Syracuse University
SURFACE

1-27-2003

Khovanov Homology and Conway Mutation

Stephan Wehrli

Syracuse University

Follow this and additional works at: https://surface.syr.edu/mat
Part of the Mathematics Commons

Recommended Citation

Wehrli, Stephan, "Khovanov Homology and Conway Mutation" (2003). Mathematics - Faculty Scholarship. 112.
https://surface.syr.edu/mat/112

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Khovanov Homology and Conway Mutation

Stephan Wehrli, Universität Basel, January 2003

Abstract

In this article, we present an easy example of mutant links with different Khovanov homology. The existence of such an example is important because it shows that Khovanov homology cannot be defined with a skein rule similar to the skein relation for the Jones polynomial.

1 Introduction

In Kh M. Khovanov assigned to the diagram D of an oriented link L a bigraded chain complex $\mathcal{C}^{*, *}(D)$, with a differential d that maps the chain group $\mathcal{C}^{i, j}(D)$ into $\mathcal{C}^{i+1, j}(D)$. He proved that the homotopy equivalence class of graded chain complex $\mathcal{C}^{*, *}(D)$ only depends on the oriented link L. In particular, the homology groups $\mathcal{H}^{i, j}(D)$ (considered up to isomorphism) and the graded Poincaré polynomial

$$
K h(L)(t, q):=\sum_{i, j} t^{i} q^{j} \operatorname{dim}_{\mathbb{Q}}\left(\mathcal{H}^{i, j}(D) \otimes \mathbb{Q}\right) \in \mathbb{Z}\left[t, t^{-1}, q, q^{-1}\right]
$$

are link invariants. The aim of this paper is to give an example of oriented mutant links which are separated by the polynomial $K h$ and to prove that consequently the invariant $K h$ does not satisfy a skein relation similar to the skein relation for the Jones polynomial.

2 Skein equivalence

In this section we briefly recall the definition of skein equivalence given in Ka. A triple $\left(L_{+}, L_{-}, L_{0}\right)$ of oriented links is called a skein triple, if the oriented links L_{+}, L_{-}and L_{0} possess diagrams which are mutually identical except in a small neighborhood, where they are respectively consistent with天, $\bar{\chi}$ and \boldsymbol{x} 。

Definition 1 The skein equivalence is the minimal (with respect to settheoretical inclusion) equivalence relation " \sim " on the set of oriented links such that

1. $L \sim L^{\prime}$ when L and L^{\prime} are isotopic,
2. $L_{0} \sim L_{0}^{\prime}$ and $L_{-} \sim L_{-}^{\prime}$ imply $L_{+} \sim L_{+}^{\prime}$,
3. $L_{0} \sim L_{0}^{\prime}$ and $L_{+} \sim L_{+}^{\prime}$ imply $L_{-} \sim L_{-}^{\prime}$,
for any two skein triples $\left(L_{+}, L_{-}, L_{0}\right)$ and $\left(L_{+}^{\prime}, L_{-}^{\prime}, L_{0}^{\prime}\right)$.
It is easy to see that such a minimal relation as postulated in the definition actually exists. The definition is motivated by the following: Assume we are given an invariant f of oriented links, such as the Jones polynomial, which takes values in an arbitrary ring R and satisfies a relation

$$
\alpha f\left(L_{+}\right)+\beta f\left(L_{-}\right)+\gamma f\left(L_{0}\right)=0
$$

where $\alpha, \beta \in R^{*}$ and $\gamma \in R$. Then $f\left(L_{+}\right)$is determined by $f\left(L_{0}\right)$ and $f\left(L_{-}\right)$, and $f\left(L_{-}\right)$is determined by $f\left(L_{0}\right)$ and $f\left(L_{+}\right)$. The minimality of " \sim " implies:
Theorem 1 Let L and L^{\prime} be skein equivalent. Then $f(L)=f\left(L^{\prime}\right)$.

3 Conway mutation

The mutation of links was originally defined in Co. We will use the definition given in Mu. In Figure 1 the rectangular boxes represent an oriented 2-tangle T. Let h_{1}, h_{2} and h_{3} be the half-turns about the indicated axes.

