an on-shell renormalization scheme (OS).

The self-energy insertion ∆π is determined by the two diagrams in figure 4.7, and the

corresponding corrections read

i∆π1 =
1

M2

∫
ddk

∫ 1

0

dx
[(d− 2)p · (p(1− x)− k) + dm2]2

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]2

, (4.76)

i∆π2 = − 1

2M2

∫
ddk

(d− 2)2p2 + d2m2

k2 +m2
φ

. (4.77)

In order to enforce the renormalization conditions (4.39), we introduce a renormal-

ized field χ → Z1/2χ and a renormalized mass m2 → m2 − δm2, which give the

counterterms in the Lagrangian (4.70). But because we are dealing now with non-

renormalizable interactions (operators of mass dimension higher than d), the self-

energy also contains a divergent term proportional to p4, which we cannot absorb

simply by renormalization of fields and parameters present in the action (4.65). We

are thus forced to introduce a new bare term with four derivatives and two fields,

which we treat as a perturbation. In the Jordan frame Lagrangian, this can be taken

to be proportional to det e (�χ)2, which in the Einstein frame becomes

LEC ⊃
Z δc

2
fd−4 · (�χ)2, (4.78)
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with Zδc chosen to enforce for instance the additional renormalization condition

d∆π

d(p4)

∣∣∣∣∣
p2=−m2

= 0. (4.79)

(For simplicity we assume that the renormalized c vanishes.) The counterterms then

yield additional vertex corrections, as in equation (4.72), but with the additional

contribution from (4.78)

i∆γ5 = −i(2π)d

M

{
(Z − 1)

[
(d− 2)p2 + dm2

]
− dZδm2 − (d− 4)Z δc p4

}
. (4.80)

From the structure of the self-energy corrections, it is clear that the counterterms are

of order M−2.

We are ready to compute now the total correction to the vertex (∆γ)OS =
∑

i ∆γi.

To make our point, let us concentrate of the phenomenologically relevant case of d = 4

dimensions. In this limit, some of the momentum integrals diverge. It is relatively

easy to isolate the residue of the pole as d→ 4, which, in the limit mφ = 0 and after

performing a trivial integral over x reads

(∆γφ)OS = −4π2

M3

16m4 + 7m2p2 + p4

d− 4
+O[(d− 4)0]. (4.81)

The form of this pole immediately reveals that the theory defined by the action (4.5a)

is non-renormalizable, in the broad sense that we cannot absorb its divergences by

appropriate renormalization of the coupling constants and parameters appearing in

any matter action of the form (4.5a). Say, suppose that we introduce a renormalized

coupling constant by replacing M−1 → M−1 − δM−1. This introduces additional

counterterms in our theory, which to leading order in 1/M yield an additional vertex

correction

i∆γ6 = −i(2π)dδM−1
[
(d− 2)p2 + dm2

]
. (4.82)

But comparison of equation (4.81) with (4.82) quickly reveals that no single choice

of δM−1 cancels all the residues at d = 4, and that, in fact, we would have to choose

three independent counterterms to cancel the terms proportional to m4, m2p2 and p4.

This means that our theory contains three independent coupling constants, instead

of one, as we initially thought.
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Figure 4.7: Self-energy of matter to order 1/M2.

What we are seeing here is that there is no symmetry that enforces the structure

(4.5a) in scalar-tensor theories. In order to carry out the renormalization program

we have to introduce all the terms compatible with the symmetries of the theory,

which in this case only consists of diffeomorphism invariance. In particular, just in

the scalar sector alone, we have to introduce a set of coupling constant 1/M
(j)
i for

each linear coupling of φ to an operator quadratic in the scalar matter species χi,

LEM →
∑
i

[
−1

2
∂µχi∂

µχi −
1

2
m2
iχ

2
i −

1

2

φ

M
(0)
i

m2
iχ

2
i (4.83)

−1

2

φ

M
(2)
i

∂µχi∂
µχi −

1

2

φ

M
(4)
i

(�χi)
2 + · · ·

]
.

Because no common choice for all counterterms δM
(k)
i can eliminate all the contribu-

tions to the pole at d = 4 in equation (4.81) for all matter species, and because the

beta functions of the different coupling constants are determined by the coefficients of

this pole [176], these different couplings run differently with scale under the renormal-

ization group flow. Thus, once we include quantum corrections, the structure of (4.5)

becomes untenable. The unnatural structure of the subclass of scalar-tensor theories

we consider here has been repeatedly emphasized by Damour (see e.g. [177]).

Let us proceed anyway with the vertex correction and study its finite piece in the

limit d → 4. To simplify the algebra, we consider now on-shell momenta, p2 = −m2

and focus on the limit mφ = 0. In this case, the finite terms reduce to

(∆γφ)OS = O
(

1

d− 4

)
− 4π2

M3
m4
[
2 + 5γ + 5 log(πm2)

]
, (4.84)

which again differs from zero. Of course, we should expect similar terms from the

renormalization prescription that eliminates the pole at d = 4. Although we have

explicitly calculated the corrections of order (m/M)3, due to a scalar loop, we also
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expect non-vanishing corrections of order m3/(MM2
P ) due to a graviton loop, as we

argued in Section 4.3.2.

Equations (4.81) and (4.84) explicitly show that quantum corrections in scalar-

tensor theories generically lead to violations of the equivalence principle. Of course,

to make a precise and definite prediction about the size of these violations, we need

to specify a renormalization prescription to eliminate the poles at d = 4. In the

absence of such a prescription, and on dimensional grounds, we generically expect

the contribution of the scalar vertex to these violations to be of order m4/(MM2
P )

(to obtain the scattering amplitude one has to multiply this number by two powers

of the appropriate mode function u ∝ 1/
√

2p0 ≈ 1/
√

2m). In that case, particles

with different masses fall with different accelerations. In order to quantify the corre-

sponding violations of the equivalence principle, it is conventional to quote the Eötvös

parameter η, defined to be the relative difference in acceleration of two different test

bodies A and B,

ηAB = 2
aA − aB
aA + aB

. (4.85)

To leading order in gravitational couplings, aA+aB is of order 1/MP , while our results

indicate that aA − aB is of order (m2
A −m2

B)/(MM2
P ). Hence, generically we expect

the Eötvös parameter to be of order

ηAB ∼
m2
A −m2

B

MMP

, (4.86)

which is negligible for practical purposes for elementary particle masses. But this

does not necessarily rule out the phenomenological relevance of these corrections. If

instead of using an on-shell renormalization scheme we had worked for instance with

minimal subtraction (MS), we would have found an Eötvös parameter of order

η ∼ µ2

MµM
µ
P

[
(mA

µ )4

(mA
I )2
−

(mB
µ )4

(mB
I )2

]
, (4.87)

where mµ is the mass parameter in the MS scheme, and mI is the inertial mass.

The key is that for light scalars (in the presence of fine tuning) the inertial mass mI

may differ from the renormalized parameter mµµ at a high scale µ ∼ MP by several

orders of magnitude. In that case, the Eötvös parameter may be of order one, and
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thus these quantum violations are phenomenologically relevant. In any case, tests of

the weak equivalence principle are not performed with elementary particles, but with

macroscopic bodies instead. In order to predict the corresponding violations of the

equivalence principle, we would have to proceed as in [158].

Ward-Takahashi Identity for Broken Symmetry

Our explicit calculation of the one-loop correction for scalar emission mediated by

the scalar itself also allows us to check the Ward-identity (4.48) and illustrate its

meaning. For that purpose let us rewrite equation (4.48) in the form

Γφ −
1

M
Γ∆ =

2MP

M
(Γh)

µ
µ. (4.88)

On the left hand side of (4.88), the corrections to Γφ to order 1/M3 are determined

by the four diagrams in figure 4.6, and are given by equations (4.75). As we mention

in Appendix 4.A, Γ∆ is given by all 1PI diagrams with two external matter lines,

and an insertion of the vertex ∆, the change in the Lagrangian density under the

transformation (4.47). To calculate the sum of these diagrams to order 1/M3 we just

need to expand the change in the total action under the transformation (4.47) to

quadratic order in φ. Since we are considering an exponential, equation (4.64), only

Sφ changes under the transformation,

∆Stot =
1

2

∫
ddx

[
(d− 2)∂µφ∂

µφ+ dm2
φφ

2
]
≡
∫
ddx∆. (4.89)

To leading order, insertion of this vertex in a diagram with two external lines then

leads to the two diagrams in figure 4.8, which, respectively, contribute

Γ1
∆ = − 2i

M2

∫
ddk dx (1− x)× (4.90a)

×
[(d− 2)(k + px)2 + dm2

φ][(d− 2)p · (p(1− x)− k) + dm2]2

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]3

,

Γ2
∆ =

i

2M2

∫
ddk

[(d− 2)k2 + dm2
φ][(d− 2)2p2 + d2m2]

[k2 +m2
φ]2

. (4.90b)

To calculate the right hand side of equation (4.88) we need to expand the total
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∆Sφ

(1)

∆Sφ

(2)

Figure 4.8: Diagrams with two external lines and the insertion of the two vertices in Eq.(4.89).

action to first order in the graviton, and second order in (φ/M),

LEφ + LEM ⊃

− hµν
2MP

[
ηµν
(

1

2
∂ρχ∂

ρχ+
1

2
m2χ2 +

1

2
∂ρφ∂

ρφ+
1

2
m2φ2

)
− ∂µχ∂νχ− ∂µφ∂νφ

]
−

− hµν
2MP

φ

M

[
ηµν
(
d− 2

2
∂ρχ∂

ρχ+
d

2
m2χ2

)
− (d− 2)∂µχ∂νχ

]
−

− hµν
2MP

φ2

2M2

[
ηµν
{

(d− 2)2

2
∂ρχ∂

ρχ+
d2

2
m2χ2

}
− (d− 2)2∂µχ∂νχ

]
. (4.91)

Then, to order 1/M2, Γh on the right hand side of equation (4.88) is given by the six

diagrams in figure 4.9, with vertices determined by the action (4.91). Let us label the

contribution of the i-th diagram (∆γi)
µν . Then, we can write

(Γh)
µν = (γh)

µν +
6∑
i=1

(∆γi)
µν , (4.92)

where (γh)
µν is the tree-level contribution.

