
AN OVERVIEW OF HI-MASS(HIERARCHICAL MODELING AND SIMULATION SYSTEM)Douglas G. FritzRobert G. SargentSimulation Research GroupSyracuse University439 Link HallSyracuse, New York 13244, U.S.A. Thorsten DaumDepartment of Computer Simulationand GraphicsUniversity of MagdeburgD-39016 Magdeburg, GERMANYABSTRACTThe Hierarchical Modeling and Simulation System(HI-MASS) is a prototype modeling and simulationsystem that supports modeling based on the Hier-archical Control Flow Graph Model paradigm andsimulation execution using a sequential synchronoussimulation algorithm. The prototype is an object ori-ented C++ based system designed for a Unix environ-ment and implemented using freely available softwaretools. Models are speci�ed using two complementaryhierarchical model speci�cation structures, one to spe-cify the components which comprise a model and howthose components are interconnected, and the other tospecify the behaviors of the individual components. Agraphical user interface provides for component andinterconnection speci�cation using visual interactivemodeling. Behavior speci�cations are constructed us-ing C++ classes and functions provided by HI-MASS.1 INTRODUCTIONThis is a companion paper to \An Overview of Hier-archical Control Flow Graph Models" (Fritz and Sar-gent 1995) contained in these proceedings. It is as-sumed that a reader of this paper is familiar with thatpaper.The Hierarchical Modeling and Simulation System(HI-MASS) is a prototype simulation system that sup-ports the modeling and execution of discrete eventsimulation models based on the Hierarchical ControlFlow Graph Model paradigm and uses a sequentialsynchronous simulation execution algorithm.Hierarchical Control Flow Graph Models use twocomplementary types of hierarchical model spe-ci�cation structures. The �rst type of speci�ca-tion structure, called a Hierarchical InterconnectionGraph (HIG), is used to specify the atomic andcoupled components that comprise the model andhow those components are interconnected. HI-MASSprovides a Graphical User Interface (GUI) for spe-

ci�cation of the HIG using \visual interactive mod-eling". The second type of speci�cation structure,called a Hierarchical Control Flow Graph (HCFG), isused to specify the behaviors of the individual AtomicComponents (AC's) of the model. HCFG's are cur-rently speci�ed using a text editor to enter C++programming language source code based on C++classes and functions provided by HI-MASS. (GUIsupport for HCFG speci�cation is planned for a fu-ture version of HI-MASS.)An HCFG Model speci�cation consists of one HIGplus an HCFG behavior speci�cation for each typeof AC used in the model. The HIG speci�cation istransformed into C++ code using utility programsprovided by HI-MASS. The elements of the modelspeci�cation are then compiled and linked with theHI-MASS object library to form an executable model.The executable model is then combined with ex-perimental conditions speci�ed by an \experimentalframe" to produce a simulation run. A high leveloverview of this process is given in Figure 1.
+