Figure 1: The half-turns h_{1}, h_{2} and h_{3}

Define three involutions ρ_{1}, ρ_{2} and ρ_{3} on the set of oriented 2 -tangles by $\rho_{1} T:=h_{1}(T), \rho_{2} T:=-h_{2}(T)$ and $\rho_{3} T:=-h_{3}(T)$ (where $-h_{2}(T)$ and $-h_{3}(T)$ are the oriented 2-tangles obtained from $h_{2}(T)$ and $h_{3}(T)$ by re-

Figure 2: The closure of the composition of T_{1} and T_{2}
versing the orientations of all strings). For two oriented 2 -tangles T_{1} and T_{2}, denote by $T_{1} T_{2}$ the composition of T_{1} and T_{2} and by $\left(T_{1} T_{2}\right)^{\wedge}$ the closure of $T_{1} T_{2}$ (see Figure (2).

Definition 2 Two oriented links L and L^{\prime} are called Conway mutants if there are two oriented 2-tangles T_{1} and T_{2} such that for an involution ρ_{i} $(i=1,2,3)$ the links L and L^{\prime} are respectively isotopic to $\left(T_{1} T_{2}\right)^{\wedge}$ and $\left(T_{1} \rho_{i} T_{2}\right)^{\wedge}$.

Theorem 2 Let L and L^{\prime} be Conway mutants. Then L and L^{\prime} are skein equivalent.

Proof. The proof goes by induction on the number n of crossings of T_{2}. For $n \leq 1, T_{2}$ and $\rho_{i} T_{2}$ are isotopic, whence $L \sim L^{\prime}$. For $n>1$, modify a crossing of T_{2} to obtain a skein triple of tangles $\left(T_{+}, T_{-}, T_{0}\right)$ (with either $T_{+}=T_{2}$ or $T_{-}=T_{2}$, depending on whether the crossing is positive or negative). Denote by $\left(L_{+}, L_{-}, L_{0}\right)$ and $\left(L_{+}^{\prime}, L_{-}^{\prime}, L_{0}^{\prime}\right)$ the skein triples corresponding to $\left(T_{+}, T_{-}, T_{0}\right)$ and $\left(\rho_{i} T_{+}, \rho_{i} T_{-}, \rho_{i} T_{0}\right)$ respectively (i.e. $L_{+}=\left(T_{1} T_{+}\right)^{\wedge}, L_{-}=$ $\left(T_{1} T_{-}\right)^{\wedge}$ and so on). By induction, $L_{0} \sim L_{0}^{\prime}$. Therefore, by the definition of skein equivalence, $L_{+} \sim L_{+}^{\prime}$ if and only if $L_{-} \sim L_{-}^{\prime}$. In other words, switching a crossing of T_{2} does not affect the truth or falsity of the assertion. Since T_{2} can be untied by switching crossings, we are back in the case $n \leq 1$.

4 Mutant links with different Khovanov homology

Let $V(L)(q):=K h(L)(-1, q)$ denote the graded Euler characteristic of $\mathcal{C}(D)$ and $W(L)(t):=K h(L)(1, q)$ the ordinary (ungraded) Poincaré polynomial. As is shown in Kh, V is just an unnormalized version of the Jones polynomial. By the results of sections 2 and 3, the Jones polynomial is invariant under Conway mutation. On the other hand, the following theorem gives an example of mutant links which are separated by W.

Theorem 3 Let $K_{i}(i=1,2)$ be $a\left(2, n_{i}\right)$ torus link, $n_{i}>2$. Then the oriented links

$$
L:=\bigcirc \sqcup\left(K_{1} \sharp K_{2}\right) \quad \text { and } \quad L^{\prime}:=K_{1} \sqcup K_{2}
$$

are Conway mutants with different W polynomial. Here, \bigcirc denotes the trivial knot and $K_{1} \sharp K_{2}$ is the connected sum of the oriented links K_{1} and K_{2}. Note that the connected sum is well-defined even if K_{i} has two components, because in this case the link K_{i} is symmetric in its components.