Comparing the action (4.65) with (4.91) immediately reveals that the trace of the

tree-level vertex for scalar emission by matter equals the trace of the tree-level vertex

for graviton emission,

γφ =
2MP

M
(γh)

µ
µ. (4.93)

This is just a reflection of the invariance of the matter action under (4.47), as we

discussed earlier. Therefore, it follows in addition that the contributions of diagram

4.6.1, equation (4.75b), and the trace of that of 4.9.1 are proportional to each other,

∆γ1 =
2MP

M
(∆γ1)µµ. (4.94)
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Diagrams 4.6.2 and 4.6.3 are the same as those in 4.9.2 and 4.9.3. In fact, since the

quartic vertex in (4.65) is proportional to the trace of the quartic vertex in equation

(4.91), both pairs of diagrams basically yield identical contributions

∆γ2 + ∆γ3 =
2MP

M
[(∆γ2)µµ + (∆γ3)µµ] . (4.95)

Similarly, diagrams 4.6.4 and 4.9.4 are also identical, and because the quintic vertex

in (4.65) is proportional to the trace of the quintic vertex in (4.91), both diagrams

are again proportional to each other,

∆γ4 =
2MP

M
(∆γ4)µµ. (4.96)

Furthermore, it is clear from the structure of the couplings in (4.65) and (4.91) that

these relations only apply for an exponential f .

On the other hand, comparison of figures 4.6 and 4.9 reveals that diagrams 4.9.5

and 4.9.6 do not have a scalar emission counterpart, simply because there is no

analogous cubic vertex for φ in the action. This is corrected for by the two diagrams

with an insertion of ∆ in figure 4.8, whose contribution equals the trace of their

graviton counterpart. To order 1/M2 this implies

−Γ∆ =
2MP

M
[(∆γ5)µµ + (∆γ6)µµ] . (4.97)

Together, equations (4.93), (4.94), (4.95), (4.96) and (4.97) immediately provide an

explicit verification of equation (4.88).

We can further test the validity of equation (4.88) by noting that, because of

equations (4.41) and (4.93), for fields renormalized on shell we should have

(∆γφ)OS =
Γ∆

M
. (4.98)

Indeed, we have explicitly checked that in the limit d→ 4 both the pole and the finite

parts on both sides of the last equation agree.

4.4.2 Fermion matter

We turn our attention now to the vertex for scalar emission by fermionic matter. As

we mentioned above, fermions are different from bosons because coupling them to
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Figure 4.9: One-loop corrections to the vertex for graviton emission to order 1/M2.

gravity necessarily requires the introduction of the vierbein. This section illustrates

that, as far as the equivalence principle is concerned, this property does not introduce

any new ingredients, and that the properties of the vertex with fermion matter closely

resemble those of the vertex with scalar matter.

Consider the Jordan-frame matter action

SJM =

∫
ddx det e

[
−ψ̄eµaγaDµψ −mψ̄ψ −

1

2
∂µχ∂

µχ− 1

2
m2
χχ

2 − λχψ̄ψ
]
, (4.99)

which simply describes the Yukawa interactions of a spin 1/2 fermion ψ with a massive

Higgs-like scalar χ. Here, γa are the conventional Dirac matrices and Dµ is the

covariant derivative of the spinor, which depends on the vierbein through the spin

connection. To obtain the Einstein frame action, we replace eµ
a by f(φ/M)eµ

a, and

expand the resulting expression to the desired order in φ around flat space. But in

order to calculate S-matrix elements, it is simpler to work with a Lagrangian in which

some of the interactions have been removed by a field redefinition. It is well-known

[83] that the action of a massless spinor is invariant under the Weyl transformation

eµ
a → f eµ

a, (4.100a)

ψ → f (1−d)/2 ψ. (4.100b)

Thus, making these substitutions in the Jordan-Frame action (4.99) and expanding
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again to the required order we get in flat space

LEM = −ψ̄γµ∂µψ −m
(

1 +
φ

M
+

φ2

2M2
+

φ3

6M3

)
ψ̄ψ − λχ

(
1 +

φ

M

)
ψ̄ψ−

− 1

2

(
1 + (d− 2)

φ

M

)
∂µχ∂

µχ−
(

1 + d
φ

M

)
1

2
m2
χχ

2 + · · · , (4.101)

where we have assumed again that f is an exponential, equation (4.64). Because the

couplings in this Lagrangian are not of the form (4.5a), the vertex amplitudes do not

obey the Ward identity (4.52), as can be easily verified at tree level. Instead, because

the field redefinition (4.100) is of the form (4.60), the vertex obeys the dilatation

Ward identity (4.62), as can be also easily verified at tree level. Note that in order to

appropriately take into account the spinor field redefinition, we have to multiply the

path integral measure by an appropriate Jacobian [178]. For an electrically neutral

spinor, this has no effects to linear order in φ.

Matter Loops

Our first goal is to calculate the order λ2/M corrections to the scalar-matter ver-

tex induced by one-loop diagrams in which matter fields run inside the loop. The

corresponding diagrams, figure 4.4, are the same as for scalar matter. We do not

include external line corrections because we work in the OS scheme. In order to do

so however, we need to introduce the appropriate counterterms to enforce our renor-

malization conditions (4.39). Introducing renormalized fields and mass parameters,

ψ → Z
1/2
2 ψ and m→ m− δm, we thus arrive at the counterterms

LEC = −(Z2 − 1)
[
ψ̄γµ∂µψ +mψ̄ψ

]
+ Z2δmψ̄ψ − [(Z2 − 1)m− Z2δm]

φ

M
ψ̄ψ + · · · ,

(4.102)

where we have kept only those terms that are relevant for our calculation.

The determination of the amplitudes associated with the diagrams in figure 4.4

is straight-forward. To simplify the analysis, we concentrate in the limit of zero

momentum transfer and on-shell momenta, which is the appropriate limit for our

considerations. Following the standard Feynman rules (see e.g. [54]) we find that the
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contribution of the diagrams in figure 4.4 is

i∆γ1 = −2λ2m

M

∫
ddk

∫ 1

0

dx
x [m2(2− x)2 − k2]

[k2 +m2x2 +m2
χ(1− x)]3

, (4.103a)

i∆γ2 = −2λ2m

M

∫
ddk

∫ 1

0

dx (1− x)× (4.103b)

×
(2− x)

[
(d− 2)(k2 −m2x2) + dm2

χ

]
− 2(1− 2/d)k2x

[k2 +m2x2 +m2
χ(1− x)]3

,

i∆γ3 =
λ2m

M

∫
ddk

∫ 1

0

dx
2− x

[k2 +m2x2 +m2
χ(1− x)]2

, (4.103c)

i∆γ4 = i∆γ3, (4.103d)

where we have used that on shell we may substitute /p by im.

In addition, we need to consider the contributions of the counterterms, which in

this case reduce to

i∆γ5 = −i(2π)d(Z2 − 1)
m

M
+ i(2π)dZ2

δm

M
. (4.104)

We choose these counterterms to enforce the on-shell renormalization conditions

(4.39), which requires

Z2 − 1 = − i

(2π)d
∂∆π

∂/p

∣∣∣
/p=im

, Z2δm = −∆π(im)

(2π)d
. (4.105)

In order to calculate the values of the counterterms, we thus need to evaluate the

self-energy correction. This is given by the diagram in figure 4.5, which finally leads

to

i∆π = λ2m

∫
ddk

∫ 1

0

dx
2− x

[k2 +m2x2 +m2
χ(1− x)]2

, (4.106a)

∂∆π

∂/p
= −λ2

∫
ddk dx

[
1− x

[k2 +m2x2 +m2
χ(1− x)]2

+
4m2(2− x)(1− x)x

[k2 +m2x2 +m2
χ(1− x)]3

]
.

(4.106b)

Then, the total loop correction to the vertex for scalar emission by matter is

(∆γφ)OS =
5∑
i=1

∆γi. (4.107)

According to the Ward identity (4.52), the right hand side of equation (4.107) has

to vanish, as the vertex correction only involves matter couplings in the loop. But as
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opposed to what happens in the scalar case, in which the Ward identity at one-loop

can be readily verified, one has to complete a surprising amount of work here to show

that (∆γφ)OS equals zero. We leave this task for Appendix 4.B, in which we explicitly

prove that, indeed,

(∆γφ)OS = 0, (4.108)

in agreement with our general result (4.53). As before, the corresponding cancella-

tion among the five different diagrams is an expression of diffeomorphism and Weyl

invariance.

If we regularize the theory by introducing a momentum cut-off Λ, diffeomorphism

invariance is broken again, and the cancellation (4.108) does not hold. Instead, say,

in the limit mφ → 0 we find that (∆γφ)OS is logarithmically divergent,

(∆γφ)OS →
7λ2π2

6

m

M
− λ2π2 m

M

∫ 1

0

dx (5− 14x+ 6x2) log
Λ2

m2x2
. (4.109)

As in the scalar case, in order to renormalize this divergence we would have to in-

troduce a coupling constant counterterm δM−1 to the Lagrangian, which would con-

tribute

i∆γ6 = −i(2π)4δM−1m (4.110)

to the vertex amplitude. In that case, we could impose the condition (∆γφ)OS+∆γ6 =

0, which would guarantee the preservation of the weak equivalence principle at one

loop. But of course, since neither the Yukawa coupling λ nor the mass m are universal,

this would lead to a collection of widely different set of bare coupling constants Mi,

one for each fermion species, and it would remain a mystery why the renormalized

vertex correction for all of them vanishes at zero momentum transfer. Otherwise,

equation (4.109) implies generic values of the Eötvös parameter ηAB of order λ2.