+

Executable Experimental
Model Frame

Component

Simulation

Run

and
Interconnection

Specification

Component

Specification(s)
Behavior

Support

Code

Figure 1: High Level Overview



HI-MASS is an object oriented C++ based systemwhich was developed speci�cally for a Sun SPARCworkstation running the SunOS (Unix) operating sys-tem. HI-MASS makes extensive use of object ori-ented programming features supported by C++, suchas encapsulation, inheritance, polymorphism, gener-icity, and overloading (Stroustrup 1991). HI-MASSwas implemented using the freely availableGNU C++compiler (g++) and C++ library (libg++). The GUIused for visual interactive modeling was implementedusing the freely available InterViews C++ user inter-face toolkit. HI-MASS should compile and run on anysystem on which this compiler, library, and toolkit areinstalled. In addition to the Sun SPARC, we have runHI-MASS on an IBM RS/6000, a DEC Alpha, and onIntel 486 and Pentium based personal computers.A user of HI-MASS needs to be familiar with mod-eling using the HCFG Model paradigm and softwaredevelopment using the C++ programming languagein a Unix based environment. An 82 page User'sGuide (Fritz, Daum, and Sargent 1995) which in-cludes several examples has been developed for HI-MASSThe remainder of this paper is organized as fol-lows. Sections 2 and 3 describe, respectively, the spe-ci�cation of the HIG and the HCFG behaviors. Sec-tion 4 presents an overview of the use of experimentalframes. Sections 5 and 6 describe the constructionand the execution of a model, respectively. Section 7summarizes this paper.2 COMPONENTS AND CHANNELSA HIG is used to specify the components which com-prise a model and how those components are inter-connected (i.e., the channels). A HIG is a hierarchicalstructure of components which is de�ned by a set ofCoupled Component Speci�cations (CCS's), each ofwhich speci�es the internal view for a coupled com-ponent type. (The internal view of an AC is a beha-vior speci�cation and is not part of the HIG.)All model components have the following attributes:a name (instance name), a type (type name), a setof input ports, and a set of output ports. If mul-tiple model components are \instances" of the sametype of component, then those components all sharethe same type de�nition. A CCS for a coupled com-ponent speci�es a set of subcomponents and a set ofchannels which de�ne the routing pattern for all inter-component messages between the subcomponents andbetween the subcomponents and the \outside world"(i.e., the external ports of the enclosing component).The coupled component that encloses the entire model(i.e., the root node of the associated HIG tree) is theonly component in a model that has no external ports.

The HIG for a model is constructed by specifyingthe set of CCS's for the coupled component types thatare contained in the model using the HI-MASS GUI.The GUI uses two di�erent �le formats for CCS's:visual and structural. The visual format is used bythe GUI to de�ne the visual appearance of the mod-eling elements of the CCS, such as shapes, locations,and relations. The structural format de�nes the CCSelements such as subcomponent name/type pairs, portidenti�ers, and port interconnections and is used forthe generation of the C++ code for model construc-tion. The GUI requires only the visual format forsaving and loading CCS's. When the HIG is com-plete, the GUI is then used to generate the structuralformat for each CCS in the HIG.2.1 Visual Interactive ModelingHI-MASS supplies a GUI which allows a modeler toconstruct the HIG using visual interactive modeling.A HIG is constructed using the GUI's \point andclick" environment to specify the set of CCS's in theHIG. A screen dump of a GUI window is shown inFigure 2.In Figure 2 the top line (containing \HI-MASS HIGGraphical Interface") is the X11 title bar. The nextline shows that the component type name for this CCSis \System". All components of type \System" inthe model will share this de�nition. Clicking on thetype name will pop up a dialog box which can beused to modify the component type name. Just belowthe type name is a menu bar with three \pull down"menus: \File", \Generate", and \Info". The \File"menu contains operations that allow a modeler to saveand restore CCS's. The \Generate" menu allows amodeler to generate the structural format �les whenthe HIG is completed. The \Info" menu displays theGUI development team and copyright notice.To the right of the \canvas" area is a set of \tool"buttons. A user \selects" a tool by clicking on theappropriate button, and then \applies" the tool in thecanvas area. For example, the \Component" tool al-lows the modeler to create a new component. Afterselecting the \Component" tool, the modeler \clicks"on the canvas at the desired location for the new com-ponent. A \dialog box" then pops up for the userto enter the name and type for the new component.The GUI will then verify that the name is valid (e.g.,no other component has the same name), and if so,it will then place the new component (represented bya rectangle) on the canvas. Both the instance nameand the type name of a component can be modi�ed.The names shown on components in the GUI's canvasarea are the instance names. The \ComponentArray"tool creates a homogeneous array of components. (A



