
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports College of Engineering and Computer Science

7-1991

The Complexity of Local Stratification
Peter Cholak
University of Michigan, Department of Mathematics

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Follow this and additional works at: http://surface.syr.edu/eecs_techreports

Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Cholak, Peter and Blair, Howard A., "The Complexity of Local Stratification" (1991). Electrical Engineering and Computer Science
Technical Reports. Paper 106.
http://surface.syr.edu/eecs_techreports/106

http://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://surface.syr.edu/eecs_techreports/106?utm_source=surface.syr.edu%2Feecs_techreports%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-27

The Complexity of Local Stratification

Peter Cholak and Howard A. Blair

July1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

The Complexity of Local Stratification

Peter Cholak
Victoria University of Wellington

Department of Mathematics
P.O. Box 600

Wellington, New Zealand
cholak~auri.vuw.ac.nz

Howard A. Blair
School of Computer and Information Science

Syracuse University
blair~top.cis.syr.edu

and
Xerox Webster Research Center

ABSTRACT

The class of locally stratified logic programs is shown to be In-complete
by the construction of a reducibility of the class of infinitely branching
nondeterministic finite register machines.

1 Introduction

Stratified logic programs, which restrict the manner in which recursion and negation
can occur together in a logic program were introduced by Apt, Blair and Walker
[ABW88], and Van Gelder [VG88]. The class of stratified logic programs over an
effectively presented language for first-order logic is decidable in linear time as a
problem of cycle detection in dependency graphs. Kolaitis [Ko87] showed that the
perfect model of a stratified program is ~L subsequently Apt and Blair [AB90) es
tablished the more precise result that the perfect model of a stratified program with
n strata is :E~ and that for each n one can find in a uniform way a stratified program
with a :E~-complete perfect model. Przymusinski [Pr88] introduced a wider class of
programs, the locally stratified logic programs, that enjoy many of the properties of
stratified programs with regard to managing negation. The main result of this paper
is concerned with the complexity of this class.

1

We show that the class of programs with a well-founded ground negative depen
dency relation is II~-complete. The ground negative dependency relation is given in
the following definition.

Definition 1.1: Let P be a normallogic program (i.e. a program in which positive
as well as negative literals may occur in the bodies of the program's clauses), and let
ground(P) be the set of ground instances of the program's clauses with respect to the
Herbrand universe of the language of P. Ground atom A refers positively to ground
atom B (in P) if there is a clause in ground(P) of the form

A refers negatively to B if there is a clause in ground(P) of the form

A refers to B if A refers to B either positively or negatively. (Note that A may both
positively and negatively refer to B.) A depends on B if (A, B) is in the transitive
closure of the refers to relation. A positively depends on B if (A, B) is in the transitive
closure of the refers positively to relation. A negatively depends on B if there are atoms
A' and B' such that A depends on A' or is A', B' depends on B or is B, and A' refers
negatively to B'. We say that the pair (A, B) is in the negative dependency relation if
A negatively depends on B. Atom A negatively depends directly on atom B if there
is an atoms A' such that A depends on A' or is A' and A' refers negati':"ely to B. We
say that the pair (A, B) is in the direct negative dependency relation if A negatively
depends directly on B.

Note that the direct negative dependency relation is well-founded if, and only if,
the negative dependency relation is well-founded.

The following basic lemma relates well-foundedness of negative dependency to
local stratification. For our purposes in this paper we can take the lemma as a
definition of local stratification. The interested reader should consult [Pr88] for the
historically prior definition.

Lemma 1.1: Normal program P is locally stratified if, and only if, the negative
dependency relation is of P well-founded. •

The recursion-theoretic complexity of the decision problem of the well-foundedness
of the ground negative dependency relation is given precisely by the following theorem.

2

Theorem 1.1: The set of (Godel numbers of) normal logic programs P which have
well-founded negative dependency relations is Til-complete.