Scalar Loops

Having seen how matter loop corrections do respect the equivalence principle (in the

dimensionally regularized theory), let us turn our attention to those corrections that

do lead to violations. This time, instead of looking at diagrams with matter loops,

we shall calculate the corrections caused by a scalar field loop, at order 1/M3.
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The one-loop scalar field corrections to the scalar vertex are the same as for scalar

matter; they are shown in figure 4.6. The self-energy corrections are also given by

the diagrams in figure 4.7. Comparison of the corrections to the vertex caused by

a fermion loop to those caused by the scalar shows that vertices and most of the

diagrams basically agree if one replaces fermion lines with scalar lines. Therefore, we

can borrow the results of the previous subsection, now keeping the momenta off-shell,

simply by replacing λ by m/M , and m2
χ by m2

φ. We do not need to consider the

contribution of equation (4.103b), which does not have a counterpart in the scalar

loop diagrams at order 1/M3. Therefore, the vertex loop correction is the sum of the

four terms

i∆γ1 =
2m3

M3

∫
ddk

∫ 1

0

dx x
p2(1− x)2 + 2i/pm(1− x) + k2 −m2

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]3

, (4.111a)

i∆γ2 =
m2

M3

∫
ddk

∫ 1

0

dx
−i/p(1− x) +m

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]2

, (4.111b)

i∆γ3 = i∆γ2, (4.111c)

i∆γ4 = − m

2M3

∫
ddk

1

k2 +m2
φ

. (4.111d)

The contribution from the counterterms is still given by (4.104), with the latter

determined by equations (4.105). But this time, there is a new contribution to the

self-energy, captured by the second diagram in figure 4.7,

i∆π1 =
m2

M2

∫
ddk

∫ 1

0

dx
−i/p(1− x) +m

[k2 + p2x(1− x) +m2x+m2
φ(1− x)]2

, (4.112a)

i∆π2 = − m

2M2

∫
ddk

1

k2 +m2
φ

. (4.112b)

In this case, when we add the contributions from of order (m/M)3, we find that

the cancellations that occurred at order λ2/M before do not operate. To actually

see that the overall vertex correction (∆γφ)OS indeed is different from zero, let us

consider again the limit d→ 4. In this limit, the correction approaches

(∆γφ)OS =
2π2

M3

im2/p− 2m3

d− 4
+O[(d− 4)0], (4.113)

which again shows that the theory defined by (4.1) is not renormalizable, in the

sense that we cannot absorb this pole by renormalization of the coupling constant
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M−1 in the Lagrangian (4.101). As in the scalar case, once this pole is removed by

including the appropriate missing counterterms in the action, we expect then finite

vertex corrections of order m3/M3 in the limit d→ 4, which lead to relative violations

of the weak equivalence principle of order m2/M2.

Ward-Takahashi Identity for Broken Symmetry

We mentioned in Section 4.3.3 that in flat spacetime, scalar-tensor theories posses a

broken dilatation symmetry (4.61), and a corresponding Ward identity for this broken

symmetry, equation (4.62). Again, we can use the results of our explicit calculation of

the vertex correction in the previous section to check the validity of the Ward identity

(4.62), and vice-versa.

Since a fermion has scaling dimension (d − 1)/2, the vertex for scalar emission

Γφ by fermion matter obeys the identity (4.62) with n = 1. The Lagrangian (4.101)

is not invariant under the dilatation (4.61), but instead changes by equation (4.89).

Therefore, we should have

M Γφ +

(
pµ

∂

∂pµ
− 1

)
Π = Γ∆, (4.114)

where Γ∆ is the sum of all 1PI diagrams with two external lines and an insertion of

the local operator ∆ defined in equation (4.89). Recall that the Ward identity (4.48)

does not hold in this case, as can be readily verified at tree level, because the field

redefinition (4.100) has led to a matter action that is not of the form (4.5a).

At tree level, it is easy to check the validity of (4.114), since there is no tree-level

diagram with an insertion of ∆ and two fermion lines. At order 1/M2, the corre-

sponding Feynman diagrams are those in figure 4.8, which yield the two correction

terms

Γ1
∆ = −2im2

M2

∫
ddk dx (1− x)

[
−i/p(1− x) +m+ i/k

] [
(d− 2)(k + x p)2 + dm2

φ

]
[k2 + p2x(1− x) +m2x+m2

φ(1− x)]3
,

(4.115a)

Γ2
∆ =

im

2M2

∫
ddk

(d− 2)k2 + dm2
φ

[k2 +m2
φ]2

. (4.115b)
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It is then easy to check for instance that the residue of the pole at d = 4 in Γ∆ ≡

Γ1
∆ + Γ2

∆ actually agrees with equation (4.113), thus confirming the validity of the

Ward identity (4.114).

4.5 Summary

We have studied the impact of quantum corrections on the weak equivalence principle

in scalar-tensor theories that admit a Jordan-frame formulation, equation (4.1). To

do so, it is convenient to work in the Einstein frame, in which the scalar and the

graviton are decoupled in the free action, equation (4.5). In this frame the amplitude

for scalar emission is universally proportional to the inertial mass at tree level, and

the same result holds when we include quantum corrections that only involve matter

loops. Once we include a scalar φ or a graviton in these loop corrections however, the

equivalence principle is violated.

The origin of these results lies in the broken Weyl symmetry (4.47). The corre-

sponding Ward identity for the broken symmetry (4.48) relates the 1PI vertex Γφ for

scalar emission to that of the graviton Γh, and to the sum of all the diagrams with an

insertion of a vertex proportional to the change of the Lagrangian density under the

broken symmetry (4.48), Γ∆. Violations of the equivalence principle caused by the

scalar interaction arise from those terms in the action that violate the shift symmetry

(4.47). For an exponential, f = exp(φ/M), the matter action is exactly symmetric

under (4.47) and only Sφ and SEH violate the Weyl symmetry. For other choices of f ,

such as a linear coupling in φ, even the matter Lagrangian is not exactly symmetric

under this transformation. In both cases, because the only terms that violate the in-

homogeneous Weyl symmetry involve terms quadratic in the scalar φ or the graviton,

these violations of the equivalence principle are proportional to three powers of the

gravitational couplings M−1 and M−1
P . If we regularize the theory with a momentum

cut-off, diffeomorphism invariance is broken, and even matter loops lead to violations

of the weak equivalence principle caused by the scalar interaction. Although diffeo-

morphism invariance is required to couple a massless graviton to matter, there is no
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analogous constraint to couple a massive or massless scalar to matter. In particular,

a momentum cut-off does break the Weyl symmetry (4.47), but the latter is broken

anyway in the action (4.5).

The form of the quantum corrections to the scalar vertex Γφ implies that scalar-

tensor theories with an Einstein frame formulation of the form (4.5a) are not renor-

malizable: Any matter action of the form (4.5a) does not contain enough counterterms

to eliminate all the poles at d = 4 in the dimensionally regularized theory. To do

so one has to include all the terms compatible with the symmetries of the action,

which only consist of diffeomorphism invariance. Therefore, the structure of (4.5a) is

not preserved by quantum corrections. From that point of view, assuming that the

coupling of the scalar is universally characterized by a single coupling constant 1/M

appears artificial.

The actual magnitude of the equivalence principle violations depends on the way

the theory is regularized, and on the renormalization prescription that eliminates the

remaining non-renormalizable divergences in the amplitudes. Generically, in the pres-

ence of a high momentum cut-off, we expect the Eötvös parameter of these theories

to be of order one, which is strongly ruled out by experiment [157]. In the dimension-

ally regularized theory, we expect the Eötvös parameter to be of order ∆m2/M2
P ; this

ratio is extremely small for typically inertial masses of elementary particles, but could

be large if one of the mass parameters is defined away from the mass shell. In any

case, we have not worked out the magnitude of the equivalence principle violations

for macroscopic bodies, as appropriate for phenomenological considerations.

Finally, our results can be easily extended to similar classes of theories in which

the matter action can be cast as in equation (4.5a), such as f(R) gravity [18] or the

Galileon [179]. Because both of them violate the Weyl symmetry (4.47), we expect

them to behave like the scalar-tensor theories we have considered here.
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Appendix 4.A Ward Identities for Broken Sym-

metries

It is well-known that linear symmetries of the action are also symmetries of the ef-

fective action. In this appendix we are concerned with transformations that, though

linear, do not preserve the form of the action. As we shall show, in this case, the

quantum effective action satisfies a Ward-Takahashi identity that relates the change of

the effective action under the linear transformation to the change in total action func-

tional under the broken symmetry. This general identity has been widely discussed

in the literature, see e.g. [180], though its proof is difficult to find. Our derivation

here closely follows the formalism of [181] (particularly its Section 12.6).

Consider the generating functional of an arbitrary theory that contains a set of

fields χn in the presence of a corresponding set of currents Jn,

Z[J ] =

∫
Dχ exp

(
iStot[χ] + i

∫
ddx Jn(x)χn(x)

)
. (4.116)

Suppose now that we change integration variables

χn(x)→ χn(x) + ε∆χn(x), (4.117)

where ∆χm is linear in the fields, and ε is an arbitrary infinitesimal constant that we

use as an expansion parameter (the actual transformation (4.117) may be global or

local). Then, invariance of the path integral under change of variables gives, to first

order in ε,∫
Dχ

(
∆Stot[χ] +

∫
ddx Jn(x)∆χn(x)

)
exp

(
iStot[χ] + i

∫
ddy Jn(y)χn(y)

)
= 0,

(4.118)

where ∆Stot is the total change in the action under the transformation (4.117), and

we have also absorbed an eventual change of the functional measure into ∆Stot.

In order to take into account the change of the action under the transformation,

it turns out to be convenient to introduce a new generating functional Z[J,B] with

an additional (constant) source B for ∆Stot,

Z[J,B] ≡
∫
Dχ exp

(
iStot[χ] + i

∫
ddx Jn(x)χn(x) + i B∆Stot[χ]

)
. (4.119)
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Then, in terms of this new functional, equation (4.118) takes the form(
1

i Z[J,B]

∂Z[J,B]

∂B
+

∫
ddx Jn(x) 〈∆χn(x)〉J,B

) ∣∣∣∣∣
B=0

= 0, (4.120)

where, for any functional F [χ] of the fields, we have defined

〈F [χ]〉J,B ≡ Z−1[J,B]

∫
DχF [χ] exp

(
iStot[χ] + i

∫
ddx Jn(x)χn(x) + i B∆Stot[χ]

)
.

(4.121)

We proceed now to turn Equation (4.120) into an equation for the effective action.