Figure 2: Graphical User Interface Windowcomponent is equivalent to a component array of sizeone.) Figure 2 shows two components, \Router" and\Inspector", and one component array of size two,\Svc Center[2]", for a total of four components. Indi-vidual elements of a component array are referencedusing a zero based index (e.g., \Svc Center[0]" and\Svc Center[1]").An atomic component is visually distinguished byan additional horizontal line near the top of the com-ponent (added using the \Atomic" tool). In Figure 2\Router" and \Inspector" are AC's, and the two ele-ments of the component array are coupled compon-ents.The \Channel" tool is used to create and/or con-nect component ports. A channel is representedgraphically as a polyline (open polygon) with its dir-ection indicated via an arrow. \Joints" or \pivotpoints" (small circles) in a channel's graphical rep-resentation are used to allow the modeler to positionthe channels. The \Joint" tool allows a modeler toadd additional \joints" to existing channels. Whenchannels are created, ports are automatically added
to the appropriate components and unique port iden-ti�ers (numbers) are generated for the newly createdports. The \Multichannel" tool is used to create a\bundle" (array) of channels of a size speci�ed bythe modeler; the bundle size is indicated on the mul-tichannel. Bundles of channels create port arrays ofthe speci�ed (bundle) size which are referenced usinga zero based index.Not all connections can be clearly represented usinga purely graphical notation (e.g., connections betweencomponent arrays of di�erent sizes). The \Connec-tion Box" tool is used to specify such connections.A connection box (represented by a diamond) is aplace-holder which is linked to a textual interconnec-tion representation. By selecting the \Edit" tool andclicking on a connection box, the GUI invokes an ex-ternal text editor for the modeler to specify the in-terconnections. The GUI will automatically generateport identi�ers for all channels that are connected tothe connection box and place them in the connection�le for the modeler to edit, thus a modeler has onlyto \cut" and \paste" to specify the connections. The



connection syntax is straightforward.The \Edit", \Move" and \Delete" tools providecommon editing capabilities. The \Edit" tool (in ad-dition to its use with connection boxes) is used tomodify component names.The \Open" tool allows the modeler to opena coupled component to view and/or specify thecoupled component's internal view (i.e., its CCS).When the modeler clicks on a coupled component,another GUI window containing the internal view ofthe selected component automatically opens. For ex-ample, if the CCS in a GUI window is as shown inFigure 3 and we \Opened" the \System" component,we would then get a second GUI window as shown inFigure 2. Notice that the port identi�ers, \1", \2",and \3" from the external view of the \System" com-ponent become the external port identi�ers in the in-ternal view (shown in the circles in Figure 2).
1 1

22
3 1Source SinkSystemFigure 3: Top Level CCSThe \Copy", \Clone", \Paste", and \Paste w/newSize" tools are used to create copies and clones of ex-isting components and/or component arrays. A copycreates a new instance of an existing component typewhereas a clone creates a new component type.2.2 Generate and FlattenOnce the HIG speci�cation is complete, the GUI's\generate" function is then used to generate the set ofcomponent speci�cations (structural representations)required by later stages of the HI-MASS model con-struction process. The structural representation con-sists of one component speci�cation for each type ofcomponent used in the model.In HI-MASS, the HIG is then \
attened" into anInterconnection Graph (IG) using the HI-MASS \
at-ten" utility program. This 
attening removes thecoupled components from the model while preservingthe interconnection information of the original HIG.The output of the 
attener is a single CCS (the IG) inwhich the subcomponents consist of all the AC's of theoriginal HIG. In an HCFG Model all message tra�coriginates and terminates at AC's, but the messagesmay pass through one or more intermediary coupledcomponent ports between the two AC ports. In theIG all the coupled components have been removed andthe interconnections are directly between the originalAC's of the HIG.

3 BEHAVIOR SPECIFICATIONThe behavior for each type of AC is speci�ed using anHCFG. An HCFG is a rooted tree structure in whichthe nodes represent Macro Control States (MCS's).The MCS is the basic building block for behaviorspeci�cation. In the current version of HI-MASS amodeler speci�es the behavior of each MCS via objectoriented C++ programming language code based onclasses and functions provided by HI-MASS. An ACbehavior speci�cation (i.e., the HCFG) is de�ned bythe set of MCS speci�cations that constitute the nodesof the AC's HCFG tree.3.1 Macro Control StatesHI-MASS provides a C++ base class \MCS" fromwhich all MCS classes in a model are derived. Thisbase class de�nes the attributes and behavior com-mon to all MCS's. A modeler must create a MCSclass for each type of MCS used in a model. Eachtype of MCS speci�es any required parameters in itsC++ constructor declaration. (A constructor for aC++ class is a special function that speci�es how toconstruct an object of that class.) Parameters thatan MCS might require include initial values for localvariables, pointers to external functions and variables,and pointers to AC ports. All MCS's of the same typethroughout a model share the same class de�nition.Attributes common to all MCS's include a \name", a\type name", a set of pins, a set of control states, aset of edges, and a set of child MCS's.The MCS class provides \helper" class memberfunctions which a modeler can use in constructing aMCS. These helper functions allow a modeler to easilycreate objects such as pins, control states, and edges.Child MCS's contained within a MCS must be createdby directly invoking the child MCS's constructor asMCS instantiation (construction) may require modeland/or context dependent parameters.We illustrate the use of these helper functions byconstructing a MCS of type \(Simple)". This MCS,shown in Figure 4, can be speci�ed using C++ coderesembling that shown in Figure 5. The helper func-tions were designed so that even those who are unfa-miliar with C++ syntax should be able to understandthe basic operation performed by each line of code inFigure 5.Lines 1 through 4 of Figure 5 create and add the(external) pins and control states to the MCS. Line 5creates the child MCS \child1" and line 6 adds it tothe current MCS (so that its pins can be referencedwhen adding edges). Lines 7 through 12 add theedges which interconnect pins and control states ofthe MCS. The �rst two parameters specify the origin



