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Abstract 

This paper presents a logic appropriate for mass terms, that is, a logic that 

does not presuppose interpretation in discrete models. Models may range from 

atomistic to atomless. This logic is a generalization of the author's work on 

natural language reasoning. The following claims are made for this logic. First, 

absence of variables makes it simpler than more conventional formalizations 

based on predicate logic. Second, capability to deal effectively with discrete 

terms, and in particular with singular terms, can be added to the logic, making 

it possible to reason about discrete entities and mass entities in a uniform 

manner. Third, this logic is similar to surface English, in that the formal 

language and English are "well-translatable," making it particularly suitable 

for natural language applications. Fourth, deduction performed in this logic 

is similar to syllogistic, and therefore captures an essential characteristic of 

human reasoning. 
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1 Introduction This paper presents a logic appropriate for mass terms, that 

is, a logic that does not presuppose interpretation in discrete models. Models may 

range from atomistic to atomless. This logic is a generalization of the logic for rea­

soning in natural language presented in [5]. It is also related, in its objectives, to the 

generalization of first-order logic defined by Roeper [8]. 

Claims made for this logic are the following. First, absence of variables makes it 

simpler than more conventional predicate logics such as [8]. Second, capability to 

deal effectively with discrete terms, and in particular with singular terms, can be 

added to the logic, making it possible to reason about discrete entities and mass 

entities in a uniform manner. Third, this logic is similar to surface English, in that 

the formal language and English are "well-translatable" [3], making it particularly 

suitable for natural language applications. Fourth, deduction performed in this logic 

is similar to syllogistic, and therefore captures an essential characteristic of human 

reasonmg. 

The first claim is supported by the body of this paper. The definition of the language, 

its semantics, its axiomatization, and the proofs of soundness and completeness are 

simpler and more straightforward than the more conventional formulation given in 

[8]. Support for the second claim can be found in Section 4. The third and fourth 

claims are essentially those made for the discrete version of this logic. Support for 

these claims can be found in [5, 6]. No claims are made for solving the many linguistic 

and philosophical problems related to mass terms. 
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2 Definition of the language The language described in this section is the 

same as LN, presented in [5], but without singular predicates. The semantics of LN 

is suitably generalized to permit nonatomic interpretations. 

2.1 Syntax The alphabet of LN consists of the following. (Define w+ := w-

{0}.) 

1. Predicate symbols 1?.- = Ujew+ 'Rj, where 'Rj = { R{ : i E w}. 

2. Selection operators { (kb ... , kn) : n E w+, ki E w+, 1 :=:; i :=:; n}. 

3. Boolean operators n and-. 

4. Parentheses ( and ). 

LN is partitioned into sets of n-ary expressions for n E w. These sets are defined to 

be the smallest satisfying the following conditions. 

1. For each n E w+, each R!/ E 'Rn is a n-ary expression. 

2. For each m E w+, for each Ri E 'Rm, (kb ... , km)Ri is a n-ary expression 

where n = max(kih<i<m· 

3. If X is a n-ary expression then (X) is a n-ary expression. 

4. If X is a m-ary expression and Y is a 1-ary expression then (X n Y) is a n-ary 

expression where n = max(l, m ). 
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5. If X is a unary expression and Y is a (n + 1)-ary expression then (XY) is a 

n-ary expressiOn. 

In the sequel, superscripts and parentheses are dropped whenever no confusion can 

result. Metavariables are used as follows: Rn ranges over 'Rn; R ranges over 'R-1 ; 

X, Y, Z, W, V range over .CN; and Xn, yn, zn, wn, Vn range over n-ary expressions of 

.CN. Applying subscripts to these symbols does not change their ranges. 

2.2 Semantics An interpretation of .CN is a pair I = (A, F) where A = (A, ~) 

is a nonempty set partially ordered by inclusion, possibly having a least element 0, 

and :F is a mapping defined on n. For each Rn E 'Rn, F(Rn) ~An and satisfies: 

1. if (at, ... , an} E F(Rn), then (at, ... , an} is a nonzero element of An 

2. if (at, ... , an) E F(~) then for all nonzero (bt, ... , bn) ~ {at, ... , an} : (bt, ... , bn} E 

F(Rn) 

3. if for all (bt, ... ,bn) ~ (at, ... ,an), there exists (ct, ... ,cn) ~ (bt, ... ,bn) such 

that {ct, ... , Cn} E F(~), then {at, ... , an} E F(~) 

Here (at, ... , an} is nonzero:¢:} for 1 $ i $ n : ai -=f:. 0, and (bt, ... , bn} ~ (a~, ... , an) :¢:} 

for 1 $ i $ n : bi ~ ai. 