We first define the generating function for connected diagrams in the presence of a

source for ∆Stot in the standard way,

iW [J,B] ≡ logZ[J,B], (4.122)

and then introduce the effective action by a Legendre transformation that only in-

volves the curents Jn,

Γ[χ̄, B] ≡ W [J [χ̄, B], B]−
∫
ddx Jn[χ̄, B]χ̄n. (4.123)

The currents J [χ̄, B] in the last equation are such that the fields χn have prescribed

expectation values5 χ̄n(x),

〈χn(x)〉J,B =
δW [J,B]

δJn(x)
= χ̄n(x). (4.124)

Therefore, differentiation of equation (4.123) with respect to χ̄n and B respectively

leads to the identities

Jn[χ̄, B] = −δΓ[χ̄, B]

δχ̄n
,

∂Γ[χ̄, B]

∂B
=
∂W [J [χ̄, B], B]

∂B

∣∣∣∣∣
J

. (4.125)

We are ready to put all these results together into equation (4.120). First, note

that the first term on the left-hand side is simply the derivative of W [J,B] with

5If the generating functional depends on the fields χ, and some background values χ̄ through

gauge-fixing and ghost terms, the effective action is a functional of both the background fields χ̄ and

the expectation values of the fields in the presence of the current, Γ = Γ[χ̄, 〈χ〉J ] (we set here B = 0

for simplicity.) The effective action in the background field method is defined by setting 〈χ〉 = χ̄, so,

strictly speaking, the proper vertices are given by functional derivative of Γ = Γ[χ̄, 〈χ〉] with respect

to 〈χn〉. As shown in [174] however, the difference is irrelevant when computing S-matrix elements.
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respect to B, which, because of (4.125) equals the derivative of the effective action

Γ[J,B] with respect to the same variable. Moreover, because we assume that ∆χn is

linear in the fields,

〈∆χn〉J,B = ∆χ̄n, (4.126)

so the second term on the left-hand side of equation (4.120) is the change in the

effective action ∆Γ[χ̄] ≡ Γ[χ̄, 0] under the transformation (4.117). Therefore, equation

(4.120) reads

∆Γ[χ̄] =
∂Γ[χ̄, B]

∂B

∣∣∣∣∣
B=0

, (4.127)

which states that at B = 0 the effective action Γ[χ̄, B] is invariant under the trans-

formation (4.117), supplemented with the additional transformation B → B − ε.

The right-hand side of equation (4.127) has a simple interpretation. Typically,

∆Stot is the spacetime integral of a local operator,6

∆Stot =

∫
ddx∆. (4.128)

In that case, Γ[χ̄, B] is the generator of 1PI diagrams in a theory with an additional

interaction
∫
ddxB∆. Therefore, its derivative with respect to the “coupling con-

stant” B at zero simply picks up those 1PI diagrams with a single insertion of the

vertex ∆. Since the new interaction involves a spacetime integral, and B is a con-

stant, such an insertion carries zero momentum into the diagram. Thus, denoting by

Γ∆[χ̄] ≡ (∂Γ/∂B)
∣∣
B=0

the generator of all 1PI diagrams with a vertex insertion of ∆

we arrive at the main result of the appendix,

∆Γ[χ̄] = Γ∆[χ̄], (4.129)

the Ward identity for a broken symmetry expressed in terms of the effective action

(variations of the same identity are also known as Slavnov-Taylor or Schwinger-Dyson

equations.) By taking functional derivatives of equation (4.129) with respect to the

matter fields one can then derive relations between the 1PI vertices of the theory. For

6Care should be exercised here because we are discarding a surface terms that may arise upon

integration by parts when isolating the change in the action to first order in ε.
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instance,

Γβα∆ ≡
δ2Γ∆

δψ̄α(x)δψ̄†β(y)

∣∣∣∣∣
ψ̄=0

(4.130)

is the sum of all 1PI diagrams with two external matter fields (with propagators

stripped off) and an insertion of ∆. Note that if the theory is invariant under the

transformation (4.117), ∆ = 0, equation (4.129) reduces to the well-known Slavnov-

Taylor identity for a linear symmetry of the action.

Appendix 4.B Scalar Ward Identity for Fermions

In this appendix we verify that matter loop corrections do not renormalize the vertex

for scalar emission by a fermion, equation (4.108).

With a scalar χ running inside the loop, the one-loop correction to the vertex

for scalar emission by a fermion is determined by equations (4.103) and (4.104),

whereas the one-loop correction to the self-energy of the fermion is given by equations

(4.106). To verify the relation (4.108) we need to explicitly carry out the integrals

over momenta and x.

The integrals over momenta can be easily performed using the identity (4.69). On

shell, the remaining integrals over x turn out to be a sum of expressions of the general

form

In =

∫ 1

0

dx xn
[
m2x2 +m2

χ(1− x)
]d/2−3

, (4.131)

with integer n. After completing a square inside the square bracket, the integral can

be re-expressed as

In =

∫ 1

0

dx xn(mχ)d−6

(
1− 1

4r

)d/2−3
[

1 +
r

1− 1
4r

(
x− 1

2r

)2
]d/2−3

, (4.132)

where we have defined the dimensionless ratio

r ≡ m2

m2
χ

. (4.133)

The scalar χ is stable upon decay onto two fermions if mχ < 2m. In that case
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(1− 1/4r) > 0, and we can introduce the new (real) integration variable

t =

√
4r2

4r − 1

(
x− 1

2r

)
. (4.134)

In terms of this variable, the integral (4.131) thus becomes

In = md−6
χ

(
1− 1

4r

)d/2−3
√

4r − 1

4r2

∫ t1

t0

dt

(√
4r − 1

4r2
t+

1

2r

)n [
1 + t2

]d/2−3
,

(4.135)

where the lower and upper integration limits t0 and t1 are determined by respectively

setting x = 0 and x = 1 in equation (4.134). Expanding the n-th power in equation

(4.135) we further obtain a linear combination of integrals of the general form

Jm ≡
∫ t1

t0

dt tm
[
1 + t2

]d/2−3
, (4.136)

which can finally be expressed in terms of hypergeometric functions [182],

Jm =
t1+m
1

1 +m
2F1

(
3− d

2
,
1 +m

2
,
3 +m

2
;−t21

)
(4.137)

− t1+m
0

1 +m
2F1

(
3− d

2
,
1 +m

2
,
3 +m

2
;−t20

)
.

In this way, after quite a bit of tedious but straight-forward algebra, collecting all the

contributions from the integrals in equation (4.107) we find that they all add to zero,

equation (4.108).



Chapter 5

Effective Theory of Cosmological

Perturbations

5.1 Introduction

One of the main successes of inflation [77–79, 183] is the explanation of the origin of

structure [42–46]. During slow-roll, the Hubble radius remains nearly constant, while

cosmological modes are constantly pushed out of the horizon. Thus, local processes

determine the amplitude and properties of perturbations at sub-horizon scales, which

are transferred to cosmologically large distances by the accelerated expansion. In

that sense, the sky is the screen upon which inflation has projected the physics of the

microscopic universe.

The primordial perturbations seeded during inflation arise from quantum-mechanical

fluctuations of the inflaton around its homogeneous value. Hence, their properties di-

rectly depend on the quantum state of the inflaton perturbations. Conventionally,

this is taken to be a state devoid of quanta in the asymptotic past, raising the crucial

question of whether we can trust cosmological perturbation theory—and its quantum

nature—at such early times [96].

According to our present understanding, quantum eld theories and GR are merely

low energy descriptions of a more fundamental theory of quantum gravity. In the

case of inflation, the leading terms in the corresponding effective Lagrangian are
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the Einstein-Hilbert term plus the inflaton kinetic term and potential. In an EFT

treatment, these terms are accompanied by all other possible operators compatible

with the symmetries of the theory, namely, general covariance and any other symmetry

of the inflaton sector. Higher dimensional operators are suppressed by powers of an

energy scale M , which we will assume to be of the order of the reduced Planck

mass, M ∼Mp, and they are therefore expected to be negligible at sufficiently small

momenta, or sufficiently long wavelengths. Note however that this does not imply that

we can simply discard high-momentum modes from the low-energy theory. In a gauge

theory in flat space for instance, a momentum cut-off breaks gauge invariance and is

thus incompatible with the symmetries of the theory. Similarly, in a curved spacetime,

the definition of properly renormalized generally covariant field operators requires

subtractions that involve all the momentum modes of the fields [184]. The effective

theory is a useful low-energy approximation simply because, on dimensional grounds,

the corrections to any observable introduced by the higher-dimensional operators

must be proportional to ratios of the external momenta or energies that characterize

the process to the energy scale M . The goal of this chapter is to determine the three-

momentum scale Λ at which such higher-dimensional operators significantly modify

the dispersion relation of cosmological modes. Beyond that scale, we cannot trust the

free sector of the theory, and cosmological perturbation theory breaks down. Since

the dispersion relation of a mode is what sets its mean square amplitude, we identify

such a breakdown with the point at which the corrections to the power spectrum

caused by higher-dimensional operators become dominant.

In Minkowski spacetime, the scale at which effective corrections to observable

quantities become important roughly coincides with the scale that suppresses the

non-renormalizable operators in the effective action. For instance, in the presence of

such terms, the propagator of a massless particle with (off-shell) momentum kµ can

be cast as an expansion of the form [54]

∆(kµ, k
′
µ) =

1

kµkµ

(
c0 + c2

kµk
µ

M2
+ c4

(kµk
µ)2

M4
+ · · ·

)
δ(kµ − k′µ), (5.1)

where the cn are coefficients of order one that typically depend on logarithms of kµk
µ.
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Lorentz-invariance implies that the corrections must be a function of the scalar kµk
µ,

while Poincare symmetry implies that they must conserve four-momentum. From

the structure of the corrections, it is clear that the expansion breaks down around

kµk
µ = M2.

On the other hand, it is crucial to realize that the three-momentum scale Λ at

which corrections to the power spectrum become dominant does not need to equal

the fundamental scale M . On short time-scales and distances, an inflating spacetime

can be regarded as flat. Hence, our previous result in Minkowski space suggests that

cosmological perturbation theory is valid as long as kµk
µ �M2 = M2

P . On shell, the

four-momenta of cosmological perturbations are light-like, kµk
µ ≡ −k2

0 + k · k = 0.

Thus, substituting in equation (5.1) we find that corrections are not only independent

of the three-momentum k, but also that they are actually zero. As we shall see

though, the evolution of the inflaton leads to small but finite violations of the Lorentz

symmetry even in the short-wavelength limit, which are imprinted on the power

spectrum as k-dependent corrections.