s1

s2

e3(p)

child1a b

1

2

port3

1

tDelay()
e1()

T

e2()

2

(Simple)

outin

pred()
e-null()Figure 4: A Simple MCS1) Pin* in = add_Pin("in");2) Pin* out = add_Pin("out");3) CtrlState* s1 = add_CtrlState("s1");4) CtrlState* s2 = add_CtrlState("s2");5) MCS* child1 = new MCS_Child("child1",...);6) add_MCS(child1);7) add_Edge(in,s1);8) add_TimeEdge(s1,out,tDelay,e1,1);9) add_BoolEdge(s1,child1->get_Pin("a"),0,e2,2);10) add_Edge(child1->get_Pin("b"),s2);11) add_PortEdge(s2,s2,&port3,e3,1);12) add_BoolEdge(s2,out,pred,0,2);Figure 5: Code for a Simple MCSand termination points for the edge. Edges origin-ating from pins have no other attributes. For thoseedges originating from control states, the third para-meter speci�es the condition, the fourth parameterspeci�es the event, and the �fth parameter speci�esthe edge priority. The condition and event paramet-ers are pointers to functions that are called wheneverthe edge's condition attribute is tested or its event isexecuted (during an edge traversal). This method ofpassing a pointer to a function that is to be calledback at a later time is referred to as a \call back".As an example of the helper function semantics,line 9 in Figure 5 adds a TrueEdge from controlstate \s1" to the input pin \a" of the child MCS\child1". The \a" pin belongs to the child MCS\child1" and thus we ask \child1" for a handle(pointer) to its input pin named \a" using the con-struct \child1->get Pin("a")". The third para-meter of \add BoolEdge()" is either a pointer to apredicate function which returns true or false, ora value \0" for a TrueEdge. (We are able to usea pointer value of zero \0" for a TrueEdge because\0" is an invalid pointer value in C++.) The fourthparameter is a pointer to the event function that isexecuted when the edge is traversed. The �fth andlast parameter is the edge priority. The TrueEdgespeci�ed on line 9 has a priority value \2".We say that the code in Figure 5 \resembles" thatrequired in HI-MASS because the code shown assumesthat the condition and event functions are regular

C++ functions. However, in HI-MASS, the conditionand event functions are encapsulated within the MCSin which they are de�ned as class \member functions".Member functions require a di�erent method for useas \call back" functions. In HI-MASS we use a C++idiom, known as \Functors", that allows \type safe"call backs of member functions using objects that actlike functions. (See Hickey (1995) for a discussion on\Functors".)In addition to the speci�cation of the MCS graph(pins, control states, MCS's, and edges) given in Fig-ure 5, we must also specify each condition and eventfunction used in the MCS and any member variablesthat those functions may require. Time delay func-tions (used by TimeEdges) are functions that returna non-negative time delay value, and boolean pre-dicate functions (used by BoolEdges) return true orfalse. PortEdges require a pointer to an associatedinput port (instead of a function) which is interrog-ated for its empty/non-empty status. Event functionsfor TimeEdges and BoolEdges are functions that takeno parameters. These functions are called wheneverthe simulation execution algorithm traverses the as-sociated edge. The event function for a PortEdge isa function that takes as its only parameter, a pointerto the associated port. For example, the event as-sociated with the PortEdge referenced in line 11 ofFigure 5 might be de�ned as in Figure 6.void e3(InPort* p) {Msg* m = p->receive(); // get msg from portmessage_count++; // increment countdelete m; // destroy message} Figure 6: PortEdge Event \e3" De�nitionAn overview has now been given on the speci�cationof MCS's in HI-MASS. We next look at the messagesthat are passed between the AC's of the model.3.2 MessagesAll intercomponent messages in HI-MASS are derivedfrom a C++ base class \Msg" supplied by HI-MASS.Message passing is handled in HI-MASS by dynam-ically creating messages, passing pointers to the mes-sages between AC's, and having the receiving AC des-troy the dynamically allocated messages after all re-quired information has been extracted from them.All messages in HI-MASS have a timestamp whichis set to the local simulation time of the sending ACwhen the message is transmitted. Messages may alsohave other attributes which are used to carry addi-tional information between AC's. The sender and re-ceiver must use compatible message types.