If a = (at, az, .. . ) E Aw, then a is nonzero if for all n E w+, (at, ... , an} is nonzero. 

If (3 = (b~, ~' ... ) E Aw also, then (3 ~a if for all n E w+, (b~, ... , bn) ~ (at, ... , an}· 

Let a = (ab az, .. . ) E Aw be a sequence of elements of A. Then X E .CN is satisfied 
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by a in I (written I Fa X) iff a is nonzero and one of the following holds: 

1. X= Rn and {at, ... , an} E :F(X) 

2. X = (k~, ... , km}Rm and for all nonzero {3 ~ a, there exists nonzero 1 ~ {3 : 

{ck1 ,· • .,Ckm} F~ ~ 

3. X = Y and for all nonzero {3 ~ a : I ~.8 Y 

4. X = y n z and I Fa y and I Fa z 

5. X= Y 1 zn+1 and for some nonzero a E A: (a} Fa Y 1 and (a} Fa zn+l 

Here I ~a Y is an abbreviation for not (I Fa Y), and {bt, ... , bn} Fa Y (or 

(b~, ... , bn} F Y when there is no possibility of confusion) is an abbreviation for 

X is true in I (written I F X) iff I Fa X for every nonzero a E Aw. X is valid 

(written F X) iff X is true in every interpretation of .CN. A 0-ary expression of .CN 

is called a sentence. A set f of sentences is satisfied in I iff each X E r is true in I. 

The intuitive notion is that X E .CN is satisfied by a in I if and only if (at, ... , an} is 

nonzero and is included in the denotation of X. This notion implies certain properties 

of mass terms, which in turn motivate the semantics. First, if I Fa X then I F.B X 

for any nonzero {3 ~ a. Second, while it is possible that I Fa X and I ~a X, or 

that I Fa X and I ~a X, or that I ~a X and I ~a X, it is not possible that 

I Fa X and I Fa X. Third, I Fa X iff I f=a X. 
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The first property is known as the distributive property of mass terms [2, 7]. It is 

imposed on basic expressions by the second restriction on the denotation function F. 

The first and second properties together motivate the definition of satisfaction for 

X = Y. As a consequence of the definition of satisfaction for X = Y, I I= a X iff 

V/3 s;;; a: I ~.6 X i:ff'V/3 s;;; a: 31 s;;; (3: I F"Y X. This together with the third property 

motivates the so-called cumulative property of mass terms [2, 7], which is assured for 

basic expressions by the third restriction on the denotation function :F. For more 

on mass terms, see [2, 7]. Roeper [7] gives a clear and concise presentation of the 

necessary background for a logic of mass terms. Bunt [2] provides a comprehensive 

review of the linguistic and philosophical issues as well as a logic of mass terms. 

The following lemma and corollary establish the distributive, cumulative, and com­

plement properties in the general case. 

LEMMA 1 (schema) {i) if I Fa X then V nonzero (3 s;;; a: I Fi3 Xj {ii) if'V/3 s;;; a: 

3r s;;; (3 : I F"Y X then I Fa X. 

proof: Proof is by induction on the structure of X. The basis follows directly from 

the definition of satisfaction and the definition of :F. The induction step involves four 

cases. 

Case 1. X= (kt, ... , km)Rm. 

(i) and (ii) follow directly from the definition of satisfaction (2) and the transitivity 

of inclusion. 

Case 2. X= Y. 
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(i) follows directly from the definition of satisfaction (3) and the transitivity of inclu-

SlOn. 

(ii) V/3 ~ o:: 31 ~ f3: If="~ X implies V/3 ~ o:: 31 ~ f3: Vb ~ 1: I~" Y (definition 

of satisfaction (3) ). Now suppose I ~a X. This implies 3 nonzero f3' ~ o: : I F.B' Y 

(definition of satisfaction (3)), which implies 3 nonzero f3' ~ o: : V nonzero 1' ~ f3': 

I F'Y' Y (induction hypothesis (i)). But this contradicts the preceding result. Hence 

I Fa X. 

Case 3. X = Y n Z. 