The phenomenological imprints of trans-Planckian physics on the primordial spec-

trum of perturbations, and the implications of a finite cut-off Λ on the spatial mo-

mentum of cosmological modes have been extensively studied [97, 185–210]. These

articles mostly study corrections to the power spectrum in the long-wavelength limit

|k/a| ≡ |kph| � H, at late times, which is the regime directly accessible by exper-

imental probes. In this chapter we focus instead on the short-wavelength regime

|kph| � H, at early times, since we are interested in determining how far into the

ultraviolet cosmological linear perturbation theory applies. At short wavelengths, the

power spectrum can be cast again as a derivative expansion of the form

〈δϕ∗(k)δϕ(k)〉 =
1

2|k|

(
α0 + α2

kph · kph
M2

+ α4
(kph · kph)2

M4
+ · · ·

)
, (5.2)

with coefficients αi that depend on slow-roll parameters and the dimensionless ratio

H/Mp. The analytic corrections to the leading result 1/2|k| arise from tree-level

diagrams with vertices from higher-dimensional operators. We only consider tree-

level diagrams here, since we expect loop diagrams to simply introduce a logarithmic
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dependence of the dimensionless coefficients αi on scale, though we have not verified

this explicitly. Cosmological perturbation theory fails (in our restricted sense) when

the expansion in powers of |k| breaks down, namely, when all the terms become of

the same order,

|kph| ≈Mp

√
α2n

α2n+2

≡ Λ . (5.3)

As we shall show, the ratios α2n/α2n+2 are all quite large and of the same order, so

the effective cut-off Λ significantly differs from Mp. In a slightly different context, a

similar analysis has been applied to the bispectrum in [211]. The terms that yield the

leading (momentum-independent) corrections to the primordial spectrum have been

recently discussed in [80]. Note by the way that there are many different ways in

which perturbation could break down. The authors of [212] argue for instance that in

a nearly de Sitter universe certain second order perturbations may be as important

as linear ones, which also implies a failure of linear perturbation theory.

The structure of this chapter, which is based on the paper [213], is as follows. In

the next section we describe the relevant background to our problem and introduce

the in-in formalism necessary to calculate corrections to the 2-point function of cos-

mological perturbations. In section 5.3 we compute the squared amplitude of tensor

perturbations and we derive the results mentioned above. In section 5.4 we apply a

similar analysis to the case of scalar perturbations, and obtain similar results. We

conclude and discuss possible implications of our results in section 5.5.

5.2 Cosmological Perturbation Theory

5.2.1 The Inflating Background

Our starting point is a standard single-field inflation model. At sufficiently late times,

the inflaton and gravity must be described by a low-energy effective action, whose

leading terms are dictated by general covariance and the field content,

S0 =

∫
d4x
√
−g
[
M2

p

2
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

]
. (5.4)
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In an EFT context, the action should also contain additional terms suppressed by

powers of a dimensionful scale, which we assume to be of the order of the Planck

mass Mp. Our goal is to determine the point beyond which such higher-dimensional

operators produce corrections to the two-point function of cosmological perturbations

that cannot be neglected. Our considerations can be readily generalized to cases in

which the suppression scale of the higher-dimensional operators is not the Planck

mass, but any other scale.

If the potential V (ϕ) is sufficiently flat, at least in a certain region in field

space, there exist inflationary solutions, along which a homogeneous scalar field

ϕ(τ,x) = ϕ0(τ) slowly rolls down the potential and spacetime is spatially homo-

geneous, isotropic and flat1 ,

g(0)
µν ≡ a2(τ)ηµν , (5.5)

where ηµν is the Minkowski metric and τ denotes conformal time. A model-independent

measure of the slowness of the inflation is given by the slow-roll parameter

ε ≡ − H ′

aH2
, (5.6)

where H ≡ a′/a2 is the Hubble parameter and a prime denotes a derivative with

respect to conformal time. During slow-roll, ε is nearly constant, and to lowest order

in slow-roll parameters its time derivative can be neglected. Throughout this chapter

we work to leading non-vanishing order in the slow-roll expansion.

5.2.2 Cosmological Perturbations

Let us now consider cosmological perturbations around the homogeneous and isotropic

background described above. Writing ϕ = ϕ0 + δϕ and gµν = g
(0)
µν (τ)+ δgµν(τ,x), and

substituting into equation (5.4), we can expand the action S0 up to the desired order

in the fluctuations δϕ and δgµν ,

S0[ϕ, gµν ] = δ0S0 + δ1S0 + δ2S0 + · · · . (5.7)

1Strictly speaking, inflation generates an almost perfectly flat spacetime. However, tiny depar-

tures from perfect flatness will not play any role in what follows, since we will be interested in the

small-scale regime at which even a spatially curved spacetime looks Euclidean.
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The lowest order term δ0S0 does not contain any fluctuations and describes the in-

flating background; the linear term δ1S0 vanishes because it corresponds to the first

variation of the action along the background solution, and the quadratic part of the

action δ2S0 describes the free dynamics of the perturbations. The latter is what we

need in order to calculate the primordial spectrum of fluctuations. As we pointed out

in Sec.2.5, tensor and scalar perturbations are decoupled to quadratic order, so we

may study them separately. It follows from our analysis in Sec. 2.5 that, to leading

order in the slow-roll expansion, both scalar and tensor modes are described by the

same action, namely

δ2S0 =
1

2

∫
dτd3x

[
(v′)2 − (∂iv)2 +

a′′

a
v2

]
. (5.8)

Therefore, the mode functions vk of both scalar and tensor perturbations satisfy the

same equation of motion during inflation to leading order in the slow-roll expansion,

namely

v′′k +

[
k2 − a′′

a

]
vk = 0 . (5.9)

This equation has a unique solution for appropriate initial conditions. The conven-

tional choice is the Bunch-Davies or adiabatic vacuum, whose mode functions obey

vk(τ)
|kτ |�1−→ e−ikτ√

2k

[
1 +O

(
1

kτ

)]
. (5.10)

Because we are only interested in the sub-horizon limit, this is all we need to know

about the mode functions. In particular, because the behavior of the mode functions

in the short-wavelength limit does not depend on the details of inflation, our results

are also insensitive to the particular form of the inflaton potential.

5.2.3 Quantum Fluctuations and the in-in Formalism

In order to study the properties of cosmological modes in the short-wavelength regime,

we concentrate on the two-point function of the field v,

〈v∗(τ,k)v(τ,k)〉 ≡ 〈0, in|v∗(τ,k)v(τ,k)|0, in〉 , (5.11)
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where |0, in〉 is the quantum state of the perturbations, which we assume to be the

Bunch-Davies vacuum. The two-point function characterizes the mean square ampli-

tude of cosmological perturbation modes, and differs from the power spectrum just

by a normalization factor. Note that in an infinite universe, the two-point function is

proportional to a momentum-conserving delta function, which in a spatially compact

universe is replaced by a Kronecker delta.

In the in-in formalism (see [214] for a clear and detailed exposition) the two-point

function can be expressed as a path integral,

〈v∗(τ,k)v(τ,k)〉 = (5.12)∫
Dv+Dv− v∗+(τ,k)v−(τ,k) exp (iSfree[v+, v−]) exp (iSint[v+]) exp (−iSint[v−]) ,

where Sfree is quadratic in the fields, and Sint contains not just the remaining cubic

and higher order terms in the action, but also any other quadratic terms we may

decide to regard as perturbations. Note that there are two copies of the integration

fields v− and v+, because we are calculating expectation values, rather than in-out

matrix elements. This path integral expression is very useful to perturbatively expand

the expectation value in powers of any interaction. In particular, each contribution

can be represented by a Feynman diagram, with vertices drawn from the terms in

Sint and propagators determined by the free action Sfree. In our case, the latter are

given by

τ τ ′
=

∫
Dv+Dv− v∗+(τ,k)v+(τ ′,k) exp(iSfree) ≈

e−ik|τ−τ
′|

2k
, (5.13a)

τ τ ′
=

∫
Dv+Dv− v∗−(τ,k)v−(τ ′,k) exp(iSfree) ≈

eik|τ−τ
′|

2k
, (5.13b)

τ τ ′
=

∫
Dv+Dv− v∗+(τ,k)v−(τ ′,k) exp(iSfree) ≈

eik(τ−τ ′)

2k
, (5.13c)

which we quote here just in the sub-horizon limit. Note that to first order in Sint

there are two vertices, one that contains powers of v+ and one that contains powers

of v−; the associated coefficients just differ by an overall sign.2

2The quadratic action Sfree enforces v+(k) = v−(k) at time τ . Hence, we could replace

v∗+(τ,k)v−(τ,k) by v∗+(τ,k)v+(τ,k) or v∗−(τ,k)v−(τ,k) inside the path integral (5.12). Our choice re-
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As a simple example, let us calculate the value of the two-point function in the

short-wavelength limit to zeroth order in the interactions. Using the definition (5.12)

and equation (5.13c), we find

〈v∗(τ,k)v(τ,k)〉 =
τ τ

≈ 1

2k
(|kτ | � 1), (5.14)

which is the well-known and standard short-wavelength limit result. In this regime,

the two-point function is hence the inverse of the dispersion relation, since the lat-

ter determines the appropriate boundary conditions for the mode functions, as in

equation (5.10).

In the next two sections we use the path integral (5.12) to calculate the corrections

to the two-point function coming from higher-order operators in the action. These can

be interpreted as corrections to the dispersion relation, even though in the presence

of such terms the mode equations generally contain higher order time derivatives. In

any case, a significant disagreement between the calculated two-point function and

the lowest order result (5.14) points to the lack of self-consistency of our quantization

procedure, and signals the breakdown of cosmological perturbation theory.

5.3 The Limits of Perturbation Theory: Tensors

The lowest order action (5.4) contains the leading terms that describe the dynamics

of the inflaton and its perturbations. However, as we have noted, in an EFT approach

the action generically contains all possible terms compatible with general covariance

and any other symmetry of the theory. Here, for simplicity, we assume invariance

under parity, an approximate shift symmetry of the inflaton, and a discrete Z2 sym-

metry ϕ → −ϕ. Thus, all possible effective corrections to the action (5.4) can be

built from the metric gµν , the Riemann tensor Rµνλρ, the covariant derivative ∇µ

and an even number of scalar fields ϕ. In what follows, we consider these additional

moves the apparently ill-defined corrections we otherwise obtain when higher-order time derivatives

act on the time-ordered products in equations (5.13a) and (5.13b). These ill-defined corrections can

also be eliminated by field-redefinitions, a procedure that leads to the same corrections we find using

our choice of field insertions.
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terms and compute the corrections they induce on the two-point function of tensor

perturbations in the short-wavelength limit. This allows us to determine the regime

in which additional terms in the action cannot be neglected, and hence, the range

over which cosmological perturbation theory is applicable. The reader not interested

in technical details may skip directly to section 5.3.3, where we collect and summarize

our results.