We first briefly describe the method of proof. We augment finite-register machines
to allow for "infinitely branching" nondeterministic computations by permitting the
following non-deterministic choice instruction:

X := choice

to be used. Call the finite-register machine programs determined by the above
choice instruction together with the standard finite-register machine instructions
nondeterministic finite-register machine programs. Operationally, the choice instruc
tion nondeterministically assigns a natural number to X in one step. This intro
duces infinitely branching nondeterministic computations that cannot be simulated
in any suitable sense by finitely branching nondeterministic computations because
such finitely branching nondeterministic processes used to select an arbitrarily large
data object do not halt on at least one computation path. In particular, the class of
nondeterministic finite-register programs that halt independently of the choices made
during the computation and independently of the initial state, i.e. the initial values
of the registers and initial value of the program counter, is IT~-complete. There are
a variety of ways of showing this. Now translate the nondeterministic finite-register
programs into (hi-Hom) definite clause programs, by the method of Shepherdson in
[Sh91]. (The translation of choice instructions into definite clauses is described be
low.) Now copy each definite clause program obtained to a program with a negation
inserted in the literal in the body. Let R be a finite-register machine program, and
let PR be the resulting copy of the translation of R into a normal p:rogram. Then the
ground negative dependency relation of PR is well-founded iff R halts when started
in any state independently of the choices made during R's computation. Since the
class of register machine programs with this property is IT~-complete, so is the class
of logic programs with well-founded negative dependency relations.

2 Bi-Horn Programs as Finite Register Machines

We review finite-register machines and their translations into definite clause programs.
The translation is that of Shepherdson's [Sh91), but extended from 2 registers to r
registers.

Definition 2.1: An r-register program M is a sequence of n instructions and r
natural number variables X1, ..• , Xr where each instruction has one of the following
forms:

3

i) xk := xk +1

ii) if Xk =J 0 then (Xk : = Xk-1; goto j)

wherej E {l, ... ,n+1}andk E {1, ... ,r}.
A nondeterministic r-register machine program M is a sequence of n instructions and
r natural number variables X1 , ... , Xr where each instruction has one of the forms
above, or has the form

iii) Xk : = choice
Instructions of type (i) we call increment-X instructions, and instructions of type (ii)
we call conditional decrement-X instructions. Instructions of type (iii) we call choice
instructions. Hereafter we refer to r-register machine programs, both deterministic
and nondeterministic, simply as r-register machines.

Informally, the intended operational meanings of the above instructions are suffi
ciently clear. It is understood here that control passes from the ith instruction to the
(i + 1)st instruction in the sequence unless a "goto j instruction" is executed during
execution of the ith instruction, in which case control passes to the Ph instruction.
These operational notions will be formalized below in the definition of M's transition
relation. Note that every r-register machine is a nondeterministic r-register machine.

Definition 2.2: Let f be a unary partial recursive function on the natural numbers.
2-register machine M computes f if for every natural number a: M, when started
at instruction 1 with X1 = 2a, X2 = 0 halts (by passing control to the nonexistent
(n + 1)st instruction) with X1 = 2f(a) ·and X2 = 0 if f(a) is defined, and does not halt
iff(a) is undefined.

Basic fact: Every unary partial recursive function is computable by some 2-register
machine, (cf. [Sh91, SS63]).

One can give a 3-register machine which, when started at instruction 1 with X1 =
a, X2 = X3 = 0, eventually halts with X1 = 2a, X2 = X3 = 0. Similarly, one can give
a 3-register machine which, when started at instruction 1 with X1 = 2a, X2 = X3 = 0,
eventually halts with X1 = a, X2 = X3 = 0. Both of these remarks follow from
the fact that one can give 2-register machine programs that map (X1 ,X2) = (x,O)
to (Xt,X2) = (2x,O) and (xbx2) = (2x,O) to (XbX2) = (x,O), respectively. These
programs can then be augmented with a third register to keep a count of how many
times these actions are performed. It follows that with three registers each unary
partial recursive function is computable without having to encode the input and
output as an exponent of 2. Similarly, with four registers, each binary partial recursive
function is computable with the inputs stored in e.g. the first two registers. (It is of
interest to note that a bijective pairing function can then be implemented with four
registers.) This turns out to be an enormous convenience for our purposes.

4

We assume from here on that logic programs are written over a first-order language
whose Herbrand universe is generated by the constant symbol 0 and unary function
symbols. We adopt the following syntactic abbreviations. s0 (0) stands for 0 and
sn+l(o) stands for s(sn(O)).

Definition 2.3: The translation of r-register machine M into definite clause pro
gram P is obtained by translating each of the machine's instructions as follows.
If the ith instruction has the form

then translate this instruction into the clause

If the ith instruction has the form

if Xk =/:- 0 then (Xk : = Xk -1 ; go to j)

then translate this instruction into the two clauses

fi(XJ, ... ,s(Xk), ... ,Xr) +-- lj(XJ, ... ,Xk, •.. ,Xr)
fiCx1 , ... ,Xk-:l•o,xk+I ... ,Xr) +-- .ei+I<xi •... ,Xk-t•O,Xk+I ... ,Xr).