HI-MASS provides a message class \Msg Proto"(derived from base class \Msg") which contains sixattribute �elds: two integer, two 
oating point, andtwo String. If all messages used in a model are of class\Msg Proto" then message compatibility between thesending and receiving message types is assured. (HI-MASS allows a modeler to de�ne other message types,but this requires the modeler to assume responsibilityfor message compatibility.)4 EXPERIMENTAL FRAMEHI-MASS supports the use of experimental frames.The Experimental Frame (EF) concept separates amodel's de�nition from the set of model parametersused for a speci�c execution run of the model. Thisallows a modeler to modify such items as initial condi-tions, seed values for random number generators, de-sired data collection, and termination conditions for aspeci�c simulation run without modifying the modelitself (which would require an edit, compile, and linkcycle). HI-MASS reads experimental frame informa-tion from two text �les during its initialization phaseprior to constructing the model objects (e.g., the AC'sand MCS's). One EF �le contains information thatspeci�es the initial control state for each AC in themodel, and the other EF �le contains information thatspeci�es the initial values for those model variablesthat have explicit support for EF initialization. Set-ting the initial control state for each AC is handledentirely by HI-MASS support code (contained in HI-MASS base classes) and thus involves no modeler ac-tion other than selecting the initial control state foreach AC. Support for setting initial values for modelvariables must be explicitly supplied by the modeler;HI-MASS provides helper functions that simplify thistask. A modeler will generally have several sets of EF�les associated with a model (one set for each experi-ment). The EF �les used for a speci�c simulation runare speci�ed via command line options when invokingthe simulator.We have now discussed the elements which com-prise a HI-MASS model. In the next section we lookat how these elements �t together.5 BUILDING A MODELAn HCFG Model requires one HIG plus an HCFG foreach type of AC used in the model. In this sectionwe show how those two types of model speci�cationsare combined, along with HI-MASS support routines,to build an executable model. This process is shownin Figure 7. The steps a modeler takes to constructa model are shown in solid boxes and the supportingelements of HI-MASS that are utilized by the modeler

are shown in \dashed" boxes. Creating the HIG us-ing the GUI and 
attening the HIG into an IG werecovered in Section 2, an overview of MCS speci�cationwas given in Section 3, and the use of experimentalframes was covered in Section 4. We now cover theremaining steps for constructing a model.
AC
Class