5.3.1 Dimension Four Operators

We begin our analysis by considering all dimension four operators, which appear

in the action multiplied by dimensionless coefficients. On dimensional grounds, we

expect these to yield corrections to the two-point function that are suppressed by

only two powers3 of Mp. These operators will also help us to illustrate our formalism

and discuss some of the important issues related to our calculation.

Any generally covariant dimension four effective correction must be of the form

S1 ≡ Sα + Sβ =

∫ √
−g
(
αR2 + βC2

)
, (5.15)

where C2 is the square of the Weyl tensor,

C2 = RµνλρR
µνλρ − 2RµνR

µν +
1

3
R2, (5.16)

and the dimensionless couplings α and β are assumed to be of order one. Note that

we have ignored total derivatives like the Gauss-Bonnet term, since they do not lead

to any corrections in perturbation theory. The Levi-Civita tensor cannot appear in

the action because we assume invariance under parity.

We start by substituting the perturbed metric (2.32) into equation (5.15) and

expanding up to second order in hij. Using the modified background equations and

the relation vsk ≡ aMph
s
k/2 to express the tensor perturbations in terms of the variable

3Dimension six operators quadratic in ϕ also contribute at this order; we consider them later.
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v, we obtain in the sub-horizon limit

δ2Sα =
α

2M2
p

∑
k

∫
dτ ′
[
−6a′′

a3
vk(v′′−k + k2v−k)− 6a′′

a3
(v′′k + k2vk)v−k

]
, (5.17)

δ2Sβ =
β

M2
p

∑
k

∫
dτ ′
[

1

a
(v′′k + k2vk)− 2 aH

(vk
a

)′]
×

×
[

1

a
(v′′−k + k2v−k)− 2 aH

(v−k

a

)′]
.

From these expressions, it is easy to derive the rules for the vertices

α
≈ iα

M2
p

∫ τ

−∞
dτ ′
[
−6a′′

a3

(−→
∂ 2
τ ′ + k2

)
−
(←−
∂ 2
τ ′ + k2

) 6a′′

a3

]
α

= −
α

(5.18a)

β
≈ 2iβ

M2
p

∫ τ

−∞

dτ ′

a2

[(←−
∂ 2
τ ′ + k2

)
−
←−
∂ τ ′2 aH

] [(−→
∂ 2
τ ′ + k2

)
− 2 aH

−→
∂ τ ′

]
β

= −
β

, (5.18b)

where the arrows indicate the propagator on which the derivatives act (because the

vertex is quadratic, two propagators meet at the vertex.)

We are now ready to consider the correction due to the square of the Ricci scalar.

The first order correction to the two-point function is given by the sum of the following

two graphs,

τ τ

α
≈ iα

M2
p

∫ τ

−∞
dτ ′
{
iδ(τ − τ ′)

2k

6a′′

a3

}
≈ − α

2k

12H2

M2
p

,

τ τ

α
=

(
τ τ

α
)∗
,

(5.19)

where we have used the fact that a′′/a3 ≈ 2H2 to lowest order in slow-roll. Notice that

the operator
(−→
∂ 2
τ ′ + k2

)
acting on the time-ordered propagators (5.13a) or (5.13b)

produces a delta function, since both are Green’s functions. On the other hand, when

the same operator acts on the propagator (5.13c) we get zero, because the latter is

a regular solution of the free equation of motion (5.9) in the sub-horizon limit. This

remark will turn out to be very useful when studying higher dimension operators.

We can now consider the correction due to the square of the Weyl tensor. In this
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case, the first order contribution is given by the sum of the following two graphs

τ τ

β
= −2iβ

M2
p

τ∫
−∞

dτ ′
{
δ(τ − τ ′)aH +H2e2ik(τ ′−τ)

}
≈ − β

2k

{
4iHkph
M2

p

+
2H2

M2
p

}
(5.20)

τ τ

β
=

(
τ τ

β )∗
.

Note that the imaginary parts cancel once we sum the two graphs. This result is

quite general and ensures that only corrections with even powers of kph appear.

In conclusion, we have found that the leading corrections due to dimension four

operators result in a two-point function which in the short-wavelength limit has the

form

τ τ
+

(
τ τ

α
+
τ τ

β
+ c.c.

)
≈ 1

2k

[
1− (24α + 4β)

H2

M2
p

]
.

Thus, when H becomes of order Mp, these corrections become as important as the

leading result, and standard cosmological perturbation theory ceases to be applicable,

as the reader may have expected.

5.3.2 Higher Dimension Operators

We would now like to consider a generic operator of dimension 2d+ 4, suppressed by

a factor of order 1/M2d
p . However, it turns out that considering directly corrections to

the action (5.8) for the perturbations is a much more efficient approach than starting

from generally covariant effective terms added to the Lagrangian (5.4), particularly

if we are interested in identifying the dominant corrections in the sub-horizon limit.

Hence, we shall focus directly on modifications to the action for the perturbations. A

related approach has been described in [98].

Dimensional analysis implies that any operator of dimension 2d + 4, quadratic

in the dimensionless tensor perturbations hij and proportional to 2f powers of the

inflaton field ϕ must contain 2d − 2f + 4 derivatives ∂µ acting on hij, ϕ0(τ) and

a(τ). The derivatives can be distributed and contracted using the Minkowski metric
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in many different ways,4 but each of these terms can be schematically represented as

M−2d−2
p

(
∂ 2n+m+p [a, ϕ0]

) (
∂ 2q+m+r v

) (
∂ 2s+p+r v

)
, (5.21)

where ∂i[a, ϕ0] is just a symbol that represents any combination of i derivatives acting

on a’s and ϕ0’s. One such term would have 2n + m + p derivatives acting on one or

more factors of a or ϕ0, 2q + m + r derivatives acting on one field v and 2s + p + r

acting on the other v. In particular, 2n of the derivatives acting on the scale factor

or the background field are contracted among themselves while m and p of them are

contracted with derivatives acting on, respectively, the first and second field v. The

derivatives acting on the fields v are organized in a similar way.

Let us illustrate this notation by considering a term with p = s = f = 0, m =

n = q = 1 and r = 2. Dimensional analysis implies that d = 3, and thus the explicit

form of such a term would be

M−8
p ∂ 2+1+0 [a] ∂ 2+1+2 v ∂ 0+0+2 v = M−8

p ∂µ∂
µ ∂ν [a] ∂λ∂

λ ∂ν ∂α∂β v ∂
α∂β v , (5.22)

where ∂µ∂
µ∂ν [a] denotes all possible ways to construct a term with three derivatives

of the scale factor, with the given tensor structure.

The first step to estimate the leading correction due to a term of the form (5.21)

is realizing that this can always be expressed as a linear combination of terms of the

form

M−2d−2
p ∂2j+l [a, ϕ0] ∂2m+lv ∂µ∂

µv, (5.23)

plus, possibly, a term with no derivatives acting on v, which in any case gives a

contribution that is always subdominant in the sub-horizon limit. For a proof that

4The reader may think that derivatives could be contracted not only among each other with

the Minkowski metric, but also by using the additional tensor structure provided by the metric

perturbations δgµν/a2 = hijηµiηνj . However, it turns out that
(
δgµν/a

2
)
∂νa = hijηµi∂

ja = 0 and,

since hij is transverse,

∂µ
(
δgµν/a

2
)

= ηνj∂
ihij = 0 .

Thus, we get a non-vanishing contribution only when we contract derivatives with the Minkowski

metric while the factors ηµiηνj are contracted among each other yielding an irrelevant overall factor.
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this decomposition is always possible, we refer the reader to the Appendix. In what

follows, we therefore restrict ourselves to terms of the form (5.23).

Dimensional analysis requires that the indexes j, l and m in equation (5.23) obey

j + l +m = d− f + 1 . (5.24)

Furthermore, since dnϕ0/dτ
n ∝
√

2εMp a
nHn and dna/dτn ∝ an+1Hn, each field ϕ0

yields a factor of Mp, while each derivative acting on it or on the scale factor results

in a factor of H to leading order in slow-roll. Finally, the l partial derivatives ∂µ

acting on v that are contracted with derivatives acting on a or ϕ0 can be turned into

derivatives with respect to τ only. Thus, (5.23) can be re-written as

M−2d+2f−2
p f(a)H2j+l�m∂ lτv� v , (5.25)

where we have defined � ≡ ∂µ∂
µ; the corresponding correction to the two-point

function is schematically given by

τ τ
=

i

M2d−2f+2
p

∫ τ

−∞
dτ ′f(a)H2j+l × (5.26)

×
τ τ ′

(←−
�m←−∂ l

τ ′
−→
� +

←−
�
−→
∂ l
τ ′
−→
�m
)
τ ′ τ

plus the complex conjugate of this graph. Because (5.13c) satisfies the free equation

of motion, this correction is non–vanishing only when the index m is equal to zero,

and in this case we obtain

τ τ
=

1

M2d−2f+2
p

τ∫
−∞

dτ ′f(a)H2j+lδ(τ − τ ′)(ik)l

2k
=
f(a)

2k

H2j+l(ik)l

M2d−2f+2
p

. (5.27)

The leading correction in the short-wavelength limit is the one with the maximum

number of powers of k. According to equation (5.24), this maximum number simply

equals d − f + 1 ≡ lmax, and it corresponds to the case in which j = m = 0.