If the ith instruction is a choice instruction Xk : = choice then this translates into

where Z is distinct from the variables Xt, ... , Xk, •.. , Xr.
Finally, add the unit clause

fn+1 (Xl, · · · , Xr) ·

where n is the number of instructions in M. P is the set of all clauses obtained by
the above procedure.

Observe that every clause in the translation of M has exactly one atom in its
body, except for the final unit clause. Observe also that the only clauses that have a
variable occurring in their body not occurring in their head (i.e. a local variable) are
clauses which result from translating choice instructions.

Definition 2.4: A state of a nondeterministic r-register machine M is an (r + 1)
tuple of natural numbers (i, Xt, ••• , Xr} such that 1 $ i $ n+ 1 where n is the number
of instructions in M. The transition relation 1-M is a binary relation on states of M
satisfying the following.

(i, Xt, ... , Xk, ••• , Xr) 1-M (i, xi, ... , xk, ... , x~} iff i $ n, 1 $ k $ r and one of
the following conditions holds:

5

i) i' = i + 1, xA: = Xk + 1, xj = x; for all j such that 1 S.. j S.. rand j =/= k
and the ith instruction of M is an increment-Xk instruction.

ii) i' = i + 1, xA: = Xk = 0, xj = x; for all j such that 1 < j S.. r and j =/= k
and the ith instruction of M is a conditional decrement-Xk instruction.

iii) xA: = Xk - 1 > 0, xj = x; for all j such that 1 < j < r and j =/= k
and the ith instruction of M is a conditional decrement-Xk instruction.

iv) i' = i + 1,xj = x; for all j such that 1 S.. j <rand j =/= k
and the ith instruction of M is a choice instruction that sets the value of Xk.

It should be immediately clear that the following proposition holds.

Proposition 2.1:
{ ·) L { •/ 1 I) z, Xt, ••• , Xr oM Z , x 1 , ••• , Xr

iff

fi (sx1 (0) •...• sxr (0)) refers to fi, (s~ (0) •...• sx~ (0))

where P is the logic program translation of M. •
Definition 2.5: A computation of a nondeterministic r-register machine M is a
sequence of states {ui}o~i<or where 1 S.. a< w such that <Ti-l f-M <Ti for every i in the
range. 1 S.. i < a. The computation is finite if a is finite; otherwise it is infinite. We
say that the computation starts at u0 • The computation halts if a is finite and there
is no state u such that <Ta-l f-M u. M always halts when started in state u 0 if every
computation of M that starts in state u0 halts. A state u is reachable from a state
u0 if there is a computation that starts in state u0 in which u occurs. (Notice that a
state is reachable from itself.) Lastly, a state of the form {1, x, 0 ... , 0) is called an
initial state. (Note that a computation need not begin with an initial state.)

Corollary 2.1: The following are equivalent:
(i) Every computation of M halts.
(ii) f-M is well-founded.
(iii) The refers to relation of the translation P of M is well-founded. •

The problem of whether an r-register machine always halts when started in any of
its states we call the strong halting problem. The following corollary shows that the
well-foundedness of the negative dependency relation, indeed the dependency relation
itself, is at least as complex as the strong halting problem for infinitely branching
nondeterministic r-register machines.

6

Corollary 2.2: The class of (Godel numbers of) nondeterministic r-register ma
chines for which 1-M is well-founded is one-one reducible (cf. [Ro67]) to the class of
normal logic programs P whose negative dependency relation is well-founded.

Proof: Let X be the class of nondeterministic r-register machines M for which 1-M is
well-founded, and let Y be the class of definite clause logic programs whose refers to
relation is well-founded. Corollary 2.1 shows that the translation of nondeterministic
r-register machines into definite clause logic programs is a one-one reducibility of
class X into class Y. Let Z be the class of normal logic programs whose negative
dependency relation is well-founded. Obtain the one-one reducibility of class X into
class Z by translating a given r-register machine M into definite clause program P,
and then replace each clause A t- B in P by A t- -.B. •

Proposition 2.2: The class of (Godel numbers of) of normal logic programs P for
whose negative dependency relation is well-founded is IT}.