Proof. From Figure 3 it is apparent that L and L^{\prime} are Conway mutants. The Khovanov complex of the trivial knot is

$$
\ldots \quad 0 \longrightarrow 0 \longrightarrow \mathcal{A} \longrightarrow 0 \longrightarrow 0 \quad \longrightarrow \quad \ldots
$$

Figure 3: L and L^{\prime} are Conway mutants
and $\operatorname{rank}(\mathcal{A})=2$, whence $W(\bigcirc)=2$. By [Kh, Proposition 33], $K h$ is multiplicative under disjoint union, and so $W(L)=2 W\left(K_{1} \sharp K_{2}\right)$. On the other hand, by Kh Proposition 35],

$$
W\left(K_{i}\right)=2+t^{-2}+t^{-3}+\ldots+t^{-\left(n_{i}-1\right)}+t^{-n_{i}}
$$

if n_{i} is odd and

$$
W\left(K_{i}\right)=2+t^{-2}+t^{-3}+\ldots+t^{-\left(n_{i}-1\right)}+2 t^{-n_{i}}
$$

if n_{i} is even. Since $n_{i}>2, W\left(K_{i}\right)$ is not divisible by 2 . But then $W\left(L^{\prime}\right)=$ $W\left(K_{1}\right) W\left(K_{2}\right)$ is not divisible by 2 and hence $W\left(L^{\prime}\right) \neq W(L)$.

Theorems (1) 2and 3 immediatly imply:
Corollary 1 The W polynomial does not satisfy a relation of the kind mentioned in section

Remark. Theorem 3 remains true if we also allow torus links K_{i} with $n_{i}<-2$ (this may be seen using Kh, Corollary 11], which relates the Khovanov homology of a link to the Khovanov homology of its mirror image). The condition $\left|n_{i}\right|>2$ is necessary. In fact, if one of the $\left|n_{i}\right|$ is ≤ 1, then the corresponding torus link K_{i} is trivial and hence L and L^{\prime} are isotopic. If $n_{2}=2$, then L and L^{\prime} look as is shown in Figure 4 Note that both $L-L_{0}$ and $L^{\prime}-L_{0}^{\prime}$ are isotopic to the link $\bigcirc \sqcup K_{1}$. Using Kh Corollary 10], one can show that both $\mathcal{H}^{i, j}(L)$ and $\mathcal{H}^{i, j}\left(L^{\prime}\right)$ are isomorphic to $\mathcal{H}^{i+2, j+5}(\bigcirc \sqcup$ $\left.K_{1}\right) \oplus \mathcal{H}^{i, j+1}\left(\bigcirc \sqcup K_{1}\right)$. The cases $n_{2}=-2$ and $n_{1}= \pm 2$ are similar.

Figure 4: L and L^{\prime} for the case $n_{2}=2$

5 Computer Calculations with KHOHO

Tables $\mathbb{1}$ and 2 show the Khovanov homology of L and L^{\prime} for the case $n_{1}=n_{2}=3$. The tables where generated using A. Shumakovitch's program KhoHo Sh. The entry in the i-th column and the j-th row looks like $\frac{a[b]}{c}$, where a is the rank of the homology group $\mathcal{H}^{i, j}, b$ the number of factors $\mathbb{Z} / 2 \mathbb{Z}$ in the decomposition of $\mathcal{H}^{i, j}$ into p-subgroups, and c the rank of the chain group $\mathcal{C}^{i, j}$. The numbers above the horizontal arrows denote the ranks of the chain differentials.
In the examples, only 2 -torsion occurs. It has been conjectured by A. Shumakovitch that this is actually true for arbitrary links. The reader may verify that not only the dimensions but also the torsion parts of the $\mathcal{H}^{i, j}$ are different for L and L^{\prime}.
The dimensions of the $\mathcal{C}^{i, j}$ agree because there is a natural one-to-one correspondence between the Kauffman states of L and L^{\prime} (which re-proves the fact that the Jones polynomial is invariant under Conway mutation).
We do not know the answer to the following question:
Question: Does there exist a pair of mutant oriented knots with distinct Khovanov homology?
According to the database of A. Shumakovitch, no such pair of knots with 13 or less crossings exists. In particular, the Kinoshita-Terasaka knot and the Conway knot (the knots depicted in Figure 5) are mutant knots with the same Khovanov homology (see Table 3).