Thus, if d− f is odd, lmax is even and the leading correction is simply given by

δ〈v∗(k)v(k)〉 ∝ 1

2k

(
H

Mp

)d−f+1 (
kph
Mp

)d−f+1

(d− f odd) , (5.28)

since each factor of k/Mp must be accompanied by a factor of a to render the spatial

momentum physical. On the other hand, if d−f is even, lmax as defined above is odd
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d− f Leading correction d− f Leading correction

0 H2/M2
p 4 H6k4

ph/M
10
p

1 H2k2
ph/M

4
p 5 H6k6

ph/M
12
p

2 H4k2
ph/M

6
p 6 H8k6

ph/M
14
p

3 H4k4
ph/M

8
p 7 H8k8

ph/M
16
p

Table 5.1: Leading corrections to the gravitational wave two-point functions in the short-

wavelength limit.

and the term with the highest number of powers of k is purely imaginary. As we have

seen in the previous section, such a term disappears when we add the contribution

from the complex conjugate graph. Therefore, the leading correction corresponds to

the largest even value of l, which turns out to be lmax = d− f , and is therefore given

by

δ〈v∗(k)v(k)〉 ∝ 1

2k

(
H

Mp

)d−f+2 (
kph
Mp

)d−f
(d− f even) . (5.29)

Equations (5.28) and (5.29) represent the main results of this section: they express

the leading corrections to the two-point function (in the sub-horizon limit) associated

with a generic operator of dimension 2d + 4 containing 2f powers of the inflaton

field. Since we have assumed an approximate shift invariance of the inflaton, the

total number of derivatives, 2d − 2f + 2, must be greater or equal than the number

of fields 2f , which in turn implies that d ≥ f . Thus, we can label all the possible

corrections with the non-negative index d − f . Their magnitude is given in Table

5.1 for the first eight values of d − f . Note that corrections with d − f = 0 arise

from the operators identified by Weinberg in [80]. The leading momentum-dependent

corrections are given by operators with d− f = 1.

So far, we have calculated the largest possible corrections to the two-point func-

tion in the sub-horizon limit given a certain value of d − f . However, the reader

might still wonder whether such terms can be actually obtained from a covariant ac-

tion. Employing the same technique we used to study the impact of the lowest order

terms, it is indeed possible to show—after some rather lengthy calculations—that the
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following family of covariant terms generates this kind of contributions,

d− f = 0 : Rµν Rµν

d− f = 1 : (∇αRµν)∇αRµν (5.30)

d− f = 2 : (∇α∇βRµν)∇α∇βRµν

...
... .

It can be also verified that the d − f = 1 term yields a correction to the two-point

function proportional to the slow-roll parameter ε, and given the structure of this

family of operators, we anticipate the remaining terms to share the same slow-roll

suppression.

5.3.3 The Three-Momentum Scale Λ

The corrections to the two-point function are functions of two dimensionful param-

eters, H and kph. For our purposes, it is convenient to organize these corrections in

powers of kph. Thus, following Table 5.1, and reintroducing the subleading terms that

we previously neglected, we find that the two-point function is

〈v∗(k)v(k)〉 ≈ 1

2k

[(
1 + α20

H2

M2
p

+ · · ·
)

+

(
α22

H2

M2
p

+ α42
H4

M4
p

+ · · ·
)
k2
ph

M2
p

+

+

(
α44

H4

M4
p

+ α64
H6

M6
p

+ · · ·
)
k4
ph

M4
p

+ · · ·

]
. (5.31)

The coefficient α20 is of order one, while all the αnn with n ≥ 2 are of order ε, as

the family of covariant terms (5.31) suggests. At the end of Section 5.4 we provide

further evidence supporting this claim.

In order for Equation (5.31) to be a valid perturbative expansion, every correction

term must be much smaller than one. Because α20 is of order one, this implies the

condition
H

Mp

� 1, (5.32)

which must hold for all values of kph. Equation (5.31) then shows that if condition

(5.32) is satisfied, the corrections to the two-point function remain small even for
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kph ≈Mp. In fact, to leading order in H/Mp we can rewrite equation (5.31) as

〈v∗(k)v(k)〉 ≈ 1

2k

[
1 + α22

k2
ph

Λ2
+ α44

k4
ph

Λ4
+ · · ·

]
, (5.33)

where we have introduced the effective cut-off

Λ ≈
M2

p

H
. (5.34)

Equations (5.33) and (5.34) are the main result of these chapter and were first

derived in the paper [213]. For kph � Λ, all the corrections are strongly suppressed

and can thus be neglected. However, at kph ≈ Λ, all the corrections become of order ε,

the asymptotic series breaks down, and the effective theory ceases to be valid. As we

discuss below, this value of Λ should be understood as an upper limit on the validity

of cosmological perturbation theory.

To conclude this section, let us briefly comment on the effects of terms that break

the shift symmetry. Because the only difference is that these terms contain undif-

ferentiated scalars, any such correction can be cast as a generally covariant term

that respects the symmetry, multiplied by a power of the dimensionless ratio ϕ/Mp.

Hence, these terms introduce corrections to the two-point function of the form we

have already discussed, but with coefficients αij that can now depend on arbitrary

powers of the background field ϕ0,

αij = α
(0)
ij + α

(1)
ij

ϕ0

Mp

+ α
(2)
ij

(
ϕ0

Mp

)2

+ · · · . (5.35)

Therefore, in the absence of any mechanism or symmetry that keeps the coefficients

α
(1)
ij , α

(2)
ij , . . . small (e.g. an approximate shift symmetry), such an expansion looses

its validity for ϕ0 > Mp, regardless of the value of kph. If, on the other hand, equation

(5.35) is a sensible expansion, and α
(0)
ij is much greater than α

(1)
ij , α

(2)
ij , ..., then we can

effectively assume that the shift-symmetry is exact, and perturbations theory breaks

down again at kph ≈ Λ.

5.3.4 Loop Diagrams and Interactions

Our analysis so far has concentrated only on tree-level corrections to the two-point

function, which arise just from the quadratic terms in the action. Cubic and higher
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order interactions also contribute to the two-point function, but their contribution

is obscured by the appearance of divergent momentum integrals in loops. Even in a

non-renormalizable theory like GR, at any order in the derivative expansion it is still

possible to cancel these divergences by renormalizing a finite number of parameters,

provided that all terms consistent with the symmetries of the theory are included

in the Lagrangian [54]. In practice, this cancellation is due to the presence of ap-

propriate counter-terms in the Lagrangian. For this reason, divergent integrals in

loop diagrams are rather harmless. They yield corrections of the same structure as

tree-level diagrams, modulo a (mild) logarithmic running of their values with scale

[215]. Hence, we do not expect this type of contributions to drastically change our

conclusions, though we should emphasize that this is just an expectation. Thus,

strictly speaking, equation (5.34) is just an upper limit for the scale beyond which

the corrections to the two-point function remain small and one can trust cosmological

perturbation theory.

5.4 The Limits of Perturbation Theory: Scalars

We now turn our attention to corrections to the two-point function of scalar perturba-

tions. Despite some complications that are particular to the this sector, the method

developed in the previous section can be easily extended to scalars.

To this end, let us consider the action S = S0 + λS1, where S0 is the action (5.4)

describing a scalar field minimally coupled to Einstein gravity, while S1 is a generic

generally covariant correction suppressed by a coupling λ ∼ 1/M2d
p . As we pointed

out in the previous section, S1 generically involves contractions of the Riemann tensor

Rµνλρ and the covariant derivative∇µ as well as the scalar field ϕ. In order to compute

the resulting first order contribution to the two-point function for v, we insert the

perturbed metric and the perturbed inflaton field into the action S and expand up

to second order in v.

Expanding the leading action S0 to quadratic order in the perturbations, we obtain

the free action (5.8). The additional quadratic terms stemming from S1 must be
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appropriately contracted expressions containing partial derivatives of the perturbation

variable v, the scale factor a and the background field ϕ0. In what follows, it will be

convenient to work in spatially flat gauge such that the perturbed metric reads

ds2 = a2(η)
[
−(1 + 2φ)dη2 + 2∂iBdx

idη + δijdx
idxj

]
. (5.36)

In this gauge the variable v is simply proportional to the inflation fluctuation, i.e.

v = aδϕ (see Eq. (2.35)). By solving the constraint imposed by Einstein equations,

one can express both φ and B in terms of v. To leading order in the slow-roll

expansion, the solutions for the Fourier modes are (see e.g. [216])

φk =

√
ε

2

vk
aMp

, (5.37)

Bk =

√
ε

2

1

Mpk2

(vk
a

)′
. (5.38)

In the case of scalar perturbations, the field v can arise from fluctuations of the

scalar field, δϕ = v/a, or from fluctuations of the metric,

δgµν = −a
√

2ε

Mp

[
2vkδ

µ
0δ
ν

0 +
ikj
k2

(v′k − aHvk) (δµjδ
ν

0 + δµ0δ
ν
j)

]
≡ a
√

2εVµν

Mp

.

(5.39)

Thus, unlike the case of tensor perturbations, δgµν provides an additional tensor

structure that can be used to contract derivatives. We now show that such contrac-

tions yield terms where the derivatives acting on v or a are contracted with ηµν . This

means that the argument in the previous section can be applied to scalar perturba-

tions as well, yielding essentially the same results. We note that terms which contain

only fluctuations coming directly from the scalar field do not present this problem,

and can be easily written as in equation (5.21).

Let us first consider terms with only one factor of Vµν . In this case, Vµν can be

contracted either with ηµν , leading to Vµνηµν = 2 v, or with two derivatives ∂µ∂ν ,

resulting in

∂µ∂νVµν = 2

(
∂µ∂

µa

a
v − ∂µa ∂

µa

a2
v +

∂µa ∂
µv

a

)
, (5.40a)

∂µa ∂νVµν = ∂µa ∂
µv +

∂µa ∂
µa

a
v, (5.40b)

∂µ∂ν [a, ϕ0]Vµν = 2 (∂µ∂
µ[a, ϕ0]) v , (5.40c)
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where, again, the square brackets in the last line mean that the derivatives can act

on one or more factors of a or ϕ0. Thus, terms with only one factor of Vµν do not

present any problem since, as anticipated, all the derivatives are contracted with the

inverse of the Minkowski metric.

Corrections which contain two factors of Vµν , and are not products of terms in

(5.40b), can always be recast as

VµνVµν = 2v2 +
2

k2

[
∂µv ∂

µv − ∂µa

a
∂µ(v2) +

∂µa ∂
µa

a2
v2

]
, (5.41a)

∂µVµν∂λVλν = − 1

k2
∂µv

′∂µv′ +
1

k2

[
−2

(
∂µ∂νa

a
− ∂µa ∂νa

a2

)
v ∂µ∂νv (5.41b)

2
∂µa ∂

µv

a
∂ν∂

νv − ∂µa ∂
µa

a2
∂νv ∂

νv +

(
∂µ∂

µa

a
− ∂µa ∂

µa

a2

)
∂νa

a
∂ν(v2)

]
.

All the terms inside the square brackets become negligible in the sub-horizon limit,

since their contribution is suppressed by an extra factor of 1/k2. The only term in

which some derivatives are not contracted with the Minkowski inverse metric is the

first one in equation (5.41b). However, the two derivatives with respect to conformal

time result in a factor of k2 which is precisely canceled by the extra factor 1/k2, and

for all practical purposes such a term is equivalent to ∂µv ∂
µv.