MCS
Class

Model
Class

Build EF Files

Create the HIG using the GUI

Flatten HIG to IG

Convert IG to C++

Build main() Build MyModel Build AC’s Build MCS’s

Other
Classes

Compile Compile Compile Compile

Run

Link
HI-MASS

LibraryFigure 7: HI-MASS Modeling Tasks and Elements5.1 Classes and FunctionsA HI-MASS model (in its C++ representation) hasone object of type \Model", one object of type \AC"for each AC, and one object of type \MCS" for eachMCS in the model. The \Model" object is de�nedby a class (e.g, \MyModel") that is derived fromthe HI-MASS base class \Model". (Class inheritancede�nes an \is-a-kind-of" relationship from the derivedclass to the base class, thus \MyModel" \is-a-kind-of"\Model".) Each type of AC in the model is de�ned bya class derived from base class \AC", and each typeof \MCS" in the model is de�ned by a class derivedfrom base class \MCS". The relationships betweenthe \Model", \AC", and \MCS" objects and the par-titioning of information from the two types of spe-ci�cation structures (HIG and HCFG) between theseclasses are shown in Figure 8.The \Model" object constructs each AC in themodel and then interconnects the AC ports as spe-ci�ed by the IG. Each \AC" constructs its set of in-put ports, output ports, and the top level MCS of itsHCFG tree. Each MCS constructs its pins, controlstates, child MCS's, and edges, and de�nes all condi-tion and event functions required by its edges. (SinceMCS's recursively construct any child MCS's con-tained within them, an HCFG tree is uniquely de�ned



AC AC

MCS MCS

MCS

AC

MCS

MCS

Model

MCS

MCSMCS

MCSComponent
Behaviors

(HIG)

(HCFG’s)

Components

Interconnections
and

Figure 8: Speci�cations and Classesby specifying its top level MCS. Thus, an AC objectcompletely de�nes its behavior by specifying only thetop level MCS of its HCFG tree.)Every C++ program also has a function \main"which is the main entry point where program execu-tion begins. All the C++ code in a HI-MASS modelthat is not contained within one of the C++ classes(as member functions) is contained within the \main"function. A typical main routine for a HI-MASSmodel (as shown in Figure 9) is a very simple routinethat performs only three functions: (1) it creates the\Model" object, (2) it tells the \Model" object to ini-tialize the model, and (3) it tells the \Model" object toexecute (simulate) the model. All \main" routines forHI-MASS models are the same, except for possibly thetype name of the \Model" object (e.g., \MyModel").main(int argc, char *argv[]) {Model* model = new MyModel(); // createmodel->init(argc,argv); // initializemodel->execute(); // execute} Figure 9: Function \main()"5.2 Incorporating the IGThe HIG speci�es the components and interconnec-tions for a model. The HIG is then 
attened intoan IG. Then the following information is extractedfrom the IG for model speci�cation: (1) a list of allAC's contained in the model and the associated typeof each, (2) a list of all AC port to port intercon-nections (i.e., the channels), and (3) a separate list ofthe set of input and output ports for each type of ACused in the model. The types of information extrac-ted from the IG are shown in Figure 10. (The \n"on the arrow from the IG to the \List(s) of Ports" inFigure 10 indicates that there are \n" lists of ports,where \n" represents the number of AC types used inthe model.)As stated in the previous subsection, a modelermust create a class (e.g., \MyModel") that is de-

List of
Interconnection
Specifications

List of AC
Name-Type

Pairs

IG

List(s) of Ports

nFigure 10: Information from the IGrived from the base class \Model". The only dif-ference between base class \Model" and class \My-Model" is that class \MyModel" provides de�nitionsfor two functions; one function creates the AC ob-jects in the model and the other function speci�es theAC port interconnections. A HI-MASS utility pro-gram \ig-to-c++" converts the information from theIG into the C++ form required by these functions inthe \MyModel" class. A modeler can simply copy asample \MyModel" class supplied by HI-MASS andthen \cut" and \paste" the AC and interconnection in-formation extracted from the IG into the appropriate\MyModel" functions using a text editor. No othermodeler input is required for a class \MyModel".A modeler also creates a class for each type of ACused in the model. All AC classes are derived from theHI-MASS base class \AC". These classes are identicalexcept for three elements: (1) the set of input and out-put ports, (2) the behavior speci�cation, and (3) theset of AC (local to the AC) attributes. The set ofinput and output ports for an AC type is extractedfrom the IG using the \ig-to-c++" utility. The be-havior speci�cation is generated by creating the MCSfor the root node of the AC's HCFG tree (child nodes(MCS's) in the HCFG tree are recursively generated).The behavior speci�cation in an AC class is typicallyspeci�ed via a single line of code. The AC attributesvary depending upon the type of AC; some attributes(such as a local simulation clock) are standard amongall AC's while others must be explicitly speci�ed bythe modeler.5.3 Compiling and LinkingA model consists of a function \main()", a class \My-Model", a class for each type of AC used in the model,and a class for each type of MCS used in the model.The function \main()" and the \Model", \AC", and\MCS" class de�nitions are compiled into object codeand then linked with the HI-MASS object library andany other required libraries (e.g., libg++) to form asingle program (the executable model) as shown inFigure 7.