(i) and (ii) follow directly from the definition of satisfaction ( 4) and the induction 

hypothesis. 

Case 4. X= YZ. 

(i) follows directly from the definition of satisfaction (5) and the induction hypothesis. 

(ii) V/3 ~ o: : 31 ~ f3 : I f='Y X implies Vf3 ~ o: : 31 ~ f3 : 3c E A : (c) F'Y Y and 

(c) F-y Z (definition of satisfaction (5)). This implies Vf3 ~ o:: 31 ~ f3: 3c E A: 

V nonzero b ~ 1 : V nonzero d ~ c : (d) Fc5 Y and (d) Fc5 Z (induction hypothesis 

(i)). Hence Vf3 ~ o: : Vd ~ c : 3b ~ f3 : 3d ~ d : (d) Fc5 Y and (d) Fc5 Z. This 

implies (c) FaY and (c) Fa Z (induction hypothesis (ii)), which implies I Fa YZ 

(definition of satisfaction ( 5)). 0 

COROLLARY 2 (schema) I Fa X iff I Fa X. 0 

2.3 A Boolean structure The semantics of the previous subsection defines a 

Boolean structure for LN. Use of this structure simplifies the soundness argument 
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to be presented in the next section. Define lXI := { o: :I Fa X}. Then IX n Yl = 

lXI n IYI, where n is set intersection. Further define lXI* := {o:: 'V/3 ~ o:(I ~.6 X)}. 

Then lXI* = lXI. Now let L be the image of .CN under I· 1. It is straightforward 

to verify that L is a pseudocomplemented meet-semilattice with lower bound 0. It 

follows from lattice theory (see (4], Thm. I.6.4) that S(L) = {lXI* : lXI E L }, the 

so-called "skeleton" of L, is a Boolean lattice with meet n, complement*, and join U, 

defined lXI u IYI := (lXI* n IYI*)*. But by Corollary 2, lXI = lXI. Hence lXI** = lXI 

and so S(L) = L. Thus Lis itself a Boolean lattice. 

The following abbreviations in .CN are motivated by this Boolean structure. 

1. X U Y := (X n Y) 

2. X~Y:=XnY 

3. X= Y :=(X~ Y) n (Y ~X) 

4. T := (m ~ R~) 

The situation can be summarized as follows. L is a Boolean lattice with meet n 

such that lXI n IYI =IX n Yl, complement* such that lXI* = lXI, join U such that 

lXI U IYI = IXUYI, bounds ITI and ITI, and ordered by inclusion such that lXI ~ IYI 

iff IX ~ Yl = ITI. The expression XY has the Boolean property: IXYI = ITI iff 

lXI C IYI*· It follows immediately that: 

1. 'Vo: : I Fa X ~ Y iff 'Va : (I Fa X implies I Fa Y) 
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2. Va :I l=a X = Y iff Va : (I l=a X iff I l=a Y) 

3. V a : I I= a XY iff V a : I I= a X ~ Y 

2.4 Additional abbreviations 

improve readability. 

4. fln := (n, ... , l)_Rn 

The following abbreviations are introduced to 

Using the previously stated results for L, it is easy to see that: 

1. I I= Xn···X1Yn iff for some (d1, ... ,dn) E An (dt) I= X1 and··· and 

(dn) I= Xn and (d11 ••• , dn) I= yn 

2. I I= I\Xn···{\X1Yn iff for all (d~, ... ,dn) E An ((dt) I= X1 and··· and 

(dn) I= Xn) implies (dt, ... , dn) I= yn 

3. I I= X2X1Yr? o · · · o ¥;.2 iff for some (do, d1, ... , dn} E An+l : (d~, do} I= ¥;.2 and 

(d2 , d1} I= ¥;2 and · · · and (dn, dn-t) I= Yr? and (dn} I= X 1 and (do) I= X 2 

Intuitively then, ZXY2 renders "some X is Y to some Z;" {\Zf\XY2 renders "all X 

is Y to all Z;" and ZX¥;2 o ¥;_2 renders "some X is ¥;2 composed with ¥;_2 to some 

Z." 
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3 Axiomatization of eN The universal closure of a n-ary expression X E eN 

is defined to be the nullary expression (AT)n X. The axiom schemas of eN are the 

following. 