Proof: We need only show here that the class of normal logic programs P whose
negative dependency relation is well-founded is TIL i.e. that Til is an "upper bound"
on the complexity of this class of normal programs. The negative dependency relation
is a recursively enumerable relation on the Herbrand base of P. The proposition then
follows from the fact that the class of (indices) of well-founded r.e. binary relations
is IT}. (In fact IT}-complete.) •

3 Completeness

In this section we will, in effect, equip our nondeterministic finite register machines
with a (0-jump) oracle.

The two preceding propositions, together with the corollaries to the first, would be
sufficient to prove the main result of this section if we knew that the set of (Godel num
bers of) nondeterministic r-register machines with well-founded transition relations
was Til-complete. It is relatively easy to establish that the set of nondeterministic
r-register machines which always halt, when started in an initial state is Til-complete,
but we must show, for our present purposes, that either the set of machines which
always halt, even when started from a state not reachable from an initial state is
itself Til-complete, or else further modify our nondeterministic r-register machines to
circumvent this difficulty. We take the latter approach.

To complete the demonstration of the main result we shall proceed through the
following steps. First, we define an alternative (recursively enumerable) transition
relation 1-M which has the property that if M is in state u and u is not reachable from
an initial state, then M halts i.e. there is no transition from u to another state. This

7

immediately yields a modified notion of a computation of a nondeterministic r-register
machine. We then show how to translate nondeterministic r-register machines into
normal logic programs so that with respect to this modified notion of computation,
corollary 2.2 and proposition 2.2 continue to hold. What is gained is that now it
becomes a much more simple matter to prove that the class of nondeterministic
r-register machines which always halt, independently of the state they start in, is II~
complete. The main result then follows at once from corollary 2.2 and proposition 2.2.

Definition 3.1: Let M be a nondeterministic r-register machine. The enhanced
transition relation 1-!.t is given by

u 1-:W r iff u 1-M r and CJ is reachable from some initial state.

Next, we show how to translate nondeterministic r-register machines into normal
logic programs to reflect for our present purposes the enhanced transition relation.

Definition 3.2: The enhanced translation of nondeterministic r-register machine M
into normal logic program PM is obtained as follows. First, let PM be the translation
of M into a normal logic program as given by definition 2.3. To obtain definite clause
program Q M from PM include in Q M a clause

for each clause

in PM. Also include in Q M the clauses

We assume the predicate symbols .t'~, ... , .t'~+l are all distinct and distinct from each
of the distinct predicate symbols .t'1 , ... , .t'n+l·
Now, to obtain the normal program PM from QM include the clauses of QM together
with a clause

for each clause

fi(Ul, · · ·, Ur) +-- fi,(U~, ... , U~)

in PM. This completes the definition of the enhanced translation.

Some notation: If p is a binary relation, we denote the transitive closure of p by
p+.

8

Proposition 3.1: Let M be a nondeterministic r-register machine, 1-:W the en
hanced transition relation of M, and PM the enhanced translation of M into a normal
program. Then with respect to PM,

negatively depends directly on

if, and only if
(j, XI •.. , Xr} 1-~ (k, x~, ... , x~}.

Proof: Let n be the number of instructions in M. There is no state u such that
(n + 1, XI, ..• , xr} 1-:W u, for any natural numbers X1, ••• , Xr· Similarly, there is no
atom A such that ln+l (xi •... , Xr) refers to A, for any terms XI, ... , Xri a fi.ortiori,
there is no atom A such that ln+l (xi a, ... , Xr) refers negatively to A, with respect
to either program PM or program PM.

Suppose that (j, XI, •.. , Xr} is a state of M not reachable from an initial state;
i.e. there is no initial state u such that u 1-:A:r (j, xb ... , Xr}· Then with respect to
PM

£I (s~' (0) ,0, ... , 0) does not depend on .ei (s~1 (0), ... , s~r (0))

for any natural number x'. In particular (j, x1 , ••• , Xr} is not an initial state.
Hence with respect to Q M

£j(s~1 (0), ... ,s~r(O),i",ti, ... ,tr)

does not depend on

£~ (s~' (0) , 0, ... , 0, i", t1 , ... , tr) ,

for any natural number x' and any ground terms i", tt, ... , tr.
Thus, also with respect to QM,

for any 1 :5 i" :5 n + 1 and any ground terms t~, ... , t~.
Now suppose that (j, XI, •.• , xr} is a state of M reachable from an initial state;

i.e. there is an injtial state u = (1, x', 0, ... , 0} such that u 1-:A:r (j, x1 , •.. , xr}· Then
with respect to PM

£I (s~' (0) ,0, ... , 0) depends on .ei (sx1 (0), ... , sxr (0)).