Therefore, we have demonstrated that terms quadratic in the scalar fluctuations

can be schematically written as in equation (5.21). The remainder of the analysis then

proceeds as for tensor perturbations, and effective corrections to scalar perturbations

are thus also subdominant in the regime

H �Mp and kph � Λ ∼
M2

p

H
. (5.42)

Before concluding, we would like to address again whether the operators that

we have considered can be actually obtained from generally covariant terms. In

the case of scalar perturbations, it is indeed possible to show—after further rather

lengthy calculations—that the following family of covariant terms generates the kind
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of corrections shown in Table 5.1,

d− f = 0 : Rµν (∇µ ϕ)∇ν ϕ

d− f = 1 : Rµν (∇µ ϕ)∇ν ∇γ∇γ ϕ (5.43)

d− f = 2 : (∇α∇βRµν) (∇α∇µ ϕ)∇β∇ν ϕ

d− f = 3 : (∇α∇βRµν) (∇α∇µ ϕ)∇β∇ν ∇γ∇γ ϕ

...
... .

In order to illustrate how this happens, let us consider for example the d − f = 1

term. It contains, among many other terms a factor

a2Rµν ∂µ δϕ ∂ν ∂γ ∂
γ δϕ ⊃ 2ε

a6
∂µa ∂νa ∂µ v ∂ν ∂γ ∂

γ v ∼ −2ε

a6
∂µa ∂νa ∂µ ∂ν v� v + ...

(5.44)

where, in the last step, we have neglected a subdominant contribution in the short-

wavelength limit. The last term in (5.44) indeed generates a correction proportional to

H2k2
ph/M

4
p and it is suppressed by one factor of the slow-roll parameter. It is relatively

easy to verify that the corrections generated by the other members of the family (5.43)

have the same slow-roll suppression, which strongly supports the assumption we made

in the context of tensor perturbations.

5.5 Summary

The connection, through cosmological inflation, between physics on the smallest

scales, described by quantum field theory, and that on the largest scales in the universe

is one of the most profound aspects of modern cosmology. However, since inflation

takes place at such early epochs, and magnifies fluctuations of such small wavelengths,

it is important to establish the regime of validity of the usual formalism—that of

semiclassical gravity, with quantum field theory assumed valid, and coupled to the

minimal Einstein-Hilbert action—at those scales.

On general grounds, we expect the canonical approach to break down at ultra-

short distances, where the operators that arise in an EFT treatment of the coupled
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metric-inflaton system become relevant. In this chapter we have calculated the impact

of these higher-dimensional operators on the power spectrum at short wavelengths.

In this way, we have been able to probe the regime in which the properties of the

perturbations deviate from what is conventionally assumed. From a purely theoretical

standpoint, these considerations are important if we are to understand the limits of

applicability of cosmological perturbation theory. From an observational standpoint,

cosmic microwave background measurements are becoming so precise that we may

hope to use them to identify the signatures of new gravitational or field theoretic

physics.

Our analysis has focused on tree-level corrections to the spectrum. Because we

have essentially considered all possible generally covariant terms in the effective ac-

tion, we expect to have unveiled the form of all possible corrections that are compat-

ible with the underlying symmetries of the theory. It is however possible that loop

diagrams yield additional corrections that we have not considered. In any case, our

results indicate that cosmological perturbation theory does not apply all the way to

infinitesimally small distances, kph →∞, and that, indeed, there is a physical spatial

momentum Λ (or a physical length 1/Λ) beyond which cosmological perturbation

ceases to be valid. The scale at which perturbation theory breaks down has to be

lower than

Λ ∼
M2

p

H
, (5.45)

which, because of existing limits on the scalar to tensor power spectrum ratio [7], is

at least 104 times the Planck scale.

These results have significant implications for the impact of trans-Planckian on the

primordial spectrum of primordial perturbations, which typically is at most of order

H/Λ [210]. Substituting the upper limit of Λ we have found, we obtain corrections

of the order of H2/M2
p , which are likely to remain unobservable [201]. This value

of Λ also solves a problem that was noticed in [217], namely, that in the presence

of a Planckian cut-off, cosmological perturbations do not tend to decay into the

Bunch-Davis vacuum (or similar states). In particular, to lowest order in perturbation

theory, the transition probability from an excited state into the Bunch-Davis vacuum
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is significantly less than one for Λ = Mp, but proportionally larger if Λ is given by

(5.45). Ultimately, a large decay probability is what justifies the choice of the Bunch-

Davies vacuum as the preferred initial state for the perturbations at scales below the

cut-off, since, as we have found, our theories certainly lose their validity at momentum

scales above the spatial momentum Λ.

Appendix 5.A Derivation of Equation (5.23)

In this appendix, we show how to integrate by parts every term of the form

∂ 2n+m+p [a, ϕ0] ∂ 2q+m+r v ∂ 2s+p+r v (5.46)

in order to express it as a linear combination of terms like

∂2j+l [a, ϕ0] ∂2m+lv� v (5.47)

plus, possibly, a term with no derivatives acting on v. Notice that, for notational

convenience, we have defined � ≡ ∂µ∂
µ. Of course, if the index q (or s) in equation

(5.46) is not zero, we can easily integrate by parts 2q + m + r − 2 (2s + p + r − 2)

times to get only terms of the form of that in equation (5.47). Therefore, in what

follows we only consider terms with q = s = 0. In this case, we can always integrate

by parts an appropriate number of times to get only terms for which m = p. Thus,

without loss of generality, we can restrict ourselves to considering terms of the form

∂ 2n+m+p [a, ϕ0] ∂m+r v ∂ p+r v, (m = p) . (5.48)

The derivatives acting on v that are contracted with derivatives acting on a or ϕ0 can

be systematically eliminated by repeated integrations by parts:

∂ 2n+m+p [a, ϕ0] ∂m+r v ∂ p+r v ∼ −∂ 2n+m+(p−1) [a, ϕ0] ∂m+r v ∂ (p−1)+r� v (5.49)

+
1

2
∂ 2(n+1)+(m−1)+(p−1) [a, ϕ0] ∂ (m−1)+(r+1) v ∂ (p−1)+(r+1) v ,

where we have denoted equivalence up to integration by parts with ∼. The first term

on the right hand side can be cast in the form (5.47) by integrating by parts (p−1)+r
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times, while the second one is of the form (5.48) with n and r (p and m) increased

(decreased) by one. By iterating this procedure, we eventually obtain terms of the

form

∂ 2n [a, ϕ0] ∂ r v ∂ r v , (5.50)

where now n and r have changed. Again, we can integrate by parts and obtain

∂ 2n [a, ϕ0] ∂ r v ∂ r v ∼ −∂ 2n [a, ϕ0] ∂ r−1 v ∂ r−1� v +
1

2
∂ 2(n+1) [a, ϕ0] ∂ (r−1) v ∂ (r−1) v .

The first term on the right hand side can be re-written as (5.47) after r−1 integrations

by parts, while the second term has the form (5.50) with n (r) increased (decreased)

by one. Thus, by repeating this procedure we obtain many terms of the form (5.47)

and we are eventually left with a term without derivatives acting on v. This completes

our proof.
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Conclusions

In this thesis, we have applied EFT methods to the study of modified theories of

gravity and the spectrum of primordial perturbations produced during inflation. In

the first case, we pointed out that any modification of GR requires either violations

of Lorentz invariance or additional degrees of freedom in the gravitational sector.

Thus, in chapter 3 we extended the coset construction of Callan, Coleman, Wess and

Zumino [19] to the describe gravitational theories in which the local Lorentz group

is spontaneously broken down to any of its subgroups. We provided an explicit illus-

tration of this formalism by considering the case in which rotations remain unbroken,

and we proved that the Einstein-aether theory [75] is the most general low-energy

effective theory of gravity which preserves local rotations.

In chapter 4, we considered instead the simplest possible modification of gravity

which preserves Lorentz invariance and features a single additional scalar degree of

freedom. We showed that gravitational interactions mediated by the additional scalar

are bound to violate the weak equivalence principle (WEP), even if the classical action

is chosen in such a way that point-like particles experience the same gravitational

acceleration at the classical level. In this case, violations of the WEP are generated

by loop corrections with at least one scalar or one graviton running in the loop.

Therefore, quantum WEP violations are suppressed by at least two powers of the

ratio m/Mp where m is the mass of the point-like particle. Although we have not

worked out the implications of this result for macroscopic bodies, we conclude that
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quantum WEP violations are likely too small to be detectable.

Finally, in chapter 5 we turned to the study of primordial scalar and tensor per-

turbations generated during single-field inflation. We showed that Planck-suppressed

irrelevant operators will introduce modifications of the tree-level spectrum of primor-

dial perturbations which become relevant only when the physical wavenumber of the

perturbations becomes of order M2
p/H � Mp. This value is likely to lie beyond the

regime of validity of the effective theory, implying that the impact of high energy

physics on the spectrum of primordial perturbations is likely to be negligible.

In this dissertation, I have applied EFT techniques to study models of gravity and

inflation which can equally describe the background evolution as well as the behavior

of perturbations around it. However, given that many cosmological observations (e.g.

CMB anisotropies, large scale structures, gravitational waves, ...) actually refer to

properties of fluctuations around a given background, in future work we will turn

to the study of EFTs of perturbations. This approach has been already pursued

extensively to study perturbations generated during inflation [98], and we think that it

could also be used to study fluctuations around more generic backgrounds in modified

theories of gravity. For instance, this method could be used to examine fluctuations

around spherically symmetric backgrounds in scalar-tensor theories.

The main idea behind this approach is that the scalar degree of freedom provides

an additional geometrical structure which can be used to define a preferred coordi-

nate system. In the case of spherically symmetric backgrounds, the hypersurfaces on

which the scalar field remains constant define a preferred radial coordinate, thus lead-

ing to a spontaneous breaking of radial diffeomorphisms. Hence, the large-distance

phenomenology of any modified theory of gravity which involves a single additional

scalar degree of freedom can be captured by an effective action in which radial dif-

feomorphisms are broken. Within this framework, theoretical issues such as quantum

and classical stability of fluctuations can be addressed in a model-independent way,

leading to constraints on the pool of modified gravity models which are theoretically

consistent.
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