BT. The universal closure of every schema that can be obtained from a tautolo­

gous Boolean wff by uniform substitution of metavariables of eN for sentential 

variables, n for /\, and - for -, 

C2. Xn · · · X1 (k1, ... , km)Rm ~ Xkm · · · Xk1 Rm where n = max(kjh<i<m 

EG. (ZT n AZX n AXn .. •1\X}I\zyn+I) ~ AXn .. •1\Xlxyn+l 

Dl. (XjT n ... n XnT n AXn .. ·AXl(Ym n Z 1)) ~ (AXm ... 1\xlym n AXI .. ·AX1Z1) 

where n = max(l,m) and j = min(l,m) + 1 

D2. (AXm ... Mlym nJ, .. ·AX1Z1) ~ AXn .. ·AXI(Ym n Z 1) where n =max( I, m) 

The inference rules of eN are the following. 

MP. From X 0 and X 0 ~ yo infer yo 

EI. From (V0 n RT n ARX n Xn ... XlARYn+I ), where R E 'R,l does not occur in 

X, X1, ... ,Xn, yn+I, or V 0 , infer (V0 n Xn · · · X 1XYn+I) 

11 



The restriction imposed on the unary predicate R by inference rule EI is abbreviated 

by the phrase R is fresh. 

The set T of theorems of l.N is the smallest set containing the axioms and closed 

under MP and EI. 

THEOREM 3 (Soundness) X E T only ifF X. 

proof: It a suffices to prove that the axioms are valid and that validity is preserved 

by the inference rules. Proofs will be given for axioms C2 and Dl, and inference rule 

El. The others are similar. 

(i) Axiom C2 is valid. 

I I= Xn ···XI (kll ... , km).Rm iff 3{dt, ... , dn) E A" : ( {di) I= XI A · · · A (dn) I= Xn) 

A(dt, ... , dn) I= (kt, ... , km)Rm (Section 2.4) iff 3{dt, ... , dn) E A" : ( {di) I= XI A 

· · · A {dn) I= Xn) A 'v'{ei, ... , en) ~ {dt, ... , dn) : {et, ... , en) ~ {kt, ... , km)~ ( def-

inition of satisfaction (3)) iff 3(dt, ... , dn) E A" : ( (di) I= XI A · · · A {dn) I= Xn) 

A'v'(eb···,en) ~ (di, ... ,dn) :3 nonzero {ft, ... ,J,.) ~ {et, ... ,en) :'v'nonzero (gi, ... ,gn) ~ 

(It, · · · , f.,) : (91e1 , ••• , 91em) ~ ~ (definition of satisfaction (2)) implies 3 ( d1e1 , ••• , diem) E 

Am : ( (d~e1 ) I= X~e1 A··· A (d~em) I= X~em)A 'v'(e~e1 , ••• , e~em) ~ (d~e1 , ••• , d~em) : 3 nonzero 

(/len · · · , /lcm) ~ ( e1e17 ••• , e1em) : (!leu ... , f1em) I= _Rm (definition of satisfaction ( 3)) 

implies 3{d~e1 , ••• , d~em) E Am : ( (d~c1 ) I= X~e1 A ···A {d~cm) I= X~cm)A (d~c1 , ••• , d~cm) I= 

~ (Lemmal) iff I I= xkm .• ·X~ciRm (Section 2.4). Thus I I= Xn ... XI(ki, ... ' km}~ 

implies I I= X~em ···X~c1 Rm whence by Section 2.3, I I= Xn···XI(k~, ... ,km)Rm 

~ X~cm · · · X~c1 .Rm. Since I is arbitrary, axiom C2 is valid. 
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(ii) Axiom Dl is valid. 

I F XjT n ... n XnTn AXn ... "Xt(Ym n Z 1) iff I I= XjT" ... "I I= XnT/\ 

I I= AXn ... AXt(Ym n Z 1) (definition of satisfaction (4)). I I= AXn ... AXt(Ym n Z 1) 

iff 'v'(dt, ... 'dn} E A"' : ( (dt} I= Xt " ... " (dn} I= Xn) -+ (dt, ... 'dn} F ym n Z 1 

(Section 2.4) iff 'v'(dt, ... , dn} E A"' : ( (dt} F X1 /\ · · · /\ (dn} F Xn) -+ ( (dt, · · ·, dm) F 

ym /\ (dt, ... , d1) f= Z 1) (definition of satisfaction (4)), which implies ('v'(dt, ... , dm) E 