Hence, with respect to Q M

9

depends on

It follows that with respect to Q M,

.fj(sx1 (0), ... ,sxr(O),si(o),sx1 (0), ... ,sxr(O))

depends on

.fj (sxl (0), ... , sxr (0)) .

We have just shown that with respect to QM

(j, x 11 ••• , xr) is a state of M reachable from an initial state

if, and only if,

fj (sx1 (0), ... , sxr (0), sj (0), sx1 (0), ... , sxr (0))

depends on

.fj (sxl (0), ... , sxr (0)) .

Now, with respect to PM,

.fj (sXl (0), ... , g:Z:r (0))

refers negatively to

.fk (sx~ (0), ... , sx~ (0), sk (0), sx~ (0), ... , sx~ (0))

if, and only if,

With respect to either QM or PM,

if
.el (x' (x1 k x1 x' k s 1 0), ... xs r(O),s (O),s 1(0), ... ,s r(O))

depends, for some m, positively on

f~ (t1 , • · · , tr , V, 'Ill , · • · , Wr)

then
vis sk(o), and Wi is sxl(o) fori= 1, ... , r.

Thus, with respect to PM,

.fj (sx1 (0), ... , sxr (0), sj (0), sx1 (0), ... , sxr (0))

negatively depends directly on

fk(sX 1 (0), ... , sXr(O),sk(O),sx~(O), ... , Sx~(O))

10

if, and only if,

£'. (sx1 (0), ... , sxr (0), si (0), sx1 (0), ... , sxr (0))
J

depends on l~ (t1 , ... , t,. , si (0) ,sx1 (0), ... , sxr (0)), for some terms t1, ... , t,.

which refers to

£; (sxl (0) • ... • sxr (0))

which negatively refers to
k I I f/c (sx1 (0), ... , sxr (0) ,s (0) ,Sxl (0), ... , sxr (0))

if, and only if,

{j,x1 , •.. , x,.} 1-M (k,x~, ... , x~}
and (j,xt, ... , x,.} is reachable from some initial state

if, and only if,

{j,x1 , ••. , x,.} 1-~ (k,x~, ... , x~},

which proves the proposition.

Corollary 3.1: The following three statements are equivalent.

1. M always halts when started in a.n initial state

2. 1-~ is well-founded

3. the negative dependency relation with respect to PM is well-founded.

•

•
Proposition 3.2: The set of (Godel numbers of) nondeterministic 4-register ma
chines that always halt when started in a.n initial state is n~-complete.

Proof: Let a vary over counta.bly infinite sequences of states of 4-register machines.
If M is a. nondeterministic 4-register machine then

Va[a(O) is an initial state => 3k E N[a(k) lfM a(k+ 1)))

holds f, and only if, M always halts when started in an initial state. 1-M is decidable;
thus the class of 4-register machines that always halt when started in a.n initial state
is n~.

Let Wz be the recursively enumerable set with index z a.s defined in e.g. [Ro67].
Let X ~ N a.nd let

Dom(X) = {y I w11 ~ X} .

11

For X ~ lN" inductively define

Dom i O(X)
Dom i 8(X)

X
U-y<S Dom(Dom j 1(X)) .

where 1 and 8 are ordinals.
By recursion-theoretic techniques once can show (cf. [Ro67, Bl82]) that the set of

natural numbers
Dom i w~(0)

is II~-complete, where wf is the least non-constructible ordinal.

Note that
n E Dom j w~(0) iff Wn ~ Dom i w~(0).

Thus procedure W, given below, is guaranteed to halt, independently of the values
chosen for natural number variable y during the computation, if, and only if, x E

Dom i wf(0) ·

Let r be a bijective pairing function on JN"; e.g.

1
r(x,y) = 2((x + v? + 3x + y)

and let the inverses (·)0 and (·)1 of r be defined by

(r(x,y))o=x and (r(x,y))I=y.

Kleene's well-known recursive relation T gives

n E Wz iff 3yT(z,n,y)

Procedure W is then

begin /* procedure W * /
input x;
choose arbitrary y;
while T(x, (Y)o, (y)!) do
x := (y)0 ; choose arbitrary y od
end.