6 EXECUTING A MODELThe user executes a model by simply running the pro-gram (executable model) with appropriate commandline options. The command line options allow the userto specify the experimental frame (control state andvariable initialization) �les to use for the simulationrun, to turn on run time trace information, and/or tospecify single step event execution mode.A simulation execution run has three main phases:model construction, model execution, and end of sim-ulation output. During model construction the modelobjects (e.g., the AC's and MCS's) are constructedand initialized as speci�ed in the experimental frame.The model then enters the simulation execution phasewhere the model is simulated until simulation termin-ation conditions are satis�ed. After the terminationconditions are met, an end of simulation output phaseallows the \Model", each AC, and each MCS to out-put end of simulation data and state information. Thisinformation includes the time of the last event ex-ecuted in the model, the next event time for each AC,the current control state for each AC, and any datacollection output speci�ed by the modeler for an ACor a MCS.HI-MASS provides trace information during themodel construction and end of simulation outputphases. A modeler can add additional trace informa-tion during each of these two phases if desired.HI-MASS supports �ve types of run time traceinformation during the simulation execution phase.These include: (1) control 
ow (the 
ow of each AC'sPoint of Control over its HCFG), (2) intercomponentmessage tra�c, (3) event list operations, (4) data as-sociated with events, and (5) other data (e.g., data as-sociated with edge condition evaluation, such as ran-dom variates returned by time delay functions). Con-trol 
ow, message tra�c, and event list trace inform-ation is automatically generated by HI-MASS. Datatrace information, however, is model dependent, andthus must be explicitly speci�ed by the modeler in thecondition and event routines of the MCS's.7 SUMMARYWe presented the two complementary types of spe-ci�cation structures (components and interconnec-tions, and behavior speci�cations) that are used byHCFG Models. We described how a HIG is speci�edby constructing a set of CCS's using visual interactivemodeling via the GUI supplied by HI-MASS, and howthe behavior speci�cations (HCFG's) are constructedby specifying C++ code based on the object orientedfoundation supplied by HI-MASS. We then presen-ted overviews of the use of experimental frames, howthe two types of speci�cations are transformed into

an executable model, and how a model is executed inHI-MASS.ACKNOWLEDGMENTSHI-MASS was developed by the Simulation ResearchGroup at Syracuse University under contract to theU.S. Air Force's Rome Laboratory.REFERENCESFritz, D., T. Daum, and R. Sargent. 1995. User'sManual for HI-MASS. Simulation Research Group,439 Link Hall, Syracuse University.Fritz, D. and R. Sargent. 1995. An overview of con-trol 
ow graph models. In Proceedings of the 1995Winter Simulation Conference.Hickey, R. 1995. Callbacks in C++ using templatefunctors. C++ Report 7 (2), 43{50.Stroustrup, B. 1991. The C++ Programming Lan-guage (Second ed.). Addison-Wesley.AUTHOR BIOGRAPHIESDOUGLAS G. FRITZ is a graduate studentat Syracuse University working towards a Ph.D.in Computer Engineering. His research area ishierarchical modeling for discrete event simulation.He received M.S. degrees in Electrical Engineeringand Computer Science from Syracuse Universityand a B.S. degree in Electrical Engineering fromThe Pennsylvania State University. He was formerlywith IBM as a development engineer for high speedswitching systems.ROBERT G. SARGENT is a Professor at Syra-cuse University. He received his education at theUniversity of Michigan and has published widely. Dr.Sargent has served his profession in numerous waysand has been awarded the TIMS College on Simula-tion Distinguished Service Award for long-standingexceptional service to the simulation community.His research interests include the methodology areasof modeling and discrete event simulation, modelvalidation, and performance evaluation. ProfessorSargent is listed in Who's Who in America.THORSTEN DAUM is a graduate student at theUniversity of Magdeburg who is working towardsa degree in simulation and computer graphics. Hisinterests include the development of Graphical UserInterfaces for Visual Interactive Modeling. He wasa visiting researcher with the Simulation ResearchGroup and CASE Center at Syracuse University.