Am : ((dt} F X1 /\ ··· /\ (dm} F Xm) -+ (dt, ... ,dm} F ym)/\ ('v'(dt, ... ,dt} E 

A1 : ( (dt} F Xt " ... " (d,) I= x,) -+ (dt, ... 'd,) F Z1) iff I F AXm ... AXtYm/\ 

I F ,..x, ... AXtZ1 (Section 2.4) iff I I= AXm ... ,..xlym n ,..x, ... AXtZ1 (definition 

of satisfaction (4)). Thus I F XjT n ... n X,T n ,..x, ... AXt(Ym n Z 1) implies 

IF AXm ... AXtYmn ,..x, ... AXtZ1 whence by Section 2.3, IF (XjT n ... n XnTn 

AXn ... AXt(Ym n Z 1)) ~ (AXm ... ,..xlym n ,..x, ... AXtZ1). Since I is arbitrary, ax­

iom Dl is valid. 

(ii) Rule EI preserves validity. 

Suppose F (V0 n RT n ,..RX n Xn ... XtARYn+l ), where R is fresh, but there ex­

ist interpretations I such that I F V 0 n Xn ... XtXY"'+l. In such interpretations, 

3(d, dt, ... , dn} E A"'+l : (d) F X and (dt) f= Xt and · · · and (dn} f= Xn and 

(d, dt, ... , dn) f= yn+I. Since R is fresh, among the interpretations I there are 

interpretations I' such that F'(R) = {(d)}. But then I' F V 0 n RT n ARX n 

Xn · · · Xt"RY"'+l, which contradicts the assumption of validity. 0 

Next completeness of the axiomatization is shown. The proof is in the style of Henkin. 

But because of the absence of atomicity, the construction of an interpretation is not 
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the standard one. Therefore the proof of the satisfiability theorem is given in full. 

First some definitions are needed. Let f ~eN be a set of sentences. f is consistent 

iff it does not contain X1 , ..• , Xn such that X1 n · · · n Xn is in 'T. f is complete iff 

for every sentence X E eN, either X or X is in f. f is saturated iff it is complete, 

consistent and contains RT, ARX and Xn · · · X 1ARYn+l for some R E 'R1 whenever 

it contains Xn · · · X 1XYn+l. f* is the set of sentences obtained from r by uniform 

substitution of .mi for R~ in each X E r. Thus only unary predicate symbols with 

even index occur in r•, leaving a denurnerably infinite number of fresh unary predicate 

symbols. Notice that the axioms do not reference any particular predicate symbol 

except R6. Therefore any uniform substitution of distinct unary predicate symbols 

for distinct unary predicate symbols that leaves m fixed preserves consistency and 

inconsistency. 

LEMMA 4 Let f ~ eN be a set of sentences. Iff* is consistent it can be extended to 

a saturated set of sentences f+ ~ eN. 

proof: Let Wt, W2, ... be an enumeration of the sentences of eN such that if 

such that j is odd and R} does not occur in Wk for k ~ i. Let r 0 = f* and 

ri+t = ri u {Wi+d if it is consistent and ri+I = ri otherwise. Let r+ = UiEw rj. 

(1) r+ is consistent since each ri is. 

(2) r+ is complete, for suppose X fl. r+ and X fl. r+. Then for some i, Wi1 , • •• , Wj,. E 

C such that Wil n · · · n Win n X E T and for some i' (say i ~ i') W£1 , ••• , W£m E 
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fi, such that W~1 n · · · n W~ .... n X E T. But then by axiom BT and rule MP, 

Wi1 n · · · n Win n W~1 n · · · n W~ .... E T, contradicting the consistency of fi'· 

(3) r+ is saturated, for suppose Wi = Xn · · · X 1XYn+l E fi. Then fi+l contains 

R:r n ARX n Xn ... XtARYn+l for some fresh R unless there are wil' ... 'Wj,... E ri 

such that wil n ... n Wj,... n RT n ARX n Xn ... XtARYn+l E T. But by rule EI, this 

implies Wj1 n ... n Wi .... n Xn · · · X 1XYn+l E T, contradicting the consistency of fi. 