The set of initial values input to the variable x in procedure W such that the procedure
is guarenteed to halt, independently of the values chosen for y during the computation,
is II~-complete.

Using the fact, discussed in section 2, that every binary partial recursive function
can be computed by a four register machine program without having to encode the

12

inputs as exponents, it easy to give a nondeterministic 4-register machine program
Mw to implement procedure W. To complete the proof observe that for each x EN,
we can specify a 4-register machine program Mw,x that, when started with initial
state (1,z,O,O,O), replaces z by x and passes control to Mw. •

Theorem 1.1 now follows from the previous corollary and proposition.

4 Conclusion

One can show that the perfect model of a stratified or locally stratified program
is stable (cf. [GL88]), and that such programs have unique stable models. Marek,
Nerode and Remmel [MNR90] proved that the class of stable models of a logic program
is rrg, from which it follows that a locally stratified program's unique stable model
is necessarily 6.~. Although beyond the scope of this paper, one can use techniques
based on finite register machines similar to ones used here to show that every 6.~
set of natural numbers is encodable, in a very direct way, as the true instances of
a predicate in the unique stable model of a locally stratified program, and finally
one can give a logic program which is not locally stratifiable that has stable models
none of which are 6.L [BMS91]. Thus, the locally stratified logic programs index the
hyperarithmetic sets.

Finally, we conjecture that the class of infinitely branching nondeterministic 2-
register machines which always halt when started in an initial state is itself n~
complete; the proof of proposition 3.2 used four registers. Note that the number of
registers used in that proof could be reduced to three if a pairing function could be
implemented with three registers.

References

[ABW88]

[AB90]

[Bl82]

Apt, K. R., Blair, H. A., & Walker, A. "Towards a Theory of Declarative
Knowledge," in Foundations of Deductive Databases and Logic Program
ming, Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA. 1988, pp.
89-148.

Apt, K.R. and Blair, H.A., "Arithmetic Classification of Perfect Models
of Stratified Programs", Fundamenta lnformaticae, XIII, 1990, pp. 1-17.

Blair, H. A. "The Recursion-Theoretic Complexity of the Semantics of
Predicate Logic as a Programming Language." Information and Control,
July-August, 1982, pp. 25-47.

13

[BMS91]

[GL88]

[Ko87]

[MNR90]

[Pr88]

[Ro67]

[Sh91]

[SS63]

[VG88]

Blair, H., Marek, W. and Schlipf, J. Private communication.

Gelfand, M. and Lifschitz, V. "The Stable Model Semantics for Logic
Programming," Proc. /CLP/SLP-5, 1988, pp.1070-1080.

Kolaitis, P.G. "The Expressive Power of Stratified Logic Programs."
Manuscript, Nov. 1987.

Marek, W., Nerode, A. and Remmel, J. A Theory of Nonmonotonic Rule
Systems, MSI Technical Report 90-31, Mathematical Sciences Institute,
Cornell University.

Przymusinski, T. "On the Declarative Semantics of Deductive Databases
and Logic Programs," in Foundations of Deductive Databases and Logic
Programming, Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA.
1988,

Rogers, H. Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

Shepherdson, J. C. Unsolvable Problems for SLDNF-Resolution, J. of
Logic Programming, 10(1), Jan. 1991, pp. 19-22.

Shepherdson, J. C. and Sturgis, H. E. "Computability of Recursive Func
tions," JACM, 10, 217-255, 1963.

Van Gelder, A. "Negation as Failure Using Tight Derivations for General
Logic Programs," in Foundations of Deductive Databases and Logic Pro
gramming, Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA. 1988,
pp. 149-176.

14

	Syracuse University
	SURFACE
	7-1991

	The Complexity of Local Stratification
	Peter Cholak
	Howard A. Blair
	Recommended Citation

	SU-CIS-91-27_001c
	SU-CIS-91-27_002c
	SU-CIS-91-27_003c
	SU-CIS-91-27_004c
	SU-CIS-91-27_005c
	SU-CIS-91-27_006c
	SU-CIS-91-27_007c
	SU-CIS-91-27_008c
	SU-CIS-91-27_009c
	SU-CIS-91-27_010c
	SU-CIS-91-27_011c
	SU-CIS-91-27_012c
	SU-CIS-91-27_013c
	SU-CIS-91-27_014c
	SU-CIS-91-27_015c