Figure 5: The Kinoshita-Terasaka knot and the Conway knot

References

[Ba] Dror Bar-Natan, On Khovanov's Categorification of the Jones polynomial, Algebraic and Geometric Topology 2-16, 337-370, 2002, arXiv:math.QA/0201043.
[Co] John H. Conway, An enumeration of knots and links and some of their related properties, Computational problems in Abstract Algebra, Pergamon Press, New York, 329-358, 1970.
[Ja] Magnus Jacobsson, An invariant of link cobordisms from Khovanov's homology theory, arXiv:math.GT/0206303v1.
[Ka] Akio Kawauchi, A Survey of Knot Theory, Birkhäuser, 1996.
[Kh] Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101(3), 359-426, 1999, arXiv:math.QA/9908171.
[Mu] J. Murakami, The Parallel Version of Polynomial Invariants of Links, Osaka J. Math. 26, 1-55, 1989.
[Sh] Alexander Shumakovitch, KhoHo, Basel 2002, see http://www. geometrie.ch/KhoHo.
[Vi] Oleg Viro, Remarks on the definition of Khovanov Homology, arXiv:math.GT/0202199

	-6	-5	-4	-3	-2	-1	0
-2							$\frac{1}{1}$
-4				$\frac{0}{2}$	$\frac{0}{6}$	$\frac{0}{6}$	$\frac{2}{4}$
-6							
-8							
-10							
-12	$\frac{0}{20} \xrightarrow{20} \frac{\mathbf{1}}{\mathbf{6 0}} \xrightarrow{39} \underset{\mathbf{1}[\mathbf{1}]}{\mathbf{6 0}} \xrightarrow{20} \underset{\mathbf{2 8}}{\mathbf{2}} \stackrel{6}{\longrightarrow} \frac{0}{6}$						
-14	$\frac{0}{15} \xrightarrow{15} \underset{\mathbf{2 0}}{\mathbf{2}[\mathbf{1}]} \xrightarrow{\frac{13}{\longrightarrow}} \frac{\mathbf{0}[\mathbf{1}]}{\mathbf{1 5}} \stackrel{2}{\longrightarrow} \frac{0}{2}$						
-16	$\frac{1}{6} \xrightarrow{\stackrel{5}{d}} \frac{1[1]}{6}$						
-18	$\frac{1}{1}$						

Table 1: Ranks of $\mathcal{H}^{i, j}$ and $\mathcal{C}^{i, j}$ and ranks of the chain differentials for the disjoint union of the unknot and the granny-knot

	-6	-5	-4	-3	-2	-1	0
-2							$\frac{1}{1}$
-4				$\frac{0}{2}$	$\frac{0}{6}$	0	$\frac{2}{4}$
-6							
-8	$\frac{0}{6} \xrightarrow{\stackrel{6}{\longrightarrow}} \frac{0}{30} \xrightarrow{24} \frac{0}{60} \xrightarrow{36} \frac{0}{74} \xrightarrow{\frac{38}{\longrightarrow}} \stackrel{\mathbf{2 [2]}}{\mathbf{5 4}} \xrightarrow{\text { 14 }} \xrightarrow{\frac{1}{18}} \xrightarrow{4} \frac{4}{4}$						
-10							
-12	$\frac{0}{20} \xrightarrow{20} \frac{0}{60} \xrightarrow{40} \frac{\mathbf{0} \mathbf{2}]}{\mathbf{6 0}} \xrightarrow{20} \xrightarrow{\mathbf{2 8}} \xrightarrow{\mathbf{2}} \xrightarrow{6} \frac{0}{6}$						
-14	$\frac{0}{15} \xrightarrow[\mid]{15} \frac{\mathbf{2}[\mathbf{1]}}{\mathbf{3 0}} \xrightarrow{13} \xrightarrow{\mathbf{0} \mathbf{1 5}]} \xrightarrow{2} \frac{0}{2}$						
-16	$\left.\frac{0}{6} \xrightarrow{\frac{6}{\square}} \xrightarrow[{\mathbf{0}[\mathbf{2}}]\right]{\mathbf{6}}$						
-18	$\frac{1}{1}$						

Table 2: Ranks of $\mathcal{H}^{i, j}$ and $\mathcal{C}^{i, j}$ and ranks of the chain differentials for the disjoint union of two trefoil knots

Table 3: Ranks of $\mathcal{H}^{i, j}$ and $\mathcal{C}^{i, j}$ and ranks of the chain differentials for either the Kinoshita-Terasaka knot or the Conway knot (both have the same Khovanov homology)