0 

THEOREM 5 (Satisfiability) Let f ~ eN be a set of sentences. Iff* is consistent 

there is an interpretation I = (A, :F) of eN satisfying f*. 

proof: Let r+ be a saturated set of sentences extending f*. It suffices to show 

that I satisfies r+. Let A be the subalgebra of unary expressions of the Lindenbaum 

algebra of r+ [1]. Then A is a Boolean algebra whose universe is the set of equivalence 

classes of unary expressions of eN defined: X ~ y iff AT(X = Y) E r+. Let lXI be 

the equivalence class of X. 

The partial order of A is defined: lXI ~ IYI iff AT( X ~ Y) E r+. Some simple 

properties of this partial order are the following. These properties are based on the 

theorem schemas "XT and "XY = "T(X ~ Y), which follow directly from the 

axiomatization. 

(i) AXT and AXT = AT(X ~ T) imply AT(X ~ T). Hence ITI is the upper bound of 

A. 

(ii) From (i) and axiom BT, "T(T ~X). Hence ITI is the lower bound of A. 
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(iii) XT E r+ iff XT ¢ r+ iff "XT fj. r+ iff "T(X ~ T) ¢ r+ iff lXI is nonzero in A. 

(iv) 1\XY E r+ iff AT(X ~ Y) E r+ iff lXI ~ IYI in A. 

For each Rn E 'Rn define :F(Rn) := {(IXtl, ... , IXnl) : X1Tn· · ·nXnTn"Xn ... AXtRn E 

r+}. :F satisfies the requirements for a denotation function (see Section 2.2). That 

the first requirement is satisfied follows from the definition of :F and property (iii) 

above. Satisfaction of the second requirement follows from axiom SS and prop­

erty (iv). That the third requirement is satisfied can be seen as follows. Suppose 

'v' nonzero (IWtl, ... , IWnl) ~ (IYtl, ... , !Vnl): 3 nonzero (!Uti, ... , IUnl) ~ (IWtl, ... , IWnl): 

{IUtl, · · ·, IUnl} E :F(.R"') but {IYt I,···, IVnl} f/. :F(.R"'). Then UtT, · · ·, UnT, AUt Vi, ... , AUn Vn, 

"Un · · ·AU1 R"' E r+ and "Vn · · ·AViRn E r+ (r+ is complete). Hence Vn · · · ViRn E r+ 

and 3Rt, ... , Rn E 'Rt such that RtT, ... , RnT, ARt Vi, ... , 1\Rn Vn, 1\Rn · · ·ARtRn E 

r+ (r+ is saturated). By the initial assumption and properties (iii) and (iv) above, 

3Qt, ... 'Qn : QtT, ... 'QnT, 1\QtRt, ... '1\QnRn, 1\Qn ... AQtR"' E r+' and so by 

axiom EG, Qn · · · Q1R"' E r+. But because :F satisfies the second requirement, 

"Qn · · · "Q1Rn E r+ whence by axiom N, Qn · · · Q1Rn E r+, contradicting the con­

sistency of r+. 

The proof will actually establish the more general claim: for each xn E £ N' (I Yt I' ... ' I Vn I} F 

xn iff V nonzero (IWtl, ... , IWnl) ~ (lvtl, ... , IVnl) : 3 nonzero (IUtl, ... , IUnl) ~ 

{I Wtl' ... ' I Wn I) : 1\Un ... 1\UtXn E r+. Proof is by induction on the structure of xn. 

The basis follows directly from the definition of satisfaction, the definition of :F, and 

the requirements for a denotation function. The induction step involves four cases. 
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Axiom BT and rule MP are used implicitly. 

Case 1. xn = (kll ... , km)Rm, where n = max(kih~i~m· 

(IVil, ... , IVnl) ~ xn iff'v' nonzero (IW1I, ... , IWni) ~ (IVil, ... , IVnl): 3 nonzero (IU1I, 

... , IUni) ~ (IW1I, ... , IWni) : (1Uk1 1, ... , IUkm I) ~ ~ (definition of satisfaction) iff 

'v' nonzero (IW1I, ... , IWnl) ~ (IVil, ... , IVni): 3 nonzero (lUll,···, IUni) ~ (IW1I, · · ·, IWni): 

'v' nonzero (1Qk1 1, ... , IQkm I) ~ (1Uk1 1, ... , IUkm I) : 3 nonzero (IPkll, · · ·, IPkm I) ~ (IQkll, 

... 'IQkml): 11Pkm ... 11Pkl~ E r+ (induction hypothesis) iff'v' nonzero (IWll, ... ' IWnl) ~ 

(IVil, ... ' IVni): 3 nonzero (IPll, ... ' IPnl) ~ (IWll, ... ' IWnl): 11Pkm ... 11Pk1Rm E r+ 

(transitivity of ~). The proof for this case is completed by proving the following 

claim. 

Claim: IIPkm ... 11Pkl Rm E r+ iff IIPn ... IIPl (kll ... 'km)Rm E r+. 

The only if direction follows directly from axiom C2. For the if direction, suppose 

11Pkm ... IIPkl Rm ~ r+. Then pkm ... pkl Rm E r+ (r+ is complete) and there-

fore RklT n ... n RkmTn IIRklpkl n ... n "Rkmpkmn IIRkm ... "Rklf[iii E r+ for 

some Rk11 ••• , Rkm E 'R-1 (f+ is saturated). Hence 11Rn · · · "Rt(kl! ... , km)Rm E 

r+, where Ri = Pi if j ~ {k11 ... , km} (axioms Cl and N), and by axiom EG, 

Pn ... Pt(kb ... 'km)Rm E r+. That is, 11Pn ... APl (kl, ... 'km)Rm E r+ and so 

IIPn ... APl (kl, ... 'km)~ ~ r+ (r+ is complete). 

Case 2. X= Y. 

(I Vi I, ... ' IVnl) ~ xn iff'v' nonzero (IWtl, ... ' IWnl) ~ (I Vi I, ... ' IVnl) : (IWtl, ... ' IWnl) ~ 

Y (definition of satisfaction) iff'v' nonzero (IWtl, ... , IWnl) ~ (I Vi I, ... , IVnl) : 3 nonzero 

(IUtl, · · ·, IUnl) ~ (IW1I, · · ·, IWnl) : 'v' nonzero (IQtl, ... , IQnl) ~ (I Uti, ... , IUnl) : 
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AQn ... AQlY rf. r+ (induction hypothesis). But AQn ... AQlY rf. r+ iff Qn ... QtY E 

r+ (r+ is complete) iff for some Rt,". 'Rn E 'Rt : RtT n ". n RnTn ARt Qt n 

... n ARnQnn ARn ... ARtY E r+ (r+ is saturated). It follows from properties 

(iii) and (iv) above that 1141 is nonzero and IRil ~ IQil in A. By transitivity of 

~' 'v' nonzero (IWtl, ... , !Wnl) ~ (IVJ.I, ... , !Vnl) : 3 nonzero (IRtl, ... , IRnl) ~ (IWtl, 

... 'IWnl) : ARn ... ARtY E r+' which supports the claim. 

Case 3. xn = ym n Z 1 where n = max(l,m). 

(lVII,".' IVnl} F= xn iff (lVII,".' IVml) F= ym and (lVII,".' lVII} F= Z1 (definition of 

satisfaction) iff'v' nonzero (IWtl, ... , !Wm I) ~ (lVII, ... , IVml) : 3 nonzero (!Uti, ... , IUm I) ~ 

(IWtl, ... , IWml) : AUm · · · AUtYm E r+ and 'v' nonzero (IWtl, ... , IWil) ~ (lVII, .. ·, lVII} : 

3 nonzero (IQtl, ... , IQd} ~ (IWtl, ... , IWil) : AQ/ .. · AQtZ1 E r+ (induction hy­

pothesis). Now observe that in general, ('v' {3 ~ a: : 31 ~ {3 : <P( 1)) A ('v' {3 ~ a: : 

38 ~ {3 : t/J(8)) iff '1{3 ~ a: : 31 ~ {3 : (<P(I) A 38 ~ 1 : tjJ(8)). Using this 

observation, the last condition can be modified: iff 'v' nonzero (I Wtl, ... , I Wn I) ~ 

(lVII,".' IYnl} : 3 nonzero (!Uti,".' IUnl) ~ (IWtl,".' IWnl} : AUm ". AUtYm E r+ 

and 3 nonzero (IQtl, ... ,jQnl) ~ (IUtj, ... ,IUnl}: AQI"'AQtZ1 E r+. According to 

properties (iii) and (iv) above, QiT,AQiUi E r+. This implies AQm ... AQtYm E 

r+ (axiom SS) and hence AQn ... AQt(Ym n Z 1) E r+ (axiom D2). Conversely, 

suppose 'v' nonzero (IWtl, ... , IWnl) ~ (IVJ.I, ... , IVnl) : 3 nonzero (IQtl, ... , IQnl) ~ 

(IWtl,".' IWnl) : AQn. "AQt(Ym n Z 1) E r+. Then AQm ". AQtYm, AQ/". AQtZ1 E 

r+ (axiom Dl) and hence (lVII,".' IVml) F= ym and (lVII,".' lVII} F Z 1 (induction 

hypothesis) whence (lVII, ... ' IVnl) F ym n Z 1 (definition of satisfaction). 
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Case 4. xn = ytzm where m = n + 1. 

(IYtl, ... , IVnl} f= xn iff for some nonzero lVI: (lVI} f= Y 1 and (lVI, IYtl, · ·., IVnl} f= 

zm. Proceeding as in Case 3, it can be seen that the preceding statement holds iff 

V nonzero (IWI, IWtl, ... , IWnl} ~ (lVI, IYtl, ... , IVnl} : 3 nonzero (lUI, !Uti,.··, IUnl} ~ 

(IWI, IWtl, ... , IWnl}: AUn · · · AUtAUzm E r+ and 3 nonzero (IQI} ~(lUI}: AQY1 E 

r+' which implies QT n AQY1 n AUn ... AUtAQzm E r+' whence AUn ... AUtY1 zm E 

r+ (axiom EG). Conversely, suppose v nonzero (IWtl, ... ' IWnl} ~ (IVtl, ... ' IVnl) : 

3 nonzero (lUtl, ... ' IUnl} ~ (IWtl, ... ' IWnl} : AUn ... /\UtY1 zm E r+. Since UiT 

and AUiUi E r+' AUn ... AUtY1 zm E r+ implies Un ... UtY1 zm E r+ by axiom EG. 

Therefore for some R, Rt' ... 'Rn E 'Rt, RT n RtT n ... n RnTn ARY1 n ARt XI ... n 

ARnXnn ARn · · · AR1 ARzm E r+ (r+ is saturated). By axiom SS, V nonzero IQI ~ 

IRI : AQY1 A 1\Rn ... AR1 1\Qzm E r+ and hence (IRI} F Y1 and (IRI, IVt I, ... ' IVnl) F 

zm (induction hypothesis) whence (IVt I, ... ' IVnl) F Y 1 zm (definition of satisfaction). 

0 

COROLLARY 6 (Completeness) f= X only if X E T. 0 
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4 Conclusion In the discrete version of eN presented in [5], the absence of 

variables did not result in loss of expressiveness or increased complexity of proofs. 

In the generalization of eN presented in this paper, absence of variables enhances 

expressiveness and reduces the complexity of proofs relative to conventional pred­

icate logic. For a comparison, see the elegant generalization of predicate logic to 

nonatomic domains presented by Roeper [8]. In a language for mass terms, variables 

are superfluous if not intrusive. Consider the sentence AXY R, which with some syn­

tactic sugar is forall X exists Y R, and makes the assertion that for all X there 

exist Y that stand in the relation R. Compare (all X p) (some Y q) Rpq, or 

(all p)(Xp-+ (some q)(Yq A Rpq)), which make the same assertion (see [7, 8]). Far 

from increasing expressiveness, the variables seem to get in the way of understanding. 

Where a logic is desired for models that are nonatomic but not atomless, the present 

logic can be supplemented by adding singular predicates, S = { Si : i E w}, with 

semantics: 

for each S E S, F(S) = {(a)} for some (not necessarily unique) atom a E A 

and axiom schema (Sis a metavariable ranging overS): 

In this way, reasoning about mass terms and reasoning about discrete terms can be 

dealt with uniformly under a single logic. 

20 



Having established a sound and complete axiomatization, one can proceed to prove 

theorems similar to those of [5]. Principal among these is the Monotonicity Theorem, 

which states that if Y occurs as a subexpression of W such that Y lies in the scopes 

of an even (respectively, odd) number of complement operators and (AT)n(Y ~ Z) 

(respectively, (AT)n(z ~ Y)), then W ~ W', where W' is obtained from W by 

substituting Z for that occurrence of Y. (Some of the details have been suppressed 

to simplify the statement.) These theorems provide an approach to reasoning that 

is similar to syllogistic and, because of the closeness of the expressions involved to 

surface English, is termed "surface reasoning" [6]. 
